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Synopsis: The talk will describe techniques for computing a low-rank approximation to
a dense matrix through the use of randomized projections.

Environment 1: Given a dense m× n matrix A (whose singular values decay), compute
an approximate factorization

A ≈ Q B
m× n m× k k × n

where k � min(min). Typically, we are given a tolerance and need to determine k.

Environment 2: Given a dense m× n matrix A (with m ≥ n) compute QR factorization

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n).

Environment 3: Given a rank-structured matrix A (HSS, HBS, HODLR, etc), compute a
data-sparse representation of it. → This forms a key component in O(N) solvers for the
linear systems resulting from discretization of elliptic PDEs.

Theme: Improve efficiency via blocking and reducing communication. (And sometimes
reducing the asymptotic flop count too!)



Environment 1 — low rank approximation of matrices
Let A denote a given m× n matrix. (We implicitly assume that its singular values decay,
so that low-rank approximation makes sense.) Let ε > 0 be a given tolerance.

We then seek factors Q and B such that
A = Q B + E,

m× n m× k k × n m× n
where the error E satisfies

‖E‖ ≤ ε.

We typically also require that Q has orthonormal columns.

• Determining a reasonably optimal rank k is part of the problem.
We assume that k is substantially smaller than min(m,n).

• Standard software (LAPACK, Matlab, etc) lack built-in functionality for these tasks.

• Objective: Build “shell” algorithms that draw on BLAS3, LAPACK, etc, to solve the
low-rank approximation problems efficiently.

• Simple post-processing of the small factor B allows the computation of approximate
SVD A ≈ Uk Dk V∗k, and other standard factorizations.
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An algorithmic template
We build a basis {qj}kj=1 for the column space of A, using a “greedy” algorithm:

(1) Q0 = [ ]; B0 = [ ]; A0 = A; j = 0;
(2) while ‖Aj‖ > ε

(3) j = j + 1
(4) Pick a unit vector qj ∈ ran(Aj−1).
(5) bj = q∗j Aj−1

(6) Qj = [Qj−1 qj]

(7) Bj =

[
Bj−1
bj

]
(8) Aj = Aj−1 − qjbj
(9) end while

Simple condition: On line (4), pick qj as the largest column of Aj−1.
Then we recover column-pivoted Gram-Schmidt, which is often an excellent algorithm.
(Round-off errors make some minor modifications necessary; we will discuss this later.)
Problem 1: Hard to block efficiently. (Can be done, via, e.g. “tournament pivoting”.)
Problem 2: “Typically” gives reasonably close to optimal results, but can be quite bad.



An algorithmic template
We build a basis {qj}kj=1 for the column space of A, using a “greedy” algorithm:

(1) Q0 = [ ]; B0 = [ ]; A0 = A; j = 0;
(2) while ‖Aj‖ > ε

(3) j = j + 1
(4) Pick a unit vector qj ∈ ran(Aj−1).
(5) bj = q∗j Aj−1

(6) Qj = [Qj−1 qj]

(7) Bj =

[
Bj−1
bj

]
(8) Aj = Aj−1 − qjbj
(9) end while

Optimal condition: On line (4), pick qj as a minimizer of

min
‖q‖=1

‖Aj−1 − qq∗Aj−1‖.

Problem: Computationally hard to find the minimizer.



An algorithmic template — now randomized
We build a basis {qj}kj=1 for the column space of A, using a “greedy” algorithm:

(1) Q0 = [ ]; B0 = [ ]; A0 = A; j = 0;
(2) while ‖Aj‖ > ε

(3) j = j + 1
(4a) Draw a random vector ω whose entries are iid Gaussian random variables.
(4b) Set y = Aj−1ω.
(4c) Normalize so that qj = 1

‖y‖ y.

(5) bj = q∗j Aj−1

(6) Qj = [Qj−1 qj]

(7) Bj =

[
Bj−1
bj

]
(8) Aj = Aj−1 − qjbj
(9) end while

Simple to implement.
Often reasonably close to optimal.
Very easy to block.



An algorithmic template — now randomized and blocked
Pick a “block size” `.

(1) Q = [ ]; B = [ ];
(2) while ‖A‖ > ε

(3) Draw an n× ` random matrix R.
(4) Compute the m× ` matrix Qnew = qr(AR,0).
(5) Bnew = Q∗newA
(6) Q = [Q Qnew]

(7) B =

[
B

Bnew

]
(8) A = A−QnewBnew

(9) end while

The scheme presented works very well for matrices whose singular values decay rapidly.
Note that every line can be executed by BLAS3, except (4) for which we use LAPACK.
When the singular values do not decay rapidly, we apply a power of A.



An algorithmic template — now randomized, blocked, and accuracy-enhanced
Pick a “block size” `, and a small integer q, say q = 1, or q = 2.

(1) Q = [ ]; B = [ ];
(2) while ‖A‖ > ε

(3) Draw an n× ` random matrix R.
(4) Compute the m× ` matrix Qnew = qr((AA∗)qAR,0).
(5) Bnew = Q∗newA
(6) Q = [Q Qnew]

(7) B =

[
B

Bnew

]
(8) A = A−QnewBnew

(9) end while

The only thing remaining is to deal with loss of orthonormality due to round-off errors.



An algorithmic template — now randomized, blocked, and accuracy-enhanced
Pick a “block size” `, and a small integer q, say q = 0, q = 1, or q = 2.

The “rand-QB” algorithm

(1) Q = [ ]; B = [ ];
(2) while ‖A‖ > ε

(3) Draw an n× ` random matrix R.
(4a) Compute the m× ` matrix Y = qr((AA∗)qAR,0).
(4b) Reproject Y away from the range of Q: Y = Y−Q(Q∗Y).
(4c) Compute the m× ` matrix Qnew = qr(Y,0).
(5) Bnew = Q∗newA
(6) Q = [Q Qnew]

(7) B =

[
B

Bnew

]
(8) A = A−QnewBnew

(9) end while

With minor modifications, we can avoid updating A. This is crucial for sparse matrices,
and in situations where we can only access A via its action on vectors.



Given the “QB-factorization,” standard factorizations can easily be computed

Suppose that you have an approximate factorization

A = QB + E,

where Q is orthonormal and ‖E‖ is small.

How to get an approximate SVD: Perform a full SVD of the small matrix B:

[Û,D,V] = svd(B, ’econ’).

Then simply set U = QÛ and you will get a partial SVD

A = QB + E = QÛDV∗ + E = UDV∗ + E.

Note that the error is exactly the same as the error in the QB.

How to get an approximate QR: Perform a full QR of the small matrix B:

[Q̂,R,P] = qr(B,0).

Then simply set Q̃ = QQ̂ and you will get a partial QR

AP = QBP + EP = QQ̂R + EP = Q̃R + EP.

The error is exactly the same as the error in the QB (modulo column permutations).
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column pivoted QR

randomized QB (q=0)

randomized QB (q=1)

randomized QB (q=2)

randomized QB on GPU (q=0)

randomized QB on GPU (q=1)

randomized QB on GPU (q=2)

full qr using LAPACK

Everything is implemented in Matlab. The “full qr” line refers to Matlab built in qr.
Caveat: Matlab overhead makes column-pivoted QR slower than it could be.
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Example: Accuracy for synthetic matrix with rapidly decaying spectrum

Consider a matrix defined by its SVD

A = U D V∗

m× n m× r r × r r × n
where r = min(m,n), where U and V are random orthonormal matrices, and

D = diag(1, α, α2, α3, . . . ),

where α is chosen so that
α90 = 10−15.

In this example, n = 400.



Error ‖A− Ak‖ for the blocked (` = 20) version (A is 400× 400)
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Example: Accuracy for synthetic matrix with slowly decaying spectrum

Consider a matrix defined by its SVD

A = U D V∗

m× n m× r r × r r × n
where r = min(m,n), where U and V are random orthonormal matrices, and

D = diag(σ1, σ2, σ3, . . . ),

where
σj =

1√
1 + 3 (j − 1)

.

In this example, m = 500 and n = 300.



Error ‖A− Ak‖ for the blocked (` = 20) version (A is 500× 300)
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Randomized low-rank approximation of matrices

The methods described so far are very easy to implement. Can be done in Matlab, or in
C/Fortran using standard subroutines (dgemm, dgeqrf).

Computational speed is good; in particular on GPUs.

The accuracy is very good. With two sweeps of power iteration (q = 2), it compares very
favorably to column-pivoted QR, and is almost as good as SVD.

Caveat: This is efficient only when the rank k is small, k � min(m,n).

Question: Can we device a method that works well for any rank?
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Environment 2: Computing a traditional QR factorization

Given a dense m× n matrix A (with m ≥ n) compute QR (or RRQR)

A P ≈ Q R
m× n n× n m× k k × n

for either k = n (full factorization) or k comparable to min(m,n). As usual, Q should be
ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Qj is a product of Householder reflectors. Each Pj is a permutation matrix
computed via randomized sampling.



Environment 2: Computing a traditional QR factorization
How to do block pivoting using randomization:
Let A be of size m× n, and let b be a block size.

→
A Q∗AP

Q is a product of b Householder reflectors.
P is a permutation matrix that moves b “pivot” columns to the leftmost slots.
We seek P so that the set of chosen columns has maximal spanning volume.
Draw a Gaussian random matrix G of size b×m and form

Y = G A
b× n b×m m× n

The rows of Y are random linear combinations of the rows of A.
Then compute the pivot matrix P for the first block by executing traditional column
pivoting on the small matrix Y:

Y P = Qtrash Rtrash

b× n n× n b× b b× n



Environment 2: Computing a traditional QR factorization
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Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/



Environment 2: Computing a traditional QR factorization

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randCPQR

Faster!

Randomized CPQR is faster than CPQR, but is no better in terms of accuracy.

randUTVVery good

Randomized UTV is faster than CPQR, and attains very close to SVD accuracy!
Additionally, randUTV parallelizes well and supports partial factorization.
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Environment 2: Accelerate FULL factorizations of matrices

Given a dense n× n matrix A, compute a factorization

A = U T V∗,
n× n n× n n× n n× n

where T is upper triangular, U and V are unitary.
Observe: More general than CPQR since we used to insist that V be a permutation.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3 A4 = U∗4A3V4
Both Uj and Vj are (mostly...) products of b Householder reflectors.

Our objective is in each step to find an approximation to the linear subspace spanned by
the b dominant singular vectors of a matrix. The randomized range finder is perfect for
this, especially when a small number of power iterations are performed. Easier and
more natural than choosing pivoting vectors.



Computational speed of randUTV — 1 core
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Computational speed of randUTV — 4 cores
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Computational speed of randUTV — 12 cores
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Environment 2: Accelerate FULL factorizations of matrices

Key points:

• All operations are blocked.

• Interaction with A is only through matrix-matrix multiply.

• Very fast Householder QR with column pivoting. https://github.com/flame/hqrrp/

• Randomized UTV factorization:
• Accuracy close to SVD.
• Very fast: similar or faster than CPQR.
• Admits partial factorizations, given a tolerance.
• Very communication efficient. On GPU we see ×10 acceleration over SVD.
To be slightly provocative: Better than CPQR in basically every respect!

References:
• P.G. Martinsson, Blocked rank-revealing QR factorizations: How randomized sampling can be used

to avoid single-vector pivoting. arXiv.org report #1505.08115, 2015.
• P.G. Martinsson, Gregorio Quintana-Ortí, Nathan Heavner, and R. van de Geijn, Householder QR

Factorization With Randomization for Column Pivoting (HQRRP). To appear in SISC.
• P.G. Martinsson, Gregorio Quintana-Ortí, Nathan Heavner, randUTV: A blocked randomized

algorithm for computing a rank-revealing UTV factorization. Appearing on arXiv within weeks.
• Recent work by Ming Gu and Jed Duersch of UC-Berkeley.



Environment 3: Randomized approximation of rank-structured matrices. (Plug!)
Loosely speaking, a matrix is rank-structured if its off-diagonal blocks have low rank to
some given precision. These matrices arise upon discretization of integral operators, in
accelerating nested dissection, in simulating Monte Carlo processes, etc.

A representative tessellation of a rank-structured ma-
trix. Each off-diagonal block (gray) has low numerical
rank. The diagonal blocks (red) are full rank, but are
small in size. Matrices of this type allow efficient matrix-
vector multiplication, matrix inversion, etc.



Environment 3: Randomized approximation of rank-structured matrices
Loosely speaking, a matrix is rank-structured if its off-diagonal blocks have low rank to
some given precision. These matrices arise upon discretization of integral operators, in
accelerating nested dissection, in simulating Monte Carlo processes, etc.

Many “formats” have been proposed, including:
• “Fast Multipole Method” matrices.
• H- and H2-matrices.
• Hierarchically Block Separable (HBS) matrices, a.k.a. “HSS” matrices.
• HODLR matrices (a.k.a. S-matrices).

All these formats allow for (more or less) efficient matrix computations involving a range
of operations such as matrix-vector multiply, matrix-matrix multiply, LU factorization,
matrix inversion, forming of Schur complements, etc.

Objective: Suppose a matrix A is rank-structured, that you are given a tessellation
pattern, and that you have an efficient technique for evaluating the matrix-vector product
x 7→ Ax. We then seek to build all factors in the rank-structured representation of A.

Applications: Build “frontal matrices” in nested dissection. Matrix-matrix multiplication
of two structured matrices. Convert from, say, FMM format, to HBS format. Et cetera.



Let A be a rank-structured matrix, for which we can rapidly evaluate x 7→ Ax and x 7→ A∗x.

Case 1: Suppose that in addition to matvec, we can also evaluate individual entries of A.
Then an HBS (a.ka. HSS) representation can be computed in O(N) operations.
Very computationally efficient in practice — requires only O(k) matvecs.

• P.G. Martinsson, A fast randomized algorithm for computing a Hierarchically Semi-Separable
representation of a matrix. 2008 arxiv report. 2011 SIMAX paper.

• Later improvements by Jianlin Xia, Sherry Li, etc.

Case 2: If all we have is the matvec, then we can still compute a rank-structured
representation of A using so called “peeling” algorithms. The price we have to pay is
that we now need O(k× logN) matvecs involving A and A∗.

The method is still very fast in many situations, and can save messy coding work. For
instance, implementing the matrix-matrix mutliplication, or changing the partition tree,
are quite hard to implement efficiently.

• L. Lin, J. Lu, L. Ying, Fast construction of hierarchical matrix representation from matrix-vector
multiplication, JCP, 230(10), 2011.

• P.G. Martinsson, Compressing rank-structured matrices via randomized sampling. SISC, 38(4), 2016.



Theory



Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.
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Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
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Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 2, then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011



Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤

1 + 16

√
1 +

k
p + 1

σk+1 + 8
√

k + p
p + 1

∑
j>k

σ2j

1/2

,

except with probability at most 3e−p.



Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤
(
1 + 6

√
(k + p) · p logp

)
σk+1 + 3

√
k + p

∑
j>k

σ2j

1/2

,

except with probability at most 3p−p.



Proofs — Overview:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

We seek to bound the error ek = ek(A,R) = ‖A−QQ∗A‖, which is a random variable.

1. Make no assumption on R. Construct a deterministic bound of the form

‖A−QQ∗A‖ ≤ · · ·A · · ·R · · ·

2. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
‖A−QQ∗A‖

]
≤ · · ·A · · ·

3. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in R to
get that

‖A−QQ∗A‖ ≤ · · ·A · · ·

holds with probability at least · · · .



Part 1 (out of 3) — deterministic bound:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Partition the SVD of A as follows:
k n− k

A = U
[
D1

D2

][
V∗1
V∗2

]
k

n− k
Define R1 and R2 via

R1 = V∗1 R
k × (k + p) k × n n× (k + p)

and
R2 = V∗2 R.

(n− k)× (k + p) (n− k)× n n× (k + p)

Theorem: [HMT2009,HMT2011] Assuming that R1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||D2|||
2︸ ︷︷ ︸

theoretically minimal error
+ |||D2R2R

†
1|||

2.

Here, ||| · ||| represents either `2-operator norm, or the Frobenius norm.
Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).



Recall: A = U
[
D1 0
0 D2

][
V∗1
V∗2

]
,
[
R1
R2

]
=

[
V∗1R
V∗2R

]
, Y = AR, P projn onto Ran(Y).

Thm: Suppose D1R1 has full rank. Then ‖A− PA‖2 ≤ ‖D2‖
2 + ‖D2R2R

†
1‖

2.

Proof: The problem is rotationally invariant⇒We can assume U = I and so A = DV∗.

Simple calculation: ‖(I− P)A‖2 = ‖A∗(I− P)2A‖ = ‖D(I− P)D‖.

Ran(Y) = Ran
([

D1R1
D2R2

])
= Ran

([
I

D2R2R
†
1D1

]
D1R1

)
= Ran

([
I

D2R2R
†
1D1

])

Set F = D2R2R
†
1D
−1
1 . Then P =

[
I
F

]
(I + F∗F)−1[I F∗]. (Compare to Pideal =

[
I 0
0 0

]
.)

Use properties of psd matrices: I− P 4 · · · 4

[
F∗F −(I + F∗F)−1F∗

−F(I + F∗F)−1 I

]

Conjugate by D to get D(I− P)D 4

[
D1F∗FD1 −D1(I + F∗F)−1F∗D2

−D2F(I + F∗F)−1D1 D2
2

]

Diagonal dominance: ‖D(I− P)D‖ ≤ ‖D1F∗FD1‖ + ‖D2
2‖ = ‖D2R2R

†
1‖

2 + ‖D2‖2.



Part 2 (out of 3) — bound on expectation of error when R is Gaussian:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Recall: |||A−QQ∗A|||2 ≤ |||D2|||2 + |||D2R2R
†
1|||

2, where R1 = V∗1R and R2 = V∗2R.

Assumption: R is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices R1 and R2 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . . ). )

What is the distribution of R†1 when R1 is a k × (k + p) Gaussian matrix?

If p = 0, then ‖R†1‖ is typically large, and is very unstable.



Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 0
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 2
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 5
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Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 10
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Scatter plot showing distribution of k × (k + p) Gaussian matrices.
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Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ` Gaussian matrix where k < `.
Let “g” denote a generic N (0,1) variable and “r2j ” denote a generic χ2j variable. Then

G ∼



g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... ... ... ... ... · · ·


∼



r` 0 0 0 0 0 · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... ... ... ... ... · · ·



∼



r` 0 0 0 0 0 · · ·
rk−1 g g g g g · · ·
0 g g g g g · · ·
0 g g g g g · · ·
... ... ... ... ... · · ·


∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 g g g g · · ·
0 g g g g · · ·
... ... ... ... ... · · ·



∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 g g g · · ·
0 0 g g g · · ·
... ... ... ... ... · · ·


∼ · · · ∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 r`−2 0 0 · · ·
0 0 rk−3 r`−3 0 · · ·
... ... ... ... ... · · ·


Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ` = 2k.
More sophisticated methods are required to get to ` = k + 2.



Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)



Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R
†
1‖

2, where R1 and R2 are Gaussian and R1 is
k × k + p.

Theorem: E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Proof: First observe that

E‖A−QQ∗A‖ = E
(
‖D2‖

2 + ‖D2R2R
†
1‖

2)1/2 ≤ ‖D2‖ + E‖D2R2R
†
1‖.

Condition on R1 and use Proposition 1:

E‖D2R2R
†
1‖ ≤ E

[
‖D2‖ ‖R

†
1‖F + ‖D2‖F ‖R

†
1‖
]

≤ {Hölder} ≤ ‖D2‖
(
E‖R†1‖

2
F
)1/2

+ ‖D2‖FE‖R†1‖.

Proposition 2 now provides bounds for E‖R†1‖
2
F and E‖R†1‖ and we get

E‖D2R2R
†
1‖ ≤

√
k

p− 1‖D2‖ +
e
√

k + p
p ‖D2‖F =

√
k

p− 1σk+1 +
e
√

k + p
p

∑
j>k

σ2j

1/2

.
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P
[
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P
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√
k + p

p + 1 t
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Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R†1‖2, where R1 and R2 are Gaussian and R1 is k × k + p.
Theorem: With probability at least 1− 2 t−p − e−u2/2 it holds that

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

.

Proof: Set Et =

{
‖R1‖ ≤

e
√

k+p
p+1 t and ‖R†1‖F ≤

√
3k
p+1 t

}
. By Proposition 4: P(Ec

t ) ≤ 2 t−p.

Set h(X) = ‖D2XR†1‖. A direct calculation shows

|h(X)− h(Y)| ≤ ‖D2‖ ‖R†1‖ ‖X − y‖F.

Hold R1 fixed and take the expectation on R2. Then Proposition 1 applies and so

E
[
h
(
R2
) ∣∣ R1

]
≤ ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖.

Now use Proposition 3 (concentration of measure)

P
[
‖D2R2R†1‖︸ ︷︷ ︸

=h(R2)

> ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖︸ ︷︷ ︸
=E[h(R2)]

+ ‖D2‖ ‖R†1‖︸ ︷︷ ︸
=L

u
∣∣ Et

]
< e−u2/2.

When Et holds true, we have bounds on the “badness” of R†1:

P
[
‖D2R2R†1‖ > ‖D2‖

√
3k

p + 1t + ‖D2‖F
e
√

k + p
p + 1 t + ‖D2‖

e
√

k + p
p + 1 ut

∣∣ Et

]
< e−u2/2.

The theorem is obtained by using P(Ec
t ) ≤ 2 t−p to remove the conditioning of Et.



Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:
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The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .
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Example 3:

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.
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Joint work with François Meyer of the University of Colorado at Boulder.
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The pink lines illustrates the performance of the basic random sampling scheme.
The errors are huge, and the estimated eigenvalues are much too small.



Example 4: “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.
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Power method for improving accuracy:

The error depends on how quickly the singular values decay. Recall that

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)qA has the same left singular vectors as A, and singular values

σj((AA∗)qA) = (σj(A))2q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)qAR

instead of
Y = AR.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also
similar to “block power method,” “block Lanczos,” “subspace iteration.”



Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× ` random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× ` sample matrix Y = (AA∗)qAR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed = UDV∗, the expectation of the error satisfies:

(1) E
[
‖A− Acomputed‖

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)
σk+1(A).

Reference: Halko, Martinsson, Tropp (2011).

• The improved accuracy from the modified scheme comes at a cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

• The bound (1) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.



A numerically stable version of the “power method”:

Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.

Draw an n× ` Gaussian random matrix R.
Set Q = orth(AR)
for i = 1, 2, . . . , q
W = orth(A∗Q)

Q = orth(AW)

end for
B = Q∗A
[Û, D, V] = svd(B)
U = QÛ.

Note: Algebraically, the method with orthogonalizations is identical to the “original”
method where Q = orth((AA∗)qAR).
Note: This is a classic subspace iteration.
The novelty is the error analysis, and the finding that using a very small q is often fine.
(In fact, our analysis allows q to be zero. . . )



Example 3 (revisited):

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

  
  
  

!!
!!
!!

x )
l

p(x )
j

67
58
72
69
53
76
90
74
52

p(x )
i
=

p(x )
k

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

  
  
!!
!!

  
  
  

!!
!!
!!

  
  
!!
!!

  
  
!!
!!

  
  
!!
!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

 
 
 

!
!
!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

 
 
 

!
!
!

  
  
  

!!
!!
!!

 
 
 

!
!
!

  
  
  

!!
!!
!!

 
 
 

!
!
!

p(

  
  
!!
!!

  
  
!!
!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

  
  
  

!!
!!
!!

  
  
!!
!!

  
  
!!
!!

  
  
!!
!!

  
  
!!
!!

  
  
  

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.
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The pink lines illustrates the performance of the basic random sampling scheme.
The errors for q = 0 are huge, and the estimated eigenvalues are much too small.
But: The situation improves very rapidly as q is cranked up!



Example 4 (revisited): “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.
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Current work:

1. Accelerate full factorizations of matrices.
New randomized column pivoted QR algorithm is much faster than LAPACK.
New “UTV” factorization method is almost as accurate as SVD and much faster.

2. Randomized algorithms for structured matrices.
Use randomization to accelerate key numerical solvers for PDEs, for simulating
Gaussian processes, etc.

3. [High risk/high reward] Accelerate linear solvers for “general” systems Ax = b.
The goal is methods with complexity O(Nγ) for γ < 3. Crucially, we seek methods
that retain stability, and have high practical efficiency for realistic problem sizes.
(Cf. Strassen — O(N2.81), Coppersmith-Winograd O(N2.38), etc.)

4. Use randomized projections to accelerate non-linear algebraic tasks.
Faster nearest neighbor search, faster clustering algorithms, etc. The idea is to use
randomized projections for sketching to develop a rough map of a large data set.
Then use high-accuracy deterministic methods for the actual computation.

Great potential for new discoveries in linear algebra!
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Final remarks:

• For large scale SVD/PCA of dense matrices, these algorithms are highly
recommended; they compare favorably to existing methods in almost every regard.

• The approximation error is a random variable, but its distribution is tightly
concentrated. Rigorous error bounds that are satisfied with probability 1− η where η
is a user set “failure probability” (e.g. η = 10−10 or 10−20).

• This talk mentioned error estimators only briefly, but they are important.
Can operate independently of the algorithm for improved robustness.
Typically cheap and easy to implement. Used to determine the actual rank.

• The theory can be hard (at least for me), but experimentation is easy!
Concentration of measure makes the algorithms behave as if deterministic.

• Randomized methods for computing “FMM”-style (HSS, H-matrix, . . . )
representations of matrices exist — [M— 2008, 2011, 2015], [Lin, Lu, Ying 2011].
Leads to accelerated, often O(N), direct solvers for elliptic PDEs.
Applications to scattering, composite materials, engineering design, etc.



Tutorials, summer schools, etc:
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.

Software packages:
• Column pivoted QR: https://github.com/flame/hqrrp (much faster than LAPACK!)
• Randomized UTV: https://github.com/flame/randutv
• RSVDPACK: https://github.com/sergeyvoronin (expansions are in progress)
• ID: http://tygert.com/software.html

Papers (see also http://people.maths.ox.ac.uk/martinsson/main_publications.html):
• P.G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for the approximation of

matrices”. 2006 report YALE-CS-1361; 2011 paper in ACHA.
• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions.” SIAM Review, 2011.
• E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for the

low-rank approximation of matrices”. PNAS, 104(51), 2007.
• P.G. Martinsson, “A fast randomized algorithm for computing a Hierarchically Semi-Separable

representation of a matrix”. SIMAX, 32(4), 2011.
• P.G. Martinsson, “Compressing structured matrices via randomized sampling,” SISC 38(4), 2016.
• P.G. Martinsson, G. Quintana-Ortí, N. Heaver, and R. van de Geijn, “Householder QR Factorization

With Randomization for Column Pivoting.” SISC, 39(2), pp. C96-C115, 2017.


