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Problem addressed: The talk concerns numerical methods for boundary value
problems of the form

(BVP)

Au(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ,

where Ω is a domain with boundary Γ, and where A is a linear elliptic differential operator
(with possibly variable coefficients).

Examples of problems we are interested in:
• The equations of linear elasticity.
• Stokes’ equation.
• Helmholtz’ equation (at least at low and intermediate frequencies).
• Time-harmonic Maxwell (at least at low and intermediate frequencies).

Archetypical example: Poisson equation with Dirichlet boundary data:−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

Standard numerical recipe for (BVP): (1) Discretize. (2) Solve linear system iteratively.
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(BVP)

Au(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ,

where Ω is a domain with boundary Γ, and where A is a linear elliptic differential operator
(with possibly variable coefficients).

Observation: The problem is in principle easy to solve!

Consider the Poisson equation

−∆u(x) = g(x) x ∈ R2,

(with suitable decay conditions at infinity to ensure uniqueness). The solution is given by

(SLN) u(x) =

∫
R2
φ(x − y)g(y)dy , x ∈ R2.

where the “fundamental solution” of the Laplace operator −∆ on R2 is defined by

φ(x) = − 1
2π log |x|.

Note: Evaluating (SLN) numerically is harder than it looks — more on that shortly.
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B u(x) = f (x), x ∈ Γ,

where Ω is a domain with boundary Γ, and where A is a linear elliptic differential operator
(with possibly variable coefficients).

Observation: The problem is in principle easy to solve! Simply integrate

(SLN) u(x) =

∫
Ω
G(x,y)g(y)dy +

∫
Γ
F(x,y) f (y)dS(y), x ∈ Ω,

where G and F are two kernel functions that depend on A, B, and Ω.

Good: The operators in (SLN) are friendly and nice.
Bounded, smoothing, often fairly stable, etc.

Bad: The kernels G and F in (SLN) are generally unknown.
(Other than in trivial cases — constant coefficients and very simple domains.)

Bad: The operators in (SLN) are global.
Dense matrices upon discretization. O(N2) cost? O(N3) cost?
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Greengard, Rokhlin (1985): The solution op-
erator for the Poisson equation can be ap-
plied in O(N) operations. “Fast Multipole
Method.”

Beylkin, Coifman, Rokhlin (1991): Fast al-
gorithms exist for most solution operators.

Hackbusch et al (1998): Explicit recipe for
building the operators in O(n logr n) opera-
tions for r moderate. “H-matrices.”



Recall that we are interested in solving the PDE

Au(x) = g(x), x ∈ Ω,

B u(x) = f (x), x ∈ Γ.
(BVP)

Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Recurring idea: Upon discretization,
(SLN) leads to a matrix with off-diagonal
blocks of low numerical rank.

This property can be exploited to attain
linear or close to linear complexity for
operations such as matrix-vector multi-
ply, matrix-matrix multiply, LU factoriza-
tion, matrix inversion, forming of Schur
complements, etc.

All gray blocks have low rank.

Strong connections to Calderón-Zygmund theory for singular integral operators.
References: Fast Multipole Method (Greengard, Rokhlin); Panel Clustering (Hackbusch); H- and

H-matrices; Hierarchically Block Separable (HBS) matrices; Hierarchically Semi Separable (HSS)

matrices; S-matrices, a.k.a. HODLR matrices;. . .



Example: We seek to invert a matrix A as shown. Each block
is of size n× n, and A12 and A21 have rank k < n.

A =

[
A11 A12
A21 A22

]

We first form low-rank factorizations of A12 and A21 so that

A12 = U1 B12 V∗2 and A12 = U1 B12 V∗2

Then we can write A in the form

A =

[
A11 0
0 A22

]
+

[
U1 0
0 U2

] [
0 B12

B21 0

] [
V∗1 0
0 V∗2

]
.

Applying the Woodbury formula, we get

A−1 =

[
A−111 0
0 A−122

]
+

[
A−111U1 0

0 A−122U2

] [
S1 B12
B21 S2

]−1 [
V∗1A

−1
11 0

0 V∗2A
−1
22

]
,

where S1 =
(
V∗1A

−1
11U1

)−1 and S2 =
(
V∗2A

−1
22U2

)−1.
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2n× 2n 2n× 2n 2n× 2k 2k × 2k 2k × 2n

where S1 =
(
V∗1A

−1
11U1

)−1 and S2 =
(
V∗2A

−1
22U2

)−1.

So to get A−1, we need to:
• Compute A−111 and A−122 . Two inverses of half the size.

• Form S1 and S2, and then invert
[

S1 B12
B21 S2

]
. This is a small (2k × 2k) matrix.

• Form various matrix-matrix products involving at least one “thin” matrix.
Obvious recursion!
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In real life, tessellation patterns of the matrices that need to be inverted tend to be more
complex . . .

Image credit: Ambikasaran & Darve, arxiv.org #1407.1572
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Explicit solution formula: u(x) =

∫
Ω

G(x,y)g(y)dy +

∫
Γ

F(x,y) f (y)dS(y), x ∈ Ω. (SLN)

Question: Why do the dense matrices resulting upon discretization of (SLN) typically
have off-diagonal blocks of low numerical rank?

(One) Answer: It is a consequence of the smoothing effect of elliptic differential
equations; it can be interpreted as a loss of information.

This effect has many well known physical consequences:

• Rapid convergence of multipole expansions when the region of sources is far away
from the observation point.
• The St Venant principle in mechanics.
• The inaccuracy of imaging at sub-wavelength scales.
• The intractability of solving the heat equation backwards.

Caveat: High-frequency problems present difficulties — no loss of information for
length-scales > λ. Extreme accuracy of optics, high-frequency imaging, etc.



A 1D model problem: Consider a simple 2-point BVP on the interval [0,1]:

(BVP)


− d2u

dx2
+ p(x)

du(x)

dx + q(x)u(x) = g(x), x ∈ (0,1),

u(0) = fL,
u(1) = fR.

Discretizing (BVP) using a standard second order finite difference scheme, we get

Au = b,

where A is a sparse matrix of size, say, n× n. Then A−1 is dense.

Sparsity pattern of A. Sparsity pattern of A−1.

A is tridiagonal. A−1 is semi-separable.

rank=1

rank=1

A is sparse. A−1 is data-sparse.
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Template:

• Consider an elliptic PDE

(BVP)

Au(x) = g(x), x ∈ Ω,

Bu(x) = f (x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ.

• Discretize (BVP) using FEM / FD / . . . to obtain a linear system

Au = b.

The matrix A will be sparse.

• Given a computational tolerance ε, we now seek a direct (that is, non-iterative)
algorithm that builds a matrix S such that

‖S− A−1‖ ≤ ε.

The matrix S will be dense, but “data-sparse.”



A 2D model problem: Let Ω = [0,1]2 and Γ = ∂Ω. We seek to solve

(8)

−∆u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We introduce an n× n grid on Ω with nodes {xj}Nj=1 where N = n2, see Figure A. Letting
u = [u(j)]Nj=1 denote a vector of approximate solution values, u(j) ≈ u(xj), and using the
standard five-point stencil to discretize −∆, we end up with a sparse linear system

Au = b,

where [Au](k) = 1
h2
(
4u(k)− u(ks)− u(ke)− u(kn)− u(kw)

)
, see Figure B.

Figure A: The grid

k kekw

ks

kn

h = 1
n+1

Figure B: The 5-point stencil



Divide-and-conquer: Split the nodes in three groups as shown so that there are no
connections between nodes in Ω1 and Ω2. Then A has zero blocks as shown:

Ω1 Ω2

Ω3

A =

A11 0 A13

0 A22 A23

A31 A32 A33

Now suppose that we can somehow construct A−111 and A−122 . Then

A =


I 0 0
0 I 0

A31A−111 A32A−122 I



A11 0 0
0 A22 0
0 0 S33




I 0 A−111A13
0 I A−122A23
0 0 I


where S33 = A33 − A31A−111A13 − A32A−122A23 is a Schur complement.
In other words, in order to invert A, we need to execute three steps:
• Invert A11 to form A−111 . size ∼ N/2× N/2
• Invert A22 to form A−122 . size ∼ N/2× N/2
• Invert S33 = A33 − A31A−111A13 − A32A−122A23. size ∼

√
N ×

√
N

Notice the obvious recursion!

Ω1 Ω2

Ω3
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• Factor A11 to form A11 = L11U11. size ∼ N/2× N/2
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• Factor S33 = A33 − A31U−111 L

−1
11A13 − A32U−122 L

−1
22A23. size ∼

√
N ×

√
N

Notice the obvious recursion!



Outline of direct solver
All direct solvers to be described are based on hierarchical domain decomposition.
Consider a PDE Au = f defined on a square Ω = [0,1]. Put a grid on the square.
Split the domain into “small” patches we call “leaves” (they will be organized in a tree).
On each leaf, compute by “brute force” a local solution operator (e.g. a DtN operator).
This eliminates “internal” grid points from the computation. (“Static condensation.”)
Merge the leaves in pairs of two. For each pair, compute a local solution operator by
combining the solution operators of the two leaves.
Continue merging by pairs, organizing the domain in a tree of patches.
When you reach the top level, perform a solve on the reduced problem by brute force.
Then reconstruct the solution at all internal points via a downwards pass.

The original grid.
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The direct solver described works very well for moderate problem sizes.
But problems arise as the number of discretization points increases . . .

Consider a regular grid in 2D with N = n× n total nodes. The top level merge
requires inversion of a matrix representing interactions between the red nodes:

n

n
N = n× n
n = N1/2

Since this dense matrix is of size n× n, the cost for the merge is

COST ∼ n3 ∼ (N1/2)3 ∼ N3/2.

Problem: 3D is much worse!
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requires inversion of a matrix representing interactions between the red nodes:

The merge requires factorization of a dense
matrix of size n2 × n2. Consequently:

COST ∼ (N1/3)6 ∼ N2.

Assertion: The dense matrix very often be-
haves like a discretizated integral operator.
(E.g. Dirichlet-to-Neumann.)

It is rank-structured, and is amenable to
“fast” matrix algebra.

We can reduce the complexity of the top
level solve from O(N2) down to O(N), and
sometimes even O(N2/3).
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Exploiting the assertion on the previous page, we have in the last 10 years managed to
reduce the asymptotic complexity of direct solvers for elliptic PDEs dramatically:

Build stage Solve stage
2D N3/2 → N N logN → N
3D N2 → N N4/3 → N

Key idea: Represent dense matrices using rank-structured formats (such as H-matrices).

Nested dissection solvers with O(N) complexity — Le Borne, Grasedyck, & Kriemann
(2007), Martinsson (2009), J. Xia, Chandrasekaran, Gu, & Li (2009), Gillman &
Martinsson (2011), Schmitz & L. Ying (2012), Darve & Ambikasaran (2013), Ho & Ying
(2015), Amestoy, Ashcraft, et al (2015), Oseledets & Suchnikova (2015), etc.

O(N) direct solvers for integral equations were developed by Martinsson & Rokhlin
(2005), Greengard, Gueyffier, Martinsson, & Rokhlin (2009), Gillman, Young, &
Martinsson (2012), Ho & Greengard (2012), Ho & Ying (2015). Work in 1990’s Y. Chen,
P. Starr, V. Rokhlin, L. Greengard, E. Michielssen. Related to work on H and H2 matrix
methods (1998 and forwards) by Börm, Bebendorf, Hackbusch, Khoromskij, Sauter, etc.

Note: Complexity is not O(N) if the nr. of “points-per-wavelength” is fixed as N →∞.
This limits direct solvers to problems of size a couple hundreds of wave-lengths or so.
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Key selling point: Better parallelism

Let us consider the flop counts of various parts of the computation:

Classical Nested Dissection Accelerated Nested Dissection
Cost to process leaves: ∼ N ∼ N
Cost to process the root: ∼ N2 ∼ N2/3

Observations:

• While the dominant cost of the old scheme is processing dense matrices of size
O(N2/3)×O(N2/3), the dominant cost of the new scheme is processing the leaves.

• The leaf computations are very easy to parallelize!

• Parallel implementations of structured matrix algebra requires hard work
(J. Poulson’s dissertation; S. Li at LBNL; G. Biros; R. Kriemann; P. Amestoy &
A. Buttari; G. Turkiyyah & D. Keyes; J. Xia; etc).

• For intermediate size problems, the structured matrices of size O(N2/3)×O(N2/3)

often fit on one machine.

• The methodology need not be all-or-nothing. Direct solvers can be used locally to
handle areas with mesh refinement etc.
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Claim: Direct solvers are ideal for combining with high order discretization.

• Direct solvers use a lot of memory per degree of freedom.
→ You want to maximize the oomph per DOF.

• Direct solvers are particularly well suited for “high” frequency wave problems.
→ Need high accuracy due to ill-conditioned physics.

• High order methods sometimes lead to more ill-conditioned systems.
→ Can be hard to get iterative solvers to converge.

Problem: If you combine “nested dissection” with traditional discretization techniques
(FD, FEM, etc), then the performance plummets as the order is increased.

Solution: Derive a new (or at least newish) discretization scheme that is directly tailored
to work with fast direct solvers.



The Hierarchical Poincaré-Steklov Method
A direct solver based on a multidomain spectral
collocation discretization

For simplicity, let us consider a “variable wave
speed” Helmholtz problem in 2D: Given f , g,
and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω.
We assume u is smooth.
The unknown function u is represented as a vector holding approximations to its
point-wise values at the grid points (collocation). Across domain boundaries, we enforce
continuity of potentials and normal derivatives.

A global solution operator will be built using a nested-dissection type solver.

Prior work: The discretization scheme is similar to existing composite (or “multi-domain”) spectral

collocation methods by Hesthaven and others. In particular: Pfeiffer, Kidder, Scheel, Teukolsky, (2003).

Connections to domain decomposition and “reduction to interface” methods (Khoromskij & Wittum, etc.).



The Hierarchical Poincaré-Steklov Method

Model problem: Given f , g, and b, find u such that−∆u(x)− b(x)u(x) = g(x), x ∈ Ω,

u(x) = f (x), x ∈ Γ,

where Ω = [0,1]2 is the unit square and Γ = ∂Ω. We assume u is smooth.

Process leaves: Eliminate the interior (blue) nodes. (“Static condensation.”)
Technically, we compute the Dirichlet-to-Neumann operator via a local spectral
computation.
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Top level solve: Invert the DtN operator for the top level box.
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Hierarchical Poincaré-Steklov Method:

• Joint work with Adrianna Gillman.

• In contrast to prior schemes, the speed of the solver does not deteriorate as the
order is increased.

• Very high order can be used (say 20× 20 local mesh).
→ Overall errors close to machine precision for problems with smooth solutions.

• Capable of solving 2D problems on domains that are several hundred wave-lengths
across in minutes on a laptop.

• Exploiting internal structure in the boundary-to-boundary operators, we can attain
O(N) complexity and handle N ∼ 108 on a desktop. (For 2D problems; 3D is harder.)

• Extension to 3D is under way. (Joint work with A. Gillman, G. Turkiyyah, D. Keyes.)



Hierarchical Poincaré-Steklov Method — rank deficiencies in the DtN operator:
Recall that at the top level, we need to invert a dense matrix that is defined on the nodes
of the interface high-lighted in red and blue below. This matrix holds restrictions of the
Dirichlet-to-Neumann (DtN) operators for the two blocks. We have claimed that this
matrix is rank-structured. But what are the ranks?

Let T denote the restriction of the DtNma-
trix mapping Dirichlet data on Γ1 to Neu-
mann data on Γ2 for a 1 089× 1 089 grid.
Then T is of size 512× 512.
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Singular values of T.

Laplace problem.
Rank=22.
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Hierarchical Poincaré-Steklov Method — rank deficiencies in the DtN operator:
Recall that at the top level, we need to invert a dense matrix that is defined on the nodes
of the interface high-lighted in red and blue below. This matrix holds restrictions of the
Dirichlet-to-Neumann (DtN) operators for the two blocks. We have claimed that this
matrix is rank-structured. But what are the ranks?

Let T denote the restriction of the DtNma-
trix mapping Dirichlet data on Γ1 to Neu-
mann data on Γ2 for a 1 089× 1 089 grid.
Then T is of size 512× 512.

Γ1

Γ2
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j
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Singular values of T.

Helmholtz problem.
Domain is 110λ× 110λ.
Rank=85.



Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
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Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
The spectral computation on a leaf involves 21× 21 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

21 6561 6.7 0.23 0.0011 2.56528e-10 1.01490e-08 4.4 87.1
21 25921 13.3 0.92 0.0044 5.24706e-10 4.44184e-08 18.8 95.2
21 103041 26.7 4.68 0.0173 9.49460e-10 1.56699e-07 80.8 102.7
21 410881 53.3 22.29 0.0727 1.21769e-09 3.99051e-07 344.9 110.0
21 1640961 106.7 99.20 0.2965 1.90502e-09 1.24859e-06 1467.2 117.2
21 6558721 213.3 551.32 20.9551 2.84554e-09 3.74616e-06 6218.7 124.3

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note 1: Translation invariance is not exploited.
Note 2: The times refer to a simple Matlab implementation executed on a $1k laptop.
Note 3: Keeping a fixed number of points per wave-length works well for this scheme!



Hierarchical Poincaré-Steklov Method: numerical results
Set Ω = [0,1]2 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).
The spectral computation on a leaf involves 41× 41 points.
κ is chosen so that there are 12 points per wave-length.

p N Nwave tbuild tsolve Epot Egrad M M/N
(sec) (sec) (MB) (reals/DOF)

41 6561 6.7 1.50 0.0025 9.88931e-14 3.46762e-12 7.9 157.5
41 25921 13.3 4.81 0.0041 1.58873e-13 1.12883e-11 32.9 166.4
41 103041 26.7 18.34 0.0162 3.95531e-13 5.51141e-11 137.1 174.4
41 410881 53.3 75.78 0.0672 3.89079e-13 1.03546e-10 570.2 181.9
41 1640961 106.7 332.12 0.2796 1.27317e-12 7.08201e-10 2368.3 189.2

Error is measured in sup-norm: e = maxx∈Ω |u(x)− uexact(x)|.
Note 1: Translation invariance is not exploited.
Note 2: The times refer to a simple Matlab implementation executed on a $1k laptop.
Note 3: Keeping a fixed number of points per wave-length works well for this scheme!



Spectral composite method: numerical results
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t−factor (p=21)
t−solve (p=41)
t−solve (p=21)

The line tsolve scales perfectly linearly (until memory problems kick in), as expected.

Interesting: The line tbuild also scales almost linearly. (Unexpectedly?) It turns out that
tbuild is dominated by the leaf computation; we have not yet hit the O(N1.5) asymptotic.



Hierarchical Poincaré-Steklov Method: numerical results — variable coefficients
Now consider the variable coefficient problem

−∆u(x)− κ2
(
1− b(x)

)
u(x) = 0 x ∈ Ω,

u(x) = f (x) x ∈ Γ,

where Ω = [0,1]2, where Γ = ∂Ω, and where b(x) = (sin(4πx1) sin(4πx2))2 .

The Helmholtz parameter was kept fixed at κ = 80, corresponding to a domain size of
12.7× 12.7 wave lengths. The boundary data was given by f (x) = cos(8x1)

(
1− 2x2

)
.

The error estimator Eint
N = uN(x̂)− u4N(x̂) where x̂ = (0.75, 0.25) is reported below:

p N pts per wave uN(x̂) E int
N wN(ŷ) Ebnd

N

21 6561 6.28 -2.448236804078803 -1.464e-03 -32991.4583727724 2.402e+02
21 25921 12.57 -2.446772430608166 7.976e-08 -33231.6118304666 5.984e-03
21 103041 25.13 -2.446772510369452 5.893e-11 -33231.6178142514 -5.463e-06
21 410881 50.27 -2.446772510428384 2.957e-10 -33231.6178087887 -2.792e-05
21 1640961 100.53 -2.446772510724068 -33231.6177808723
41 6561 6.28 -2.446803898373796 -3.139e-05 -33233.0037457220 -1.386e+00
41 25921 12.57 -2.446772510320572 1.234e-10 -33231.6179029824 -8.940e-05
41 103041 25.13 -2.446772510443995 2.888e-11 -33231.6178135860 -1.273e-05
41 410881 50.27 -2.446772510472872 7.731e-11 -33231.6178008533 -4.668e-05
41 1640961 100.53 -2.446772510550181 -33231.6177541722



A curved domain
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Ψ =
{

(y1, y2) : 0 ≤ y1 ≤ 1 0 ≤ y2 ≤ 1
ψ(y1)

}
Ω = [0,1]2

Consider a curved domain Ψ as shown above and the equation

(9)

−∆u(y)− κ2 u(y) = 0 y ∈ Ψ,

u(y) = f (y) y ∈ ∂Ψ.

The reparameterization is y1 = x1 and y2 = ψ(y1) y2, and so the Helmholtz equation (9)
takes the form
∂2u
∂x21

+
2ψ′(x1) x2
ψ(x1)

∂2u
∂x1∂x2

+

(
x22ψ

′(x1)2

ψ(x1)2
+ ψ(x1)2

)
∂2u
∂x22

+
x2ψ′′(x1)

ψ(x1)

∂u
∂x2

+k2u = 0, x ∈ Ω.



Numerical results for curved domain

The equation is (constant coefficient) Helmholtz on a domain of size 35× 50 wave
lengths.

Exact solution known Dirichlet data f = 1
N Epot Egrad E(1)

N E(2)
N E(3)

N
25921 2.12685e+02 3.55772e+04 2.24618e-01 4.99854e-01 6.69023e-01

103041 3.29130e-01 5.89976e+01 1.10143e-02 5.28238e-03 6.14890e-02
410881 1.40813e-05 1.98907e-03 4.57900e-06 2.18438e-06 1.13415e-05

1640961 7.22959e-10 1.17852e-07 5.12914e-07 1.67971e-06 4.97764e-06
3690241 1.63144e-09 2.26204e-07 — — —



Recall: The method as presented relies on a hierarchical construction of
Dirichlet-to-Neumann operators for every box in a hierarchical tree.

Problem! The interior Helmholtz equation may encounter resonances — even for zero
Dirichlet data, there may be non-trivial solutions.
Conceptual problem : The DtN operator does not always exist.
Practical problem: The numerical DtN operator can be very ill-conditioned.

Solution: Rather than the Dirichlet-to-Neumann map

T : u|Γ 7→ ∂u
∂n

∣∣∣∣
Γ

consider the impedance map

E : u|Γ + i
∂u
∂n

∣∣∣∣
Γ
7→ u|Γ − i

∂u
∂n

∣∣∣∣
Γ

The impedance map exists for every wave-number, and is a unitary map.

Joint work with Alexander Barnett (Dartmouth) and Adrianna Gillman (Rice).
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The build stage can be accelerated to optimal O(N) complexity:

Consider the merge of two patches Ω(α) and Ω(β) with boundaries Γ1, Γ2, Γ3:

Ω(α) Ω(β)

Γ1 Γ2Γ3

In the composite spectral method we have

T =

 T(α)
1,1 0
0 T(β)

2,2

 +

 T(α)
1,3

T(β)
2,3

 (T(α)
3,3 − T(β)

3,3
)−1[−T(α)

3,1
∣∣ T(β)

3,2
]

︸ ︷︷ ︸
low rank update!

.

There is more structure!
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The build stage can be accelerated to optimal O(N) complexity:

Consider the merge of two patches Ω(α) and Ω(β) with boundaries Γ1, Γ2, Γ3:

Ω(α) Ω(β)

Γ1 Γ2Γ3

In the composite spectral method we have

T =

 T(α)
1,1 0
0 T(β)

2,2

 +

 T(α)
1,3

T(β)
2,3

 (T(α)
3,3 − T(β)

3,3
)−1[−T(α)

3,1
∣∣ T(β)

3,2
]
.

There is more structure:
• The blue terms are of low numerical rank (say rank 40 to precision 10−10).
• The red terms are “hierarchically block separable” matrices.
(Their off-diagonal blocks have low rank, cf. H-matrices, etc).

The bottom line is that the solution operators can be built in optimal O(N) time.
(Not true when N is scaled to the wave-length for Helmholtz-type problems.)
Joint work with Adrianna Gillman.



Claim: Matrices with low-rank off-diagonal blocks can be inverted/multiplied/. . . rapidly.
As an example, consider a 2× 2 blocked matrix of size 2n× 2n

A =

[
A11 A12
A21 A22

]
.

Suppose the off-diagonal blocks are rank-deficient
A12 = U1 Ã12 V∗2
n× n n× k k × k k × n

and
A21 = U2 Ã21 V∗1,
n× n n× k k × k k × n

where k � n. We can then write A as follows

A =

[
A11 0
0 A22

]
︸ ︷︷ ︸

“easy” to invert

+

[
U1 0
0 U2

] [
0 Ã12

Ã21 0

] [
V∗1 0
0 V∗2

]
︸ ︷︷ ︸

low rank

.

Recall the Woodbury formula(
D + UÃV∗

)−1
= D−1 − D−1U

(
Ã + V∗D−1U

)−1V∗D−1.
Applying the Woodbury formula, we find, with S11 = V∗1A

−1
11U1 and S2 = V∗2A

−1
22U2,

A−1 =

[
A−111 0
0 A−122

]
+

[
A−111U1 0

0 A−122U2

] [
S1 Ã12
Ã21 S2

]−1 [
V∗1A

−1
11 0

0 V∗2A
−1
22

]
.

2n× 2n 2n× 2n 2n× 2k 2k × 2k 2k × 2n
Now suppose A11 and A22 have the same structure, and recurse.



Hierarchical Poincaré-Steklov Method: numerical results — O(N) version

Problem N Tbuild Tsolve MB

Laplace
1.7e6 91.68 0.34 1611.19
6.9e6 371.15 1.803 6557.27
2.8e7 1661.97 6.97 26503.29
1.1e8 6894.31 30.67 106731.61

Helmholtz I
1.7e6 62.07 0.202 1611.41
6.9e6 363.19 1.755 6557.12
2.8e7 1677.92 6.92 26503.41
1.1e8 7584.65 31.85 106738.85

Helmholtz II
1.7e6 93.96 0.29 1827.72
6.9e6 525.92 2.13 7151.60
2.8e7 2033.91 8.59 27985.41

Helmholtz III
1.7e6 105.58 0.44 1712.11
6.9e6 510.37 2.085 7157.47
2.8e7 2714.86 10.63 29632.89

(About six accurate digits in solution.)
Thanks to A. Barnett for use of a work-station!



Hierarchical Poincaré-Steklov Method: numerical results — O(N) version

ε = 10−7 ε = 10−10 ε = 10−12

Problem Epot Egrad Epot Egrad Epot Egrad

Laplace 6.54e-05 1.07e-03 2.91e-08 5.52e-07 1.36e-10 8.07e-09
Helmholtz I 7.45e-06 6.56e-04 5.06e-09 4.89e-07 1.38e-10 8.21e-09
Helmholtz II 6.68e-07 3.27e-04 1.42e-09 8.01e-07 8.59e-11 4.12e-08
Helmholtz III 7.40e-07 4.16e-04 2.92e-07 5.36e-06 1.66e-09 8.02e-08



Hierarchical Poincaré-Steklov Method: numerical results — O(N) version

(10)

−∆u(x)− c1(x) ∂1u(x)− c2(x) ∂2u(x)− c(x)u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ,

Laplace Let c1(x) = c2(x) = c(x) = 0 in (10).
Helmholtz I Let c1(x) = c2(x) = 0, and c(x) = κ2 where κ = 80 in (10). This represents

a vibration problem on a domain Ω of size roughly 12× 12 wave-lengths. (Recall
that the wave-length is given by λ = 2π

κ .)
Helmholtz II Let c1(x) = c2(x) = 0, and c(x) = κ2 where κ = 640 in (10). This

corresponds to a domain of size roughly 102× 102 wave-lengths.
Helmholtz III We again set c1(x) = c2(x) = 0, and c(x) = κ2 in (10), but now we let κ

grow as the number of discretization points grows to maintain a constant 12 points
per wavelength.



Hierarchical Poincaré-Steklov Method: numerical results — O(N) version in 3D

Before showing the results from 3D ... some programming notes ...

• These results are very tentative ... code recently completed ...

• Timings for the BUILD stage are very bad ... can be greatly improved ... I think ...

• Memory requirements are bad (by current standards). Can be improved some.

• Solve time is excellent! And can be improved!



Hierarchical Poincaré-Steklov Method: numerical results — O(N) version in 3D
Set Ω = [0,1]3 and Γ = ∂Ω. Consider the problem−∆u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a field from a point source, x 7→ |x − x̂|−1.
We then know the exact solution, uexact(x) = |x − x̂|−1.

Ntot R (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

4 913 0.04 0.97 0.004 1.20e-06 3.38e-05
35 937 0.52 20.34 0.032 1.45e-08 4.08e-07

274 625 6.33 522.78 0.24 5.48e-08 1.54e-07
2 146689 76.59 17103.21 (≈ 5h) 1121.0 6.51e-09 1.83e-07



Hierarchical Poincaré-Steklov Method: numerical results — O(N) version in 3D
Set Ω = [0,1]3 and Γ = ∂Ω. Consider the problem−∆u(x)− κ2u(x) = 0, x ∈ Ω,

u(x) = f (x), x ∈ Γ.

We pick f as the restriction of a wave from a point source, x 7→ Y0(κ|x − x̂|).
We then know the exact solution, uexact(x) = Y0(κ|x − x̂|).

Ntot NGauss Memory (GB) Tbuild (sec) Tsolve (sec) E∞ Erel

274 625 9 8.65 1034.3 0.2 1.34e+00 3.76e+01
531 441 11 18.40 2910.6 0.5 1.70e-01 4.78e+00
912 673 13 34.55 7573.7 1.1 7.50e-03 2.11e-01
1 442897 15 59.53 14161.1 2.8 9.45e-04 2.65e-02
2 146689 17 97.73 25859.3 978.7 5.26e-05 1.48e-03

Results for solving Helmholtz equation with compression parameter ε = 10−5 with
20× 20× 20 wavelength across the domain.



Note: In all cases, application of the solution operator is extremely fast.

Observation 1: The direct solver can be used to accelerate implicit time-stepping
schemes for parabolic PDEs. As a toy example, consider:

−∂u(x, t)
∂t = −∆u, x ∈ Ω,

u(x, t) = f (x, t) x ∈ Γ,

u(x,0) = h(x) x ∈ Ω.

Say, for simplicity, that we use backwards Euler to discretize in time, with
∂un
∂t ≈

1
k
(
un − en−1

)
.

Then for each time-step we need to solve−∆un +
1
ku

n =
1
ku

n−1, Ω,

un = fn Γ.

This is very well suited for our direct solver.

Current work: Investigate stability with better time-stepping schemes (specifically
ESDIRK). Numerical experiments are very promising. Extension to Stokes, low
Reynolds number Navier-Stokes, etc.



Example: Consider the convection-diffusion problem
∂u
∂t −∆u + 30 ∂u

∂x1
= 0,

defined on the domain Ω shown below:

Zero Neumann condition on blue boundaries. Periodic BC on red boundaries.

The following mesh is used (observe corner refinement!):



Observation 2: The direct solver can be used to explicitly build time-evolution operators for hyperbolic
problems. Consider, for instance,

∂u(x, t)
∂t = B u(x, t), x ∈ Ω, t > 0

u(x,0) = f (x) x ∈ Ω,

where B is a skew-Hermitian operator (e.g. B =
√

∆ with Dirichlet/Neumann BC). The solution is

u(x, t) =
[
exp(t B) f

]
(x),

where exp(t B) is the time-evolution operator. Now suppose that we can approximate the oscillatory
function x 7→ exp(ix) by a rational function

RM(ix) =
M∑

m=−M

bm
ix − αm

,

where {bm} and {αm} are some complex numbers such that |RM(ix)| ≤ 1 for x ∈ R. We require that∣∣eix − RM(ix)
∣∣ ≤ δ, x ∈ [−τΛ, τΛ],

where τ is a time step, and where Λ is a “band-width” — in other words, we accurately resolve the parts of
B whose spectrum fall in the interval [−iΛ, iΛ]. Very high accuracy can be attained – say δ = 10−10 for
about 5 – 10 points per wavelength [Beylkin, Haut]. Then approximate

exp(τB) ≈
M∑

m=−M

bm
(
B − αm

)−1
.

Notes: The time-step τ can be large. Application of exp(τB) is almost instantaneous. Quite high memory
demands, but distributed memory is fine. Parallel in time!
Current project: Shallow water equations on cubed sphere at LANL.



Direct solvers for integral equations

Recall that many boundary value problems can ad-
vantageously be recast as boundary integral equa-
tions. Consider, e.g., (sound-soft) acoustic scatter-
ing from a finite body:

(11)


−∆u(x)− κ2 u(x) = 0 x ∈ R3\Ω

u(x) = v(x) x ∈ ∂Ω

lim
|x|→∞

|x|
(
∂|x|u(x)− iκu(x)

)
= 0.

The BVP (11) is in many ways equivalent to the BIE

(12) − πiσ(x) +

∫
∂Ω

((
∂n(y) + iκ

) eiκ|x−y |

|x − y |

)
σ(y)dS(y) = f (x), x ∈ ∂Ω.

The integral equation (12) has several advantages over the PDE (11), including:
• The domain of computation ∂Ω is finite.
• The domain of computation ∂Ω is 2D, while R3\Ω is 3D.
• Equation (12) is inherently well-conditioned (as a “2nd kind Fredholm equation”).

A serious drawback of integral equations is that they lead to dense coefficient matrices.
Since we are interested in constructing inverses anyway, this is unproblematic for us!



Direct solvers for integral equations
It is possible to construct direct solvers that follow the same template as before.

Upwards pass — build all solution operators:

(1)
→

(2)
→

(3)
→

The original grid. Leaves reduced. After merge. After merge.

Downwards pass — solve for a particular data function (very fast!):

(6)
←

(5)
←

(4)
←

Full solution. Solve. Solve. Top level solve.

Our “solution operators” will be (conceptually) scattering matrices instead of
Poincaré-Steklov operators.
The operators will no longer be pure boundary operators.



Example: BIE on a surface in R3:
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Let A denote an N × N matrix arising upon discretizing a boundary integral operator

[Aq](x) = q(x) +

∫
Γ

1
|x − y | q(y)dA(y), x ∈ Γ,

where Γ is the “torus-like” domain shown (it is deformed to avoid rotational symmetry).
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Example: Multibody scattering from a domain with multiple cavities

Consider scattering from some multibody domain involving cavities.



Example: Multibody scattering from a domain with multiple cavities

There are lots of discretization nodes involved. Very computationally intense!



Example: Multibody scattering from a domain with multiple cavities

After local compression of each scatter, the problem is much more tractable.



Example: Multibody scattering from a domain with multiple cavities

Acoustic scattering on the exterior domain.

Each bowl is about 5λ.

A hybrid direct/iterative solver is used (a highly accurate scattering matrix is computed
for each body).

On an office desktop, we achieved an accuracy of 10−5, in about 6h (essentially all the
time is spent in applying the inter-body interactions via the Fast Multipole Method).
Accuracy 10−7 took 27h.



Example: BIEs on rotationally symmetric bodies (2014, with S. Hao and P. Young)

N Nbody Tfmm
IGMRES Ttotal Erel

∞(precond /no precond ) (precond /no precond)
10000 50× 25 1.23e+00 21 /358 2.70e+01 /4.49e+02 4.414e-04
20000 100×25 3.90e+00 21 /331 8.57e+01 /1.25e+03 4.917e-04
40000 200×25 6.81e+00 21 /197 1.62e+02 /1.18e+03 4.885e-04
80000 400×25 1.36e+01 21 / 78 3.51e+02 /1.06e+03 4.943e-04
20400 50×51 4.08e+00 21 /473 8.67e+01 /1.99e+03 1.033e-04
40800 100×51 7.20e+00 21 /442 1.56e+02 /3.17e+03 3.212e-05
81600 200×51 1.35e+01 21 /198 2.99e+02 /2.59e+03 9.460e-06

163200 400×51 2.50e+01 21 /102 5.85e+02 /2.62e+03 1.011e-05
40400 50×101 7.21e+00 21 /483 1.53e+02 /3.52e+03 1.100e-04
80800 100×101 1.34e+01 22 /452 2.99e+02 /6.31e+03 3.972e-05

161600 200×101 2.55e+01 22 /199 5.80e+02 /5.12e+03 2.330e-06
323200 400×101 5.36e+01 22 /112 1.25e+03 /5.84e+03 3.035e-06

Exterior Laplace problem solved on the multibody bowl domain with and without
preconditioner.



Example: BIEs on rotationally symmetric bodies (2014, with S. Hao and P. Young)

N Nbody Tprecompute IGMRES Tsolve Erel
∞

80800 100× 101 6.54e-01 62 5.17e+03 1.555e-03
161600 200× 101 1.82e+00 63 9.88e+03 1.518e-04
323200 400× 101 6.46e+00 64 2.19e+04 3.813e-04
160800 100× 201 1.09e+00 63 9.95e+03 1.861e-03
321600 200× 201 3.00e+00 64 2.19e+04 2.235e-05
643200 400× 201 1.09e+01 64 4.11e+04 8.145e-06
641600 200× 401 5.02e+00 64 4.07e+04 2.485e-05
1283200 400× 401 1.98e+01 65 9.75e+04 6.884e-07

Exterior Helmholtz problem solved on multibody bowl domain.
Each bowl is 5 wavelength in diameter.

We do not give timings for standard iterative methods since in this example, they
typically did not converge at all (even though the BIE is a 2nd kind Fredholm equation).



Numerical example — BIE on surfaces in 3D (2013, with J. Bremer and A. Gillman)
Consider sound-soft scattering from a multi-body scatterer of size 4 wave-lengths:

The global scattering matrix is computed using the hierarchical direct solver described.
(The ellipsoids are not rotationally symmetric.)



Numerical example — BIE on surfaces in 3D (2013, with J. Bremer and A. Gillman)
The local truncation error is set to 10−3.

Grid dimensions N T E Ratio Predicted
2× 2× 2 12 288 1.02× 10+1 3.37× 10−04 - -
3× 3× 3 41 472 3.43× 10+1 4.81× 10−04 3.4 6.2
4× 4× 4 98 304 7.92× 10+1 1.57× 10−04 2.3 3.7
6× 6× 6 331 776 2.96× 10+2 7.03× 10−04 3.7 6.2
8× 8× 8 786 432 6.70× 10+2 4.70× 10−04 2.3 3.7

10× 10× 10 1 536000 2.46× 10+3 3.53× 10−04 3.7 2.7

Increasing the accuracy is possible, but comes at a cost.
Now the local truncation error is set to 10−6.

Grid dimensions N T E Ratio Predicted
2× 2× 2 49 152 1.61× 10+2 1.22× 10−07 - -
3× 3× 3 165 888 6.87× 10+2 4.92× 10−07 4.3 6.2
4× 4× 4 393 216 1.68× 10+3 5.31× 10−07 2.4 3.6
6× 6× 6 1 327104 6.66× 10+3 4.60× 10−06 4.0 6.2
8× 8× 8 3 145728 1.59× 10+4 2.30× 10−07 2.4 3.6
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Example: Acoustic scattering from a “deformed torus” (with J. Bremer and A. Gillman)

The domain is roughly 2× 2× 0.7 wave-lengths in size.

Ntriangles N T E
32 1 664 7.16× 10+00 3.51× 10−02

128 6 656 6.29× 10+01 4.41× 10−03

512 26 624 2.81× 10+02 4.08× 10−05

2 048 106 496 2.60× 10+03 7.80× 10−07

8 192 425 984 1.47× 10+04 3.25× 10−08

(Note: Laplace problems are much faster.)



Numerical example — BIE on “edgy” surface (2013, with J. Bremer and A. Gillman)

A surface Γ with corners and edges.

The grid has been refined to attain high accuracy.

Computing scattering matrices for the corners is
conceptually easy (but laborious). The direct
solver eliminates “extra” DOFs.

Compressing the edges takes effort!

Ntris N E T Nout × Nin

192 21 504 2.60× 10−08 6.11× 10+02 617× 712
432 48 384 2.13× 10−09 1.65× 10+03 620× 694
768 86 016 3.13× 10−10 3.58× 10+03 612× 685

Results from a Helmholtz problem (acoustic scattering) on the domain exterior to the “edgy” cube.
The domain is about 3.5 wave-lengths in diameter.



Note: We compress patches that are directly adjacent.

This is in contrast to, e.g., the Fast Multipole Methods, H- and H2-matrix methods, etc.

Advantages: Easier data structures, more efficient inversion, better localization of data
(leading to algorithms that are easier to parallelize).

Disadvantages: Ranks are higher, sometimes much higher.
Numerical compression is required.

Additional machinery required to attain O(N) complexity in 3D:

• Use Nested hierarchies — the dense blocks themselves have structure.
• E. Corona, P.G. Martinsson, D. Zorin “An O(N) Direct Solver for Integral Equations in the Plane”

Advances in Computational and Harmonic Analysis, 38(2), 2015, pp. 284–317.

• Use multiple, staggered, grids.
• K. Ho and L. Ying, “Hierarchical interpolative factorization for elliptic operators: differential

equations.” Communications on Pure and Applied Mathematics (2015).
• K. Ho and L. Ying, “Hierarchical interpolative factorization for elliptic operators: integral equations.”

Communications on Pure and Applied Mathematics (2015).
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Numerical example — Volume int. eq. in 2D (2013, with E. Corona and D. Zorin)

Consider a volume integral equation in the plane:

q(x) +

∫
Ω
b(x) log |x − y|q(y)dy = f (x), x ∈ Ω,

where Ω = [0,1]2, and where

b(x) = 1 + 0.5e−(x1−0.3)2−(x2−0.6)2.

The domain is discretized on a uniform grid, with simplistic quadrature.
By exploiting internal structure (HBS structure) in the scattering matrices, we have built a
direct solver with optimal O(N) complexity for every step.



Numerical example — Volume int. eq. in 2D (2013, with E. Corona and D. Zorin)

N Tbuild Tsolve Memory Error
784 0.17 s 0.002 s 4.48 MB 1.6e-14

3,136 1.70 s 0.009 s 25.24 MB 1.8e-14
12,544 8.32 s 0.036 s 123.07 MB 8.6e-11
50,176 40.43 s 0.155 s 538.51 MB 1.6e-10

200,704 3.23 m 0.677 s 2.23 GB 2.3e-10
802,816 13.66 m 2.819 s 9.23 GB 4.0e-10

3,211,264 54.79 m 11.737 s 34.09 GB 5.1e-09
Execution times in Matlab, on an Intel Xeon X5650 (6 core) 2.67 GHz.

For a computed approximate inverse B ≈ A−1, the error reported is

Error = max
i
‖v(i) − ABv(i)‖

‖v(i)‖

where {v(i)}10i=1 is a collection of random vectors.



Hierarchical Poincaré-Steklov Method: “FEM-BEM coupling”
Consider the free space acoustic scattering problem

−∆u(x)− κ2 (1− b(x))u(x) = − κ2 b(x) v(x), x ∈ R2

lim
|x|→∞

√
|x|
(
∂|x|u(x)− iκu(x)

)
= 0,

where
• b is a smooth scattering potential with compact support, where
• v is a given “incoming potential” and where
• u is the sought “outgoing potential.”

Joint work with A. Barnett and A. Gillman.

Introduce an artificial box Ω such that support(b) ⊆ Ω.

On Ω:
• Variable coefficient PDE.

On Ωc:
• Constant coefficient PDE.

• Use HPS. • Use BIE.
• Build DtN for ∂Ω. • Build DtN for ∂Ωc.

• Merge using fast operator algebra!
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Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b



Example: Free space scattering
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The outgoing field uout (resulting from an incoming plane wave uin(x) = cos(κ x1))

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−7 (estimated)
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Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The scattering potential b — now a photonic crystal with a wave guide.

N = 231 361 Tbuild = 7.2 sec Tsolve = 0.06 sec E ≈ 10−6 (estimated)



Example: Free space scattering


−∆uout(x)− κ2 (1− b(x))uout(x) = −κ2 b(x)uin(x)

lim
|x|→∞

√
|x|
(
∂|x|uout(x)− iκuout(x)

)
= 0

The total field u = uin + uout (resulting from an incoming plane wave uin(x) = cos(κ x1)).



Randomized SVD (RSVD) Joint work with V. Rokhlin and M. Tygert (2005)

The type of direct solver described spends a lot of the execution time on computing
approximate low rank factorizations to matrices. Let us describe how such computations
can be greatly accelerated using randomized methods.
Model problem: Let A be a given m× n matrix, and let k be a target rank such that
k � min(m,n). Then suppose that we seek to compute an approximate partial SVD:

A ≈ U D V∗,
m× n m× k k × k k × n

with U and V having orthonormal columns, and D diagonal.

Solution: Pick an over-sampling parameter p, say p = 5. Then proceed as follows:

1. Draw an n× (k + p) Gaussian random matrix R. R = randn(n,k+p)

2. Form the m× (k + p) sample matrix Y = AR. Y = A * R

3. Form an m× (k + p) orthonormal matrix Q s. t. ran(Y) = ran(Q). [Q, ∼] = qr(Y)

4. Form the (k + p)× n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of B (small!): B = Û DV∗. [Uhat, Sigma, V] = svd(B,’econ’)

6. Form the matrix U = QÛ. U = Q * Uhat

7. Optional: Truncate the last p terms in the computed factors.
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Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• It is simple to adapt the scheme to the situation where the tolerance is given, and the
rank has to be determined adaptively.

• Analogous schemes exist for computing a partial QR factorization, or a so called
“interpolative decomposition” where a number of the columns/rows are chosen to
serve as a basis for the column/row space.

• Accuracy of the basic scheme is good when the singular values decay reasonably
fast. When they do not, the scheme can be combined with Krylov-type ideas:
Taking one or two steps of subspace iteration vastly improves the accuracy.
For instance, use the sampling matrix Y = AA∗AG instead of Y = AG.

• We can reduce the flop count from O(mnk) to O(mnlog k) by using a so called “fast
Johnson-Lindenstrauss” transform. Practical speed gain too!
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Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
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(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
The output of RSVD is a random variable, as it depends on the draw of R. We have
rigorous mathematical results describing the errors of the algorithm in expectation, as
well as the risk of large deviations. Connections to random matrix theory.

The perhaps most important feature of randomized algorithms is that they are very
communication efficient. This makes them particularly competitive in strongly
communication constrained environments (huge matrices stored out-of-core, distributed
memory parallel computers, GPUs).

There exist single-pass versions of the RSVD that work even under the constraint that
each matrix element can be viewed only once. (“Streaming algorithms.”)

Very recent result: Randomization can be used to greatly accelerate full rank-revealing
factorizations such as the column pivoted QR factorization, or the UTV factorization.
The gain is attained due to decreased communication, not fewer flops.
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Speedup attained by randomized methods for computing a full column pivoted QR factorization
of an N×N matrix. The thick blue line shows the speed of LAPACK (DGEQP3), and the thick red
line the randomized method. We also include the speed of LAPACK’s unpivoted QR factorization
(black) and a competing “panel pivoting” scheme (green). We use Release 3.4.0 of LAPACK and
linked it to the Intel MKL library Version 11.2.3. The top of the graphs indicate the theoretical
maximal flop rate for the Intel Xeon E5-2695 CPU of 36.8Gflops (turbo boost was turned off).
Joint work with G. Quintana-Ortí, N. Heavner, and R. van de Geijn.



Randomized approximation of rank-structured matrices

We use the term rank-structured to describe a matrix whose off-diagonal blocks have
low rank to some given precision. There are many different “flavors,” including:
• H- and H2-matrices of Hackbusch and co-workers. This work represents the first
systematic attack.
• Generalizations of the Fast Multipole Method (FMM): kernel-independent FMMs,
inverse FMM, ASKIT, etc.
• Hierarchically Block Separable (HBS) matrices, a.k.a. “HSS” matrices.
• HODLR matrices (a.k.a. S-matrices).

All these formats allow for (more or less) efficient matrix computations involving a range
of operations such as matrix-vector multiply, matrix-matrix multiply, LU factorization,
matrix inversion, forming of Schur complements, etc.

Objective: Suppose a matrix A is rank-structured, that you are given a tessellation
pattern, and that you have an efficient technique for evaluating the matrix-vector product
x 7→ Ax. We then seek to build all factors in the rank-structured representation of A.

Applications: Build “frontal matrices” in nested dissection. Matrix-matrix multiplication
of two structured matrices. Convert from, say, FMM format, to HBS format. Et cetera.



Let A be a rank-structured matrix, for which we can rapidly evaluate x 7→ Ax and x 7→ A∗x.

Case 1: Suppose that in addition to matvec, we can also evaluate individual entries of A.
Then an HBS (a.ka. HSS) representation can be computed in O(N) operations.
Very computationally efficient — requires only one call call each to A and A∗ matvecs to
two sets of, say, k + 10 vectors.

• P.G. Martinsson, A fast randomized algorithm for computing a Hierarchically Semi-Separable
representation of a matrix. 2008 arxiv report. 2011 SIMAX paper.

• Later improvements by Jianlin Xia, Sherry Li, etc. Distributed memory implementations exist, etc.

Case 2: If all we have is the matvec, then we can still compute a rank-structured
representation of A using a so called “peeling” algorithms. The price we have to pay is
that we now need O(k× logN) matvecs involving A and A∗.

The method is still very fast in many situations, and can save messy coding work. For
instance, implementing the matrix-matrix mutliplication, or changing the partition tree,
are quite hard to implement efficiently.

• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP 2011.

• P.G. Martinsson,“Compressing rank-structured matrices via randomized sampling.” SISC 2016.



Key Ideas:

The solution operator of a linear elliptic PDE is “friendly.”
• Smoothing.
• Stable.

Long range interactions are low rank.
• Cf. St Venant principle, multipole expansions, etc.
• Smoothness is not necessary.
• Numerical compression is essential.
•Wave problems with small λ remain challenging.

Hierarchical Divide-and-Conquer.
• Generalizations of nested dissection.
• Need double hierarchies for O(N) complexity.
• Formulations that are inherently well-conditioned exist.

New randomized methods for matrix algebra→ acceleration & simplification.
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Where we are now:

• We have developed direct solvers with O(N) complexity for elliptic PDEs with
non-oscillatory (or “mildly oscillatory”) solutions for most standard environments:
• Sparse matrices from FEM/FD/composite spectral/... in both 2D and 3D.
• Boundary integral equations in 2D and 3D. (Work in progress . . . )

• Advantages of direct solvers:
• Often instantaneous solves once a solution operator has been built.
• Can eliminate problems with slow convergence of iterative solvers.
• Communication efficient.

• Disadvantages of direct solvers:
• Memory hogs. (But distributed memory is OK.)
• The build stage is still slow for many 3D problems. (I am optimistic that we will fix this!)

Where to go next: New powerful tool available→ lots of opportunities!

• Explore happy couplings:
• Direct solver + high order discretization. (Helps with memory. Wave problems.)
• Direct solver + integral equation formulations. (Need dense matrices anyway.)
• Direct solver + parallelization. (Root of tree is cheap!)
• Direct solver + numerical coarse graining. (Another talk. . . )

• Parabolic and hyperbolic problems. Parallel-in-time methods?


