
Randomized methods for accelerating
matrix factorization algorithms

Gunnar Martinsson
The University of Colorado at Boulder

Collaborators: Edo Liberty, Vladimir Rokhlin, Yoel Shkolnisky, Arthur Szlam, Joel Tropp,
Mark Tygert, Franco Woolfe, . . .

Students and postdoc: Nathan Halko (now at Spot Influence, LLC), Sergey Voronin,
Nathan Heavner.

Papers, software, etc: http://amath.colorado.edu/faculty/martinss/

Research support by:

Objective:

Given an m× n matrix A, we seek to compute a rank-k approximation,
typically with k � min(m,n),

A ≈ E F∗ =
k∑

j=1
ej f∗j .

m× n m× k k × n
Solving this problem leads to algorithms for computing:

• Eigenvectors corresponding to leading eigenvalues.
(Require ej = λj fj, and {fj}kj=1 to be orthonormal.)

• Singular Value Decomposition (SVD) / Principal Component Analysis (PCA).
(Require {ej}kj=1 and {fj}kj=1 to be orthogonal sets.)

• Spanning columns or rows.
(Require {ej}kj=1 to be columns of A, or require {f∗j }kj=1 to be rows of A.)

• Etc.

Later in the talk, we will also discuss techniques for full (exact) factorizations.

Applications:

• Accelerating standard packages for linear algebra.

• Fast algorithms for elliptic PDEs: more efficient Fast Multipole Methods, fast direct
solvers, construction of special quadratures for corners and edges, etc.

• Statistical analysis of large data sets. E.g. via Principal Component Analysis (PCA).

• Data mining (machine learning, analysis of network matrices, image processing,
etc). Beside problems that are immediately formulated as matrix computations, the
techniques described can accelerate problems like nearest neighbor search for
large clouds of points in high dimensional space, clustering, etc.

• Preconditioners for solving linear systems Ax = b applicable to broad classes of
matrices. (General matrices?)

• Diffusion geometry; a technique for constructing parameterizations on large
collections of data points organized (modulo noise) along non-linear low-dimensional
manifolds. Requires the computations of eigenvectors of graph Laplace operators.

• Etc.

Review of existing methods I

For a dense n× n matrix that fits in RAM, excellent algorithms are well known.
Foundation of software packages such as LAPACK, Intel MKL, Matlab, etc).
• Double precision accuracy.
• Very stable.
• O(n3) asymptotic complexity. Reasonably small constants.
• Require extensive random access to the matrix. → Hard to parallelize.

When the target rank k is much smaller than n, there also exist O(n2 k) methods with
similar characteristics (the well-known Golub-Businger method, RRQR by Gu and
Eisentstat, etc).

For small matrices, the state-of-the-art is somewhat satisfactory.
(By “small,” we mean something like n ≤ 10 000 on today’s computers.)

Well-established field, but it turns out dramatic improvements are possible.

Review of existing methods I

For a dense n× n matrix that fits in RAM, excellent algorithms are well known.
Foundation of software packages such as LAPACK, Intel MKL, Matlab, etc).
• Double precision accuracy.
• Very stable.
• O(n3) asymptotic complexity. Reasonably small constants.
• Require extensive random access to the matrix. → Hard to parallelize.

When the target rank k is much smaller than n, there also exist O(n2 k) methods with
similar characteristics (the well-known Golub-Businger method, RRQR by Gu and
Eisentstat, etc).

For small matrices, the state-of-the-art is somewhat satisfactory.
(By “small,” we mean something like n ≤ 10 000 on today’s computers.)
Well-established field, but it turns out dramatic improvements are possible.

Review of existing methods II

If the matrix is large, but can rapidly be applied to a vector (if it is sparse, or sparse in
Fourier space, or amenable to the FMM, etc.), so called Krylov subspace methods often
yield excellent accuracy and speed.

The idea is to pick a starting vector r (often a random vector), “restrict” the matrix A to
the k-dimensionsal “Krylov subspace”

Span(r, A r, A2 r, . . . , Ak−1 r)

and compute an eigendecomposition of the resulting matrix. Advantages:

• Very simple access to A.
• Extremely high accuracy possible.

Drawbacks:

• The matrix is typically revisited O(k) times if a rank-k approximation is sought.
(Blocked versions exist, but the convergence analysis is less developed.)
• There are numerical stability issues. These are well-studied and can be overcome,
but they make software less portable (between applications, hardware platforms,
etc.).

“New” challenges in algorithmic design:

The existing state-of-the-art methods of numerical linear algebra that we have very
briefly outlined were designed for an environment where the matrix fits in RAM and the
key to performance was to minimize the number of floating point operations required.

Currently, communication is becoming the real bottleneck:

• While clock speed is hardly improving at all anymore, the cost of a flop keeps going
down rapidly. (Multi-core processors, GPUs, cloud computing, etc.)

• The cost of slow storage (hard drives, flash memory, etc.) is also going down rapidly.

• Communication costs are decreasing, but not rapidly.
• Moving data from a hard-drive.
• Moving data between nodes of a parallel machine. (Or cloud computer ...)
• The amount of fast cache memory close to a processor is not improving much.

(In fact, it could be said to be shrinking — GPUs, multi-core, etc.)

• “Deluge of data”. Driven by ever cheaper storage and acquisition techniques. Web
search, data mining in archives of documents or photos, hyper-spectral imagery,
social networks, gene arrays, proteomics data, sensor networks, financial
transactions, . . .

The more powerful computing machinery becomes,
the more important efficient algorithm design becomes.

• Linear scaling (w.r.t. problem size, processors, etc.).

• Minimal data movement.

Review of existing methods III — randomization

That randomization can be used to overcome some of the communication bottlenecks in
matrix computations has been pointed out by several authors:

C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vempala (2000)
A. Frieze, R. Kannan, and S. Vempala (1999, 2004)
D. Achlioptas and F. McSherry (2001)
P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan (2006)
S. Har-Peled (2006)
A. Deshpande and S. Vempala (2006)
S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)
T. Sarlós (2006a, 2006b, 2006c)
M. Rudelson, R. Vershynin (2007)
K. Clarkson, D. Woodruff (2009)
. . . deluge of papers . . .

Literature surveys: Halko, Martinsson, Tropp (2011). Mahoney (2011). Woodruff (2014). Etc.

Review of existing methods III — randomization

Examples of how randomization could be used:

• Random column/row selection
Draw at random some columns and suppose that they span the entire column space.
If rows are drawn as well, then spectral properties can be estimated.
Crude sampling leads to less than O(mn) complexity, but is very dangerous.

• Sparsification
Zero out the vast majority of the entries of the matrix. Keep a random subset of
entries, and boost their magnitude to preserve “something.”

• Quantization and sparsification
Restrict the entries of the matrix to a small set of values (-1/0/1 for instance).

The methods outlined can be as fast as you like, but must necessarily have very weak
performance guarantees. They can work well for certain classes of matrices for which
additional information is available (basically, matrices that are in some sense
“over-sampled”).

Approach advocated here:

A randomized algorithm for computing a rank-k approximation to an m× n matrix.
It is engineered from the ground up to:
• Minimize communication.
• Handle streaming data, or data stored “out-of-core.”
• Easily adapt to a broad range of distributed computing architectures.

Computational profile:
• At least O(mn) complexity. To be precise: O(mnk) or O(mn log(k)).
• The accuracy ε is a user-set number.
(If the application permits, it could be ε = 10−12 or less.)
• Since the method is randomized, it has a failure probability η.
η is a user specified number.
The cost of the method grows as η → 0, but setting η = 10−10 is cheap.
For all practical purposes, the method succeeds with probability 1.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1.

2.

3.
4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B so that B = Û DV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Note: Steps 4 – 6 are exact; the error in the method is all in Q:

‖A− U︸︷︷︸
=QÛ

DV∗‖ = ‖A−QÛDV∗︸ ︷︷ ︸
=B

‖ = ‖A−Q B︸︷︷︸
Q∗A
‖ = ‖A−QQ∗A‖.

Note: The classical Golub-Businger algorithm follows this pattern. It finds Q in Step 3
via direct orthogonalization of the columns of A via, e.g., Gram-Schmidt.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.
Algorithm:

1.

2.

3.
4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B so that B = Û DV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Note: Steps 4 – 6 are exact; the error in the method is all in Q:

‖A− U︸︷︷︸
=QÛ

DV∗‖ = ‖A−QÛDV∗︸ ︷︷ ︸
=B

‖ = ‖A−Q B︸︷︷︸
Q∗A
‖ = ‖A−QQ∗A‖.

Note: The classical Golub-Businger algorithm follows this pattern. It finds Q in Step 3
via direct orthogonalization of the columns of A via, e.g., Gram-Schmidt.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.
Algorithm:

1.

2.

3.
4. Form the k × n matrix B = Q∗A.

5. Compute the SVD of the small matrix B so that B = Û DV∗.

6. Form the matrix U = QÛ.

Find an m× k orthonormal matrix Q such that A ≈ QQ∗A.
(I.e., the columns of Q form an ON-basis for the range of A.)

Note: Steps 4 – 6 are exact; the error in the method is all in Q:

‖A− U︸︷︷︸
=QÛ

DV∗‖ = ‖A−QÛDV∗︸ ︷︷ ︸
=B

‖ = ‖A−Q B︸︷︷︸
Q∗A
‖ = ‖A−QQ∗A‖.

Note: The classical Golub-Businger algorithm follows this pattern. It finds Q in Step 3
via direct orthogonalization of the columns of A via, e.g., Gram-Schmidt.

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors r1, r2, . . . , rk ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = A r1, y2 = A r2, . . . , yk = A rk ∈ Rm.

3. Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

Span(q1, q2, . . . , qk) = Span(y1, y2, . . . , yk).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then Span{qj}kj=1 = Ran(A) with probability 1.

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw random vectors r1, r2, . . . , rk ∈ Rn.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form “sample” vectors y1 = A r1, y2 = A r2, . . . , yk = A rk ∈ Rm.

3. Form orthonormal vectors q1, q2, . . . , qk ∈ Rm such that

Span(q1, q2, . . . , qk) = Span(y1, y2, . . . , yk).

For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then Span{qj}kj=1 = Ran(A) with probability 1.

What is perhaps surprising is that even in the general case, {qj}kj=1 often does almost
as good of a job as the theoretically optimal vectors (which happen to be the k leading
left singular vectors).

Range finding problem: Given an m× n matrix A and an integer k < min(m,n),
find an orthonormal m× k matrix Q such that A ≈ QQ∗A.
Solving the primitive problem via randomized sampling — intuition:

1. Draw a random matrix R ∈ Rn×k.
(We will discuss the choice of distribution later — think Gaussian for now.)

2. Form a “sample” matrix Y = AR ∈ Rm×k.

3. Form an orthonormal matrix Q ∈ Rm×k such that Y = QR.
For instance, Gram-Schmidt can be used — pivoting is rarely required.

If A has exact rank k, then A = QQ∗A with probability 1.

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix R. R = randn(n,k)

2. Form the m× k sample matrix Y = AR. Y = A * R

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of the small matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

6. Form the matrix U = QÛ. U = Q * Uhat

Goal: Given an m× n matrix A, compute an approximate rank-k SVD A ≈ UDV∗.

Algorithm:

1. Draw an n× k Gaussian random matrix R. R = randn(n,k)

2. Form the m× k sample matrix Y = AR. Y = A * R

3. Form an m× k orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

4. Form the k × n matrix B = Q∗A. B = Q’ * A

5. Compute the SVD of the small matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

6. Form the matrix U = QÛ. U = Q * Uhat

Single pass algorithms:

A is symmetric: A is not symmetric:

Generate a random matrix G. Generate random matrices G and H.

Compute a sample matrix Y. Compute sample matrices Y = AG and Z = A∗H.

Find an ON matrix Q Find ON matrices Q and W
such that Y = QQ∗Y. such that Y = QQ∗Y and Z = WW∗ Z.

Solve for T the linear system Solve for T the linear systems
Q∗Y = T (Q∗G). Q∗Y = T (W∗G) and W∗ Z = T∗ (Q∗H).

Factor T so that T = Û D Û∗. Factor T so that T = Û D V̂∗.

Form U = QÛ. Form U = QÛ and V = WV̂.

Output: A ≈ UDU∗ Output: A ≈ UDV∗

Note: With B as on the previous slide we have T ≈ BQ (sym. case) and T ≈ BW
(nonsym. case).

References: Woolfe, Liberty, Rokhlin, and Tygert (2008), Clarkson and Woodruff (2009),
Halko, Martinsson and Tropp (2009).

Cost of randomized methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomized
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomized Fourier
transform, which can be applied rapidly using variations of the FFT.

• The algorithm must be modified a bit beside replacing the random matrix.
• The SRFT leads to large speed-ups for moderate matrix sizes.
For instance, for m = n = 4000, and k ∼ 102, we observe about ×5 speedup.
• In practice, accuracy is very similar to what you get from Gaussian random matrices.
• Theory is still quite weak.
• Many different “structured random projections” have been proposed: sub-sampled
Hadamard transform, chains of Givens rotations, sparse projections, etc.

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).
Halko, Martinsson, Tropp (2011).
Much subsequent work — “Fast Johnson-Lindenstrauss transform.”

Cost of randomized methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomized
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomized Fourier
transform, which can be applied rapidly using variations of the FFT.

• The algorithm must be modified a bit beside replacing the random matrix.
• The SRFT leads to large speed-ups for moderate matrix sizes.
For instance, for m = n = 4000, and k ∼ 102, we observe about ×5 speedup.
• In practice, accuracy is very similar to what you get from Gaussian random matrices.
• Theory is still quite weak.
• Many different “structured random projections” have been proposed: sub-sampled
Hadamard transform, chains of Givens rotations, sparse projections, etc.

References: Ailon and Chazelle (2006); Liberty, Rokhlin, Tygert, and Woolfe (2006).
Halko, Martinsson, Tropp (2011).
Much subsequent work — “Fast Johnson-Lindenstrauss transform.”

Cost of randomized methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomized
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomized Fourier
transform, which can be applied rapidly using variations of the FFT.

Case 2 — A is given as an array of numbers on disk (“large matrix”):
In this case, the relevant metric is memory access. Randomized methods access A via
sweeps over the entire matrix. With slight modifications, the randomized method can be
executed in a single pass over the matrix. High accuracy can be attained with a small
number of passes (say two, three, four).
(In contrast, classical (deterministic) methods require “random” access to matrix elements...)

Case 3 — A and A∗ can be applied fast (“structured matrix”):
Think of A sparse, or sparse in the Fourier domain, or amenable to the Fast Multipole
Method, etc. The classical competitor is in this case “Krylov methods”. Randomized
methods tend to be more robust, and easier to implement in massively parallel
environments. They are more easily blocked to reduce communication. However, Krylov
methods sometimes lead to higher accuracy.

Cost of randomized methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomized
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomized Fourier
transform, which can be applied rapidly using variations of the FFT.
Case 2 — A is given as an array of numbers on disk (“large matrix”):
In this case, the relevant metric is memory access. Randomized methods access A via
sweeps over the entire matrix. With slight modifications, the randomized method can be
executed in a single pass over the matrix. High accuracy can be attained with a small
number of passes (say two, three, four).
(In contrast, classical (deterministic) methods require “random” access to matrix elements...)

Case 3 — A and A∗ can be applied fast (“structured matrix”):
Think of A sparse, or sparse in the Fourier domain, or amenable to the Fast Multipole
Method, etc. The classical competitor is in this case “Krylov methods”. Randomized
methods tend to be more robust, and easier to implement in massively parallel
environments. They are more easily blocked to reduce communication. However, Krylov
methods sometimes lead to higher accuracy.

Cost of randomized methods vs. classical (deterministic) methods:
Case 1 — A is given as an array of numbers that fits in RAM (“small matrix”):
Classical methods (e.g. Golub-Businger) have cost O(mnk). The basic randomized
method described also has O(mnk) cost, but with a lower pre-factor (and sometimes
lower accuracy). However, the cost can be reduced to O(mnlog(k)) if a structured
random matrix is used. For instance, R can be a sub-sampled randomized Fourier
transform, which can be applied rapidly using variations of the FFT.
Case 2 — A is given as an array of numbers on disk (“large matrix”):
In this case, the relevant metric is memory access. Randomized methods access A via
sweeps over the entire matrix. With slight modifications, the randomized method can be
executed in a single pass over the matrix. High accuracy can be attained with a small
number of passes (say two, three, four).
(In contrast, classical (deterministic) methods require “random” access to matrix elements...)

Case 3 — A and A∗ can be applied fast (“structured matrix”):
Think of A sparse, or sparse in the Fourier domain, or amenable to the Fast Multipole
Method, etc. The classical competitor is in this case “Krylov methods”. Randomized
methods tend to be more robust, and easier to implement in massively parallel
environments. They are more easily blocked to reduce communication. However, Krylov
methods sometimes lead to higher accuracy.

Practical speed of O(mn log(k)) complexity randomized SVD

Consider the task of computing a rank-k SVD of a matrix A of size n× n.

t(direct)Time for classical (Golub-Businger) method — O(k n2)

t(srft) Time for randomized method with an SRFT — O(log(k)n2)

t(gauss)Time for randomized method with a Gaussian matrix — O(k n2)

t(svd) Time for a full SVD — O(n3)

We will show the

acceleration factors: t(direct)

t(srft)
t(direct)

t(gauss)
t(direct)

t(svd)

for different values of n and k.

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

10
1

10
2

10
3

0

1

2

3

4

5

6

7

k k k

n = 1 024 n = 2 048 n = 4 096

t(direct)/t(gauss)

t(direct)/t(srft)
t(direct)/t(svd)

SRFT speedup

Gauss speedup

Full SVD

Ac
ce

le
ra
tio

n
fa
ct
or

Observe: Large speedups (up to a factor 6!) for moderate size matrices.

Theory

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Input: An m× n matrix A and a target rank k.
Output: Rank-k factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× k random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× k sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Question: What is the error ek = ‖A− UDV∗‖? (Recall that ek = ‖A−QQ∗A‖.)

Eckart-Young theorem: ek is bounded from below by the singular value σk+1 of A.

Question: Is ek close to σk+1?

Answer: Lamentably, no. The expectation of ek
σk+1

is large, and has very large variance.

Remedy: Over-sample slightly. Compute k+p samples from the range of A.
It turns out that p = 5 or 10 is often sufficient. p = k is almost always more than enough.

Input: An m× n matrix A, a target rank k, and an over-sampling parameter p (say p = 5).
Output: Rank-(k + p) factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× (k + p) random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× (k + p) sample matrix Y = AR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

Bound on the expectation of the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 2, then

E‖A−QQ∗A‖Frob ≤
(
1 +

k
p− 1

)1/2
min(m,n)∑

j=k+1
σ2j

1/2

,

and

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Ref: Halko, Martinsson, Tropp, 2009 & 2011

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤

1 + 16

√
1 +

k
p + 1

σk+1 + 8
√

k + p
p + 1

∑
j>k

σ2j

1/2

,

except with probability at most 3e−p.

Large deviation bound for the error for Gaussian test matrices

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter.
Let R denote an n× (k + p) Gaussian matrix.
Let Q denote the m× (k + p) matrix Q = orth(AR).
If p ≥ 4, and u and t are such that u ≥ 1 and t ≥ 1, then

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√

k + p
p + 1

∑
j>k

σ2j

1/2

except with probability at most 2 t−p + e−u2/2.
Ref: Halko, Martinsson, Tropp, 2009 & 2011; Martinsson, Rokhlin, Tygert (2006)

u and t parameterize “bad” events — large u, t is bad, but unlikely.
Certain choices of t and u lead to simpler results. For instance,

‖A−QQ∗A‖ ≤
(
1 + 6

√
(k + p) · p logp

)
σk+1 + 3

√
k + p

∑
j>k

σ2j

1/2

,

except with probability at most 3p−p.

Proofs — Overview:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

We seek to bound the error ek = ek(A,R) = ‖A−QQ∗A‖, which is a random variable.

1. Make no assumption on R. Construct a deterministic bound of the form

‖A−QQ∗A‖ ≤ · · ·A · · ·R · · ·

2. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound to attain a bound of the form

E
[
‖A−QQ∗A‖

]
≤ · · ·A · · ·

3. Assume that R is drawn from a normal Gaussian distribution.
Take expectations of the deterministic bound conditioned on “bad behavior” in R to
get that

‖A−QQ∗A‖ ≤ · · ·A · · ·

holds with probability at least · · · .

Part 1 (out of 3) — deterministic bound:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Partition the SVD of A as follows:
k n− k

A = U
[
D1

D2

][
V∗1
V∗2

]
k

n− k
Define R1 and R2 via

R1 = V∗1 R
k × (k + p) k × n n× (k + p)

and
R2 = V∗2 R.

(n− k)× (k + p) (n− k)× n n× (k + p)

Theorem: [HMT2009,HMT2011] Assuming that R1 is not singular, it holds that

|||A−QQ∗A|||2 ≤ |||D2|||
2︸ ︷︷ ︸

theoretically minimal error
+ |||D2R2R

†
1|||

2.

Here, ||| · ||| represents either `2-operator norm, or the Frobenius norm.
Note: A similar (but weaker) result appears in Boutsidis, Mahoney, Drineas (2009).

Recall: A = U
[
D1 0
0 D2

][
V∗1
V∗2

]
,
[
R1
R2

]
=

[
V∗1R
V∗2R

]
, Y = AR, P projn onto Ran(Y).

Thm: Suppose D1R1 has full rank. Then ‖A− PA‖2 ≤ ‖D2‖
2 + ‖D2R2R

†
1‖

2.

Proof: The problem is rotationally invariant⇒We can assume U = I and so A = DV∗.

Simple calculation: ‖(I− P)A‖2 = ‖A∗(I− P)2A‖ = ‖D(I− P)D‖.

Ran(Y) = Ran
([

D1R1
D2R2

])
= Ran

([
I

D2R2R
†
1D1

]
D1R1

)
= Ran

([
I

D2R2R
†
1D1

])

Set F = D2R2R
†
1D
−1
1 . Then P =

[
I
F

]
(I + F∗F)−1[I F∗]. (Compare to Pideal =

[
I 0
0 0

]
.)

Use properties of psd matrices: I− P 4 · · · 4

[
F∗F −(I + F∗F)−1F∗

−F(I + F∗F)−1 I

]

Conjugate by D to get D(I− P)D 4

[
D1F∗FD1 −D1(I + F∗F)−1F∗D2

−D2F(I + F∗F)−1D1 D2
2

]

Diagonal dominance: ‖D(I− P)D‖ ≤ ‖D1F∗FD1‖ + ‖D2
2‖ = ‖D2R2R

†
1‖

2 + ‖D2‖2.

Part 2 (out of 3) — bound on expectation of error when R is Gaussian:

Let A denote an m× n matrix with singular values {σj}
min(m,n)
j=1 .

Let k denote a target rank and let p denote an over-sampling parameter. Set ` = k + p.
Let R denote an n× ` “test matrix”, and let Q denote the m× ` matrix Q = orth(AR).

Recall: |||A−QQ∗A|||2 ≤ |||D2|||2 + |||D2R2R
†
1|||

2, where R1 = V∗1R and R2 = V∗2R.

Assumption: R is drawn from a normal Gaussian distribution.

Since the Gaussian distribution is rotationally invariant, the matrices R1 and R2 also
have a Gaussian distribution. (As a consequence, the matrices U and V do not enter the
analysis and one could simply assume that A is diagonal, A = diag(σ1, σ2, . . .).)

What is the distribution of R†1 when R1 is a k × (k + p) Gaussian matrix?

If p = 0, then ‖R†1‖ is typically large, and is very unstable.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 0

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=0

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 2

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=2

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 5

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=5

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of 1/σmin for k × (k + p) Gaussian matrices. p = 10

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p=10

k=20
k=40
k=60

1/σmin is plotted against σmax.

Scatter plot showing distribution of k × (k + p) Gaussian matrices.

8 10 12 14 16 18

10
0

10
1

10
2

10
3

10
4

ssmax

1/
ss

m
in

p = 0
p = 2
p = 5
p = 10

k = 20 k = 40 k = 60

1/σmin is plotted against σmax.

Simplistic proof that a rectangular Gaussian matrix is well-conditioned:
Let G denote a k × ` Gaussian matrix where k < `.
Let “g” denote a generic N (0,1) variable and “r2j ” denote a generic χ2j variable. Then

G ∼



g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·


∼



r` 0 0 0 0 0 · · ·
g g g g g g · · ·
g g g g g g · · ·
g g g g g g · · ·
... · · ·



∼



r` 0 0 0 0 0 · · ·
rk−1 g g g g g · · ·
0 g g g g g · · ·
0 g g g g g · · ·
... · · ·


∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 g g g g · · ·
0 g g g g · · ·
... · · ·



∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 g g g · · ·
0 0 g g g · · ·
... · · ·


∼ · · · ∼



r` 0 0 0 0 · · ·
rk−1 r`−1 0 0 0 · · ·
0 rk−2 r`−2 0 0 · · ·
0 0 rk−3 r`−3 0 · · ·
... · · ·


Gershgorin’s circle theorem will now show that G is well-conditioned if, e.g., ` = 2k.
More sophisticated methods are required to get to ` = k + 2.

Some results on Gaussian matrices. Adapted from HMT 2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)

Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R
†
1‖

2, where R1 and R2 are Gaussian and R1 is
k × k + p.

Theorem: E
[
‖A−QQ∗A‖

]
≤

1 +

√
k

p− 1

σk+1 +
e
√
k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

Proof: First observe that

E‖A−QQ∗A‖ = E
(
‖D2‖

2 + ‖D2R2R
†
1‖

2)1/2 ≤ ‖D2‖ + E‖D2R2R
†
1‖.

Condition on R1 and use Proposition 1:

E‖D2R2R
†
1‖ ≤ E

[
‖D2‖ ‖R

†
1‖F + ‖D2‖F ‖R

†
1‖
]

≤ {Hölder} ≤ ‖D2‖
(
E‖R†1‖

2
F
)1/2

+ ‖D2‖FE‖R†1‖.

Proposition 2 now provides bounds for E‖R†1‖
2
F and E‖R†1‖ and we get

E‖D2R2R
†
1‖ ≤

√
k

p− 1‖D2‖ +
e
√

k + p
p ‖D2‖F =

√
k

p− 1σk+1 +
e
√

k + p
p

∑
j>k

σ2j

1/2

.

Some results on Gaussian matrices. Adapted from HMT2009/2011; Gordon (1985,1988) for
Proposition 1; Chen & Dongarra (2005) for Propositions 2 and 4; Bogdanov (1998) for Proposition 3.

Proposition 1: Let G be a Gaussian matrix. Then(
E
[
‖SGT‖2F

])1/2 ≤‖S‖F ‖T‖F
E
[
‖SGT‖

]
≤‖S‖ ‖T‖F + ‖S‖F ‖T‖

Proposition 2: Let G be a Gaussian matrix of size k × k + p where p ≥ 2. Then

(
E
[
‖G†‖2F

])1/2 ≤√ k
p− 1

E
[
‖G†‖

]
≤e
√
k + p
p .

Proposition 3: Suppose h is Lipschitz |h(X)− h(Y)| ≤ L‖X − Y‖F and G is Gaussian. Then

P
[
h(G) > E[h(G)] + L u] ≤ e−u2/2.

Proposition 4: Suppose G is Gaussian of size k × k + p with p ≥ 4. Then for t ≥ 1:

P
[
‖G†‖F ≥

√
3k

p + 1t
]
≤t−p

P
[
‖G†‖ ≥ e

√
k + p

p + 1 t
]
≤t−(p+1)

Recall: ‖A−QQ∗A‖2 ≤ ‖D2‖2 + ‖D2R2R†1‖2, where R1 and R2 are Gaussian and R1 is k × k + p.
Theorem: With probability at least 1− 2 t−p − e−u2/2 it holds that

‖A−QQ∗A‖ ≤

1 + t

√
3k

p + 1 + u t e
√
k + p

p + 1

 σk+1 +
t e
√
k + p

p + 1

∑
j>k

σ2j

1/2

.

Proof: Set Et =

{
‖R1‖ ≤

e
√

k+p
p+1 t and ‖R†1‖F ≤

√
3k
p+1 t

}
. By Proposition 4: P(Ec

t) ≤ 2 t−p.

Set h(X) = ‖D2XR†1‖. A direct calculation shows

|h(X)− h(Y)| ≤ ‖D2‖ ‖R†1‖ ‖X − y‖F.

Hold R1 fixed and take the expectation on R2. Then Proposition 1 applies and so

E
[
h
(
R2
) ∣∣ R1

]
≤ ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖.

Now use Proposition 3 (concentration of measure)

P
[
‖D2R2R†1‖︸ ︷︷ ︸

=h(R2)

> ‖D2‖ ‖R†1‖F + ‖D2‖F ‖R†1‖︸ ︷︷ ︸
=E[h(R2)]

+ ‖D2‖ ‖R†1‖︸ ︷︷ ︸
=L

u
∣∣ Et

]
< e−u2/2.

When Et holds true, we have bounds on the “badness” of R†1:

P
[
‖D2R2R†1‖ > ‖D2‖

√
3k

p + 1t + ‖D2‖F
e
√

k + p
p + 1 t + ‖D2‖

e
√

k + p
p + 1 ut

∣∣ Et

]
< e−u2/2.

The theorem is obtained by using P(Ec
t) ≤ 2 t−p to remove the conditioning of Et.

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by a different instantiation
of the proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by a different instantiation
of the proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 1:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 10 20 30 40 50 60 70 80

10
−15

10
−10

10
−5

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue lines indicate the
actual errors ek incurred
by 20 instantiations of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue line indicates the
actual errors ek incurred
by one instantiation of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 2:

We consider a 1 000× 1 000 matrix A whose singular values are shown below:

0 50 100 150
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

k

σ
k+

1
e k

The red line indicates the
singular values σk+1 of A.
These indicate the theo-
retically minimal approxi-
mation error.

The blue lines indicate the
actual errors ek incurred
by 20 instantiations of the
proposed method.

A is a discrete approximation of a certain compact integral operator normalized so that ‖A‖ = 1.

Curiously, the nature of A is in a strong sense irrelevant: the error distribution depends only on {σj}min(m,n)
j=1 .

Example 3:

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors are huge, and the estimated eigenvalues are much too small.

Example 4: “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues

λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.

Power method for improving accuracy:

The error depends on how quickly the singular values decay. Recall that

E‖A−QQ∗A‖ ≤

1 +

√
k

p− 1

σk+1 +
e
√

k + p
p

min(m,n)∑
j=k+1

σ2j

1/2

.

The faster the singular values decay — the stronger the relative weight of the dominant
modes in the samples.

Idea: The matrix (AA∗)qA has the same left singular vectors as A, and singular values

σj((AA∗)qA) = (σj(A))2q+1.

Much faster decay — so let us use the sample matrix

Y = (AA∗)qAR

instead of
Y = AR.

References: Paper by Rokhlin, Szlam, Tygert (2008). Suggestions by Ming Gu. Also
similar to “block power method,” “block Lanczos,” “subspace iteration.”

Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.
(1) Draw an n× ` random matrix R. (4) Form the small matrix B = Q∗A.
(2) Form the m× ` sample matrix Y = (AA∗)qAR. (5) Factor the small matrix B = ÛDV∗.
(3) Compute an ON matrix Q s.t. Y = QQ∗Y. (6) Form U = QÛ.

• Detailed (and, we believe, close to sharp) error bounds have been proven.
For instance, with Acomputed = UDV∗, the expectation of the error satisfies:

(1) E
[
‖A− Acomputed‖

]
≤

(
1 + 4

√
2 min(m,n)

k − 1

)1/(2q+1)
σk+1(A).

Reference: Halko, Martinsson, Tropp (2011).

• The improved accuracy from the modified scheme comes at a cost;
2q + 1 passes over the matrix are required instead of 1.
However, q can often be chosen quite small in practice, q = 2 or q = 3, say.

• The bound (1) assumes exact arithmetic.
To handle round-off errors, variations of subspace iterations can be used.
These are entirely numerically stable and achieve the same error bound.

A numerically stable version of the “power method”:

Input: An m× n matrix A, a target rank `, and a small integer q.
Output: Rank-` factors U, D, and V in an approximate SVD A ≈ UDV∗.

Draw an n× ` Gaussian random matrix R.
Set Q = orth(AR)
for i = 1, 2, . . . , q
W = orth(A∗Q)

Q = orth(AW)

end for
B = Q∗A
[Û, D, V] = svd(B)
U = QÛ.

Note: Algebraically, the method with orthogonalizations is identical to the “original”
method where Q = orth((AA∗)qAR).
Note: This is a classic subspace iteration.
The novelty is the error analysis, and the finding that using a very small q is often fine.
(In fact, our analysis allows q to be zero. . .)

Example 3 (revisited):

The matrix A being analyzed is a 9025× 9025 matrix arising in a diffusion geometry
approach to image processing.

To be precise, A is a graph Laplacian on the manifold of 3× 3 patches.

!!
!!
!!

x)
l

p(x)
j

67
58
72
69
53
76
90
74
52

p(x)
i
=

p(x)
k

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

!!
!!
!!

!
!
!

p(

!!
!!

!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!
!!

!!
!!

!!
!!

!!
!!

!!
!!

!!
!!
!!

l

i

j

k

Joint work with François Meyer of the University of Colorado at Boulder.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues
λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
The errors for q = 0 are huge, and the estimated eigenvalues are much too small.
But: The situation improves very rapidly as q is cranked up!

Example 4 (revisited): “Eigenfaces”

We next process a data base containing m = 7 254 pictures of faces

Each image consists of n = 384× 256 = 98 304 gray scale pixels.

We center and scale the pixels in each image, and let the resulting values form a column
of a 98 304× 7 254 data matrix A.

The left singular vectors of A are the so called eigenfaces of the data base.

0 20 40 60 80 100
10

0

10
1

10
2

0 20 40 60 80 100
10

0

10
1

10
2

k j

Approximation error ek Estimated Eigenvalues λj

M
ag

ni
tu
de

“Exact” eigenvalues

λj for q = 3
λj for q = 2
λj for q = 1
λj for q = 0

The pink lines illustrates the performance of the basic random sampling scheme.
Again, the errors are huge, and the estimated eigenvalues are much too small.
But: The situation improves very rapidly as q is cranked up!

Current work:

The material presented so far is fairly well established by now. (Recycled slides . . .)

Next, let us briefly describe current research in this area.

Current work: Randomized approximation of “rank-structured” matrices

Many matrices in applications have off-diagonal blocks that are of low rank:
• Matrices approximating integral equations associated with elliptic PDEs.
(Essentially, discretized Calderòn-Zygmund operators.)
• Scattering matrices in acoustic and electro-magnetic scattering.
• Inverses of (sparse) matrices arising upon FEM discretization of elliptic PDEs.
• Buzzwords: H-matrices, HSS-matrices, quasi-separable matrices, . . .

Using randomized algorithms, we have developed O(N)-complexity methods for
performing algebraic operations on dense matrices of this type. This leads to:
• Accelerated direct solvers for elliptic PDEs.
• O(N) complexity in many situations.

A representative tessellation of a rank-structured ma-
trix. Each off-diagonal block (gray) has low numerical
rank. The diagonal blocks (red) are full rank, but are
small in size. Matrices of this type allow efficient matrix-
vector multiplication, matrix inversion, etc.

Current work: Accelerate FULL factorizations of matrices

Given a dense n× n matrix A, compute a column pivoted QR factorization

A P ≈ Q R,
n× n n× n n× n n× n

where, as usual, Q should be ON, P is a permutation, and R is upper triangular.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = Q∗1A0P1 A2 = Q∗2A1P2 A3 = Q∗3A2P3 A4 = Q∗4A3P4
Each Pj is a permutation matrix computed via randomized sampling.
Each Qj is a product of Householder reflectors.

The key challenge has been to find good permutation matrices.
We seek Pj so that the set of b chosen columns has maximal spanning volume.

Perfect for randomized sampling! The likelihood that any block of columns is “hit” by the
random vectors is directly proportional to its volume. Perfect optimality is not required.

Current work: Accelerate FULL factorizations of matrices

Sp
ee

d-
up

of
HQ

RR
P
vs

dg
eq

p3
Versus netlib dgeqp3 Versus Intel MKL dgeqp3

n n

Speedup attained by our randomized algorithm HQRRP for computing a full column pivoted
QR factorization of an n × n matrix. The speed-up is measured versus LAPACK’s faster
routine dgeqp3 as implemented in Netlib (left) and Intel’s MKL (right). Our implementation
was done in C, and was executed on an Intel Xeon E5-2695. Joint work with G. Quintana-
Ortí, N. Heavner, and R. van de Geijn. Available at: https://github.com/flame/hqrrp/

Current work: Accelerate FULL factorizations of matrices

Given a dense n× n matrix A, compute a factorization

A = U T V∗,
n× n n× n n× n n× n

where T is upper triangular, U and V are unitary.
Observe: More general than CPQR since we used to insist that V be a permutation.

The technique proposed is based on a blocked version of classical Householder QR:

A0 = A A1 = U∗1A0V1 A2 = U∗2A1V2 A3 = U∗3A2V3 A4 = U∗4A3V4
Both Uj and Vj are (mostly...) products of b Householder reflectors.

Our objective is in each step to find an approximation to the linear subspace spanned by
the b dominant singular vectors of a matrix. The randomized range finder is perfect for
this, especially when a small number of power iterations are performed. Easier and
more natural than choosing pivoting vectors.

Current work: Accelerate FULL factorizations of matrices

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTVVery good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).

Current work: Accelerate FULL factorizations of matrices

For the task of computing low-rank approximations to matrices, the classical choice is
between SVD and column pivoted QR (CPQR). SVD is slow, and CPQR is inaccurate:

Accuracy

Speed

SVDOptimal

Slow

CPQROk

Fast

randUTVVery good

Faster!

The randomized algorithm randUTV combines the best properties of both factorizations.
Additionally, randUTV parallelizes better, and allows the computation of partial
factorizations (like CPQR, but unlike SVD).

Current work: Randomized pre-conditioners, nearest neighbor search, clustering, . . .

Question: Is it possible to build algorithms that combine the powerful dimension
reduction capability of randomized projections with the accuracy and robustness of
classical deterministic methods?

Putative answer: Yes — use a two-stage approach:

(A) Randomized pre-conditioner:
In a pre-computation, random projections are used to create low-dimensional
sketches of the high-dimensional data. These sketches are somewhat distorted, but
approximately preserve key properties to very high probability.

(B) Deterministic post-processing:
Once a sketch of the data has been constructed in Stage A, classical deterministic
techniques are used to compute desired quantities to very high accuracy, starting
directly from the original high-dimensional data.

It is often advantageous to add a final step of à posteriori error estimation.
This can typically be done very cheaply using randomized sampling.

Current work: Randomized pre-conditioners, nearest neighbor search, clustering, . . .

Example 1 of two-stage approach: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal.

(A) Randomized pre-conditioner:
Use randomized projection methods to form an approximate basis for the range of
the matrix.

(B) Deterministic post-processing:
Restrict the matrix to the subspace determined in Stage A, and perform expensive
but accurate computations on the resulting smaller matrix.

Observe that distortions in the randomized projections are fine, since all we need is a
subspace the captures “most” of the range. Pollution from unwanted singular modes is
harmless, as long as we capture the dominant ones. The risk of missing the dominant
ones is for practical purposes zero.

Current work: Randomized pre-conditioners, nearest neighbor search, clustering, . . .

Example 1 of two-stage approach: Randomized SVD

Objective: Given an m× n matrix A, find an approximate rank-k partial SVD:

A ≈ U D V∗

m× n m× k k × k k × n
where U and V are orthonormal, and D is diagonal.

Fix an over-sampling parameter p. Say p = 10.

(A) Randomized pre-conditioner:
A.1 Draw an n× (k + p) Gaussian random matrix G. G = randn(n,k+p)

A.2 Form the m× (k + p) sample matrix Y = AG. Y = A * G

A.3 Form an m× (k + p) orthonormal matrix Q such that Y = QR. [Q, R] = qr(Y)

(B) Deterministic post-processing:
B.1 Form the (k + p)× n matrix B = Q∗A. B = Q’ * A

B.2 Form SVD of the matrix B: B = Û DV∗. [Uhat, Sigma, V] = svd(B,0)

B.3 Form the matrix U = QÛ. U = Q * Uhat

(Truncate the last p terms in step B.2 to attain a factorization of precise rank k.)

Current work: Randomized pre-conditioners, nearest neighbor search, clustering, . . .

Example 2 of two-stage approach: Nearest neighbor search in RD (Jones, Osipov, Rokhlin)

Objective: Suppose you are given n points {xj}nj=1 in RD. The coordinate matrix is

X = [x1 x2 · · · xn] ∈ RD×n.

How do you find the k nearest neighbors for every point?

If D is “small” (say D ≤ 10 or so), then you have several options; you can, e.g, sort the
points into a tree based on hierarchically partitioning space (a “kd-tree”).
Problem: Classical techniques of this type get very expensive as D grows.

Simple idea: Use a random map to project onto low-dimensional space. This “sort of”
preserves distances. Execute a fast search there.

Improved idea: The output from a single random projection is unreliable. But, you can
repeat the experiment several times, use these to generate a list of candidates for the
nearest neighbors, and then compute exact distances to find the k closest among the
candidates.

Current work: Randomized pre-conditioners, nearest neighbor search, clustering, . . .

Example 2 of two-stage approach: Nearest neighbor search in RD (Jones, Osipov, Rokhlin)

Objective: Suppose you are given n points {xj}nj=1 in RD. The coordinate matrix is

X = [x1 x2 · · · xn] ∈ RD×n.

How do you find the k nearest neighbors for every point?

(A) Randomized probing of data:
Use a Johnson-Lindenstrauss random projection to map the n-particle problem in
RD (where D is large) to an n-particle problem in Rd where d ∼ logn. Run a
deterministic nearest-neighbor search in Rd and store a list of the ` nearest
neighbors for each particle (for simplicity, one can set ` = k). Then repeat the
process several times. If for a given particle a previously undetected neighbor is
discovered, then simply add it to a list of potential neighbors.

(B) Deterministic post-processing:
The randomized probing will result in a list of putative neighbors that typically
contains more than k elements. But it is now easy to compute the pairwise
distances in the original space RD to judge which candidates in the list are the k
nearest neighbors.

Current work on randomized projections:

1. Randomized algorithms for structured matrices.
Use randomization to accelerate key numerical solvers for PDEs, for simulating
Gaussian processes, etc.

2. Accelerate full factorizations of matrices.
New randomized column pivoted QR algorithm is much faster than LAPACK.
New “UTV” factorization method is almost as accurate as SVD and much faster.

3. Use randomized projections to accelerate non-linear algebraic tasks.
Faster nearest neighbor search, faster clustering algorithms, etc. The idea is to use
randomized projections for sketching to develop a rough map of a large data set.
Then use high-accuracy deterministic methods for the actual computation.

4. [High risk/high reward] Accelerate linear solvers for “general” systems Ax = b.
The goal is complexity O(N2+ε) for small ε, while retaining stability, and high
practical efficiency.

Great potential for new discoveries in linear algebra!

Current work on randomized projections:

1. Randomized algorithms for structured matrices.
Use randomization to accelerate key numerical solvers for PDEs, for simulating
Gaussian processes, etc.

2. Accelerate full factorizations of matrices.
New randomized column pivoted QR algorithm is much faster than LAPACK.
New “UTV” factorization method is almost as accurate as SVD and much faster.

3. Use randomized projections to accelerate non-linear algebraic tasks.
Faster nearest neighbor search, faster clustering algorithms, etc. The idea is to use
randomized projections for sketching to develop a rough map of a large data set.
Then use high-accuracy deterministic methods for the actual computation.

4. [High risk/high reward] Accelerate linear solvers for “general” systems Ax = b.
The goal is complexity O(N2+ε) for small ε, while retaining stability, and high
practical efficiency.

Great potential for new discoveries in linear algebra!

Final remarks:

• For large scale SVD/PCA of dense matrices, these algorithms are highly
recommended; they compare favorably to existing methods in almost every regard.

• The approximation error is a random variable, but its distribution is tightly
concentrated. Rigorous error bounds that are satisfied with probability 1− η where η
is a user set “failure probability” (e.g. η = 10−10 or 10−20).

• This talk mentioned error estimators only briefly, but they are important.
Can operate independently of the algorithm for improved robustness.
Typically cheap and easy to implement. Used to determine the actual rank.

• The theory can be hard (at least for me), but experimentation is easy!
Concentration of measure makes the algorithms behave as if deterministic.

• Randomized methods for computing “FMM”-style (HSS, H-matrix, . . .)
representations of matrices exist — [M— 2008, 2011, 2015], [Lin, Lu, Ying 2011].
Leads to accelerated, often O(N), direct solvers for elliptic PDEs.
Applications to scattering, composite materials, engineering design, etc.

Tutorials, summer schools, etc:
• 2009: NIPS tutorial lecture, Vancouver, 2009. Online video available.
• 2014: CBMS summer school at Dartmouth College. 10 lectures on YouTube.
• 2016: Park City Math Institute (IAS): The Mathematics of Data.

Software packages:
• ID: http://tygert.com/software.html
• RSVDPACK: https://github.com/sergeyvoronin (expansions are in progress)
• Column pivoted QR: https://github.com/flame/hqrrp (much faster than LAPACK!)

Papers (see also http://amath.colorado.edu/faculty/martinss/main_publications.html):
• P.G. Martinsson, V. Rokhlin, and M. Tygert, “A randomized algorithm for the approximation of

matrices”. 2007 report YALE-CS-1361; 2011 paper in ACHA.
• N. Halko, P.G. Martinsson, J. Tropp, “Finding structure with randomness: Probabilistic algorithms for

constructing approximate matrix decompositions.” SIAM Review, 2011.
• E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, and M. Tygert, “Randomized algorithms for the

low-rank approximation of matrices”. PNAS, 104(51), 2007.
• P.G. Martinsson, “A fast randomized algorithm for computing a Hierarchically Semi-Separable

representation of a matrix”. SIMAX, 32(4), 2011.
• P.G. Martinsson, “Compressing structured matrices via randomized sampling,” SISC 38(4), 2016.
• P.G. Martinsson, G. Quintana-Ortí, N. Heaver, and R. van de Geijn, “Householder QR Factorization

With Randomization for Column Pivoting.” In review.

