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In this talk, we will discuss numerical methods for solving the equation
{−∆u(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ,

where Ω is a domain in R2 or R3 with boundary Γ.

More generally, we will consider stationary linear Boundary Value Problems

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

such as:

• The equations of linear elasticity.

• Stokes’ equation.

• Helmholtz’ equation (at least at low and intermediate frequencies).

• The Yukawa equation.



Why construct numerical methods for linear PDEs?

Well, ...

Seriously, isn’t it known how to do this already?!?

Not in all environments, in particular when it comes to oscillatory problems
(high frequency scattering problems, etc).

More importantly, this is one of the most commonly occurring computational
tasks in scientific computing. Significant improvements in speed, accuracy,
and robustness would have transformative effects on computational science.

For instance, as far as linear elliptic boundary value problems go (Laplace,
elasticity, etc), the goal is instantaneous solves at ten digits of accuracy or
more.

The challenge is similar to the task of constructing faster computers.



Outline of talk:

1: Linear PDE solvers — background, context.

2: O(N) direct solvers.

3: Randomized sampling for constructing low-rank approximations to operators.



Linear boundary value problem.

↙

Direct discretization of the differ-
ential operator via Finite Elements,
Finite Differences, . . .

↓

N ×N discrete linear system.
Very large, sparse, ill-conditioned.

↓

Fast solvers:
iterative (multigrid), O(N),
direct (nested dissection), O(N3/2).

↘

Conversion of the BVP to a Bound-
ary Integral Operator (BIE).

↓

Discretization of (BIE) using
Nyström, collocation, BEM, . . . .

↓

N ×N discrete linear system.
Moderate size, dense,
(often) well-conditioned.

↓

Iterative solver accelerated by fast
matrix-vector multiplier, O(N).
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Reformulating a BVP as a Boundary Integral Equation.

The idea is to convert a linear partial differential equation

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

to an “equivalent” integral equation

(BIE) v(x) +
∫

Γ
k(x, y) v(y) ds(y) = h(x), x ∈ Γ.

• The kernel k is derived from the operator A.

• The data function h is derived from the data of (BVP).

• The conversion from (BVP) to (BIE) sometimes involves the evaluation of
certain integrals over Γ and/or Ω.

• Sometimes the integral equation must be formulated on Ω
(e.g. for problems with low-order terms that have variable coeffiecients).

• . . .



Example:

Let us consider the equation

(BVP)

{−∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ.

We make the following Ansatz:

u(x) =
∫

Γ

(
n(y) · ∇y log |x− y|)v(y) ds(y), x ∈ Ω,

where n(y) is the outward pointing unit normal of Γ at y. Then the boundary
charge distribution v satisfies the Boundary Integral Equation

(BIE) v(x) + 2
∫

Γ

(
n(y) · ∇y log |x− y|)v(y) ds(y) = 2f(x), x ∈ Γ.

• (BIE) and (BVP) are in a strong sense equivalent.

• (BIE) is appealing mathematically (2nd kind Fredholm equation).



The BIE formulation has powerful arguments in its favor (reduced dimension,
well-conditioned, etc) that we will return to, but it also has a major drawback:

Discretization of integral operators
typically results in dense matrices.

In the 1950’s when computers made numerical PDE solvers possible, researchers
faced a grim choice:

PDE-based: Ill-conditioned, N is too large, low accuracy.

Integral Equations: Dense system.

In most environments, the integral equation approach turned out to be simply too
expensive.

(A notable exception concerns methods for dealing with scattering problems.)



The situation changed dramatically in the 1980’s. It was discovered that while
KN (the discretized integral operator) is dense, it is possible to evaluate the
matrix-vector product

v 7→ KN v

in O(N) operations — to high accuracy and with a small constant.

A very succesful such algorithm is the Fast Multipole Method by Rokhlin and
Greengard (circa 1985).

Combining such methods with iterative solvers (GMRES / conjugate gradient /
. . . ) leads to very fast solvers for the integral equations, especially when second
kind Fredholm formulations are used.



A prescription for rapidly solving BVPs:

(BVP)

{−∆v(x) = 0, x ∈ Ω,

v(x) = f(x), x ∈ Γ.

Convert (BVP) to a second kind Fredholm equation:

(BIE) u(x) +
∫

Γ

(
n(y) · ∇y log |x− y|)u(y) ds(y) = f(x), x ∈ Γ.

Discretize (BIE) into the discrete equation

(DISC) (I + KN ) uN = fN

where KN is a (typically dense) N ×N matrix.

Fast Multipole Method — Can multiply KN by a vector in O(N) time.

Iterative solver — Solves (DISC) using
√

κ matrix-vector multiplies, where κ is
the condition number of (I + KN ).

Total complexity — O(
√

κN). (Recall that κ is small. Like 14.)



Example:

External Laplace problem with Dirichlet boundary data.

The contour is discretized into 25 600 points.

A single matrix-vector multiply takes 0.2 sec on a 2.8 Ghz desktop PC.

Fifteen iterations required for 10−10 accuracy → total CPU time is 3 sec.



BIE formulations exist for many classical BVPs

Laplace −∆u = f ,

Elasticity
1
2
Eijkl

(
∂2uk

∂xl∂xj
+

∂2ul

∂xk∂xj

)
= fi,

Stokes ∆u = ∇p, ∇ · u = 0,

Heat equation −∆u = −ut (On the surface of Ω× [0, T ].)

Helmholtz (−∆− k2)u = f ,

Schrödinger (−∆ + V )Ψ = iΨt (In the frequency domain.)

Maxwell




∇ ·E = ρ ∇×E = − ∂B

∂t

∇ ·B = 0 ∇×B = J +
∂E
∂t

(In the frequency domain.)



We have described two paradigms for numerically solving BVPs:

PDE formulation ⇔ Integral Equation formulation

Which one should you choose?

When it is applicable, compelling arguments favor the use of the IE formulation:

Dimensionality:
Frequently, an IE can be defined on the boundary of the domain.

Integral operators are benign objects:
It is (relatively) easy to implement high order discretizations of integral operators.
Relative accuracy of 10−10 or better is often achieved.

Conditioning:

When there exists an IE formulation that is a Fredholm equation of the second
kind, the mathematical equation itself is well-conditioned.



However, integral equation based methods are quite often not a choice:

Fundamental limitations: They require the existence of a fundamental solution to
the (dominant part of the) partial difference operator. In practise, this means that
the (dominant part of the) operator must be linear and constant-coefficient.

Practical limitations: The infra-structure for BIE methods is underdeveloped.
Engineering strength code does not exist for many problems that are very well
suited for BIE formulations. The following major pieces are missing:

• Generic techniques for reformulating a PDE as an integral equation.
We do know how to handle “standard environments”, however.

• Machinery for representing surfaces. Quadrature formulas.
The dearth of tools here has seriously impeded progress on 3D problems.

• Fast solvers need to be made more accessible and more robust.
Towards this end, we are currently developing direct solvers to replace existing
iterative ones.



What is a direct solver?

Recall that many BVPs can be cast in the following form:

(BIE) u(x) +
∫

Γ
g(x, y)u(y) ds(y) = f(x), x ∈ Γ.

Upon discretization, equation (BIE) turns into a discrete equation

(DISC) (I + KN ) u = f

where KN is a (typically dense) N ×N matrix.

A direct method computes a compressed representation for (I + KN )−1.

• Cost for pre-computing the inverse.

• Cost for applying the inverse to a vector.

In many environments, both of these costs can be made O(N).



Advantages of direct solvers over iterative solvers:

1. Applications that require a very large number of solves:

• Molecular dynamics.

• Scattering problems.

• Optimal design. (Local updates to the system matrix are cheap.)

2. Problems that are relatively ill-conditioned:

• Scattering problems at intermediate or high frequencies.

• Ill-conditioning due to geometry (elongated domains, percolation, etc).

• Ill-conditioning due to lazy handling of corners, cusps, etc.

• Finite element and finite difference discretizations. (Yes, yes, yes,. . . )

3. Direct solvers can be adapted to construct spectral decompositions:

• Analysis of vibrating structures. Acoustics.

• Buckling of mechanical structures.

• Wave guides, bandgap materials, etc.



Advantages of direct solvers over iterative solvers, continued:

Perhaps most important: Engineering considerations.

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers
whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers should be viewed as a step towards getting a
LAPACK-type environment for solving the basic linear boundary value problems
of mathematical physics.



Sampling of related work:

1991 Sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin,

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, et al,

2002 O(N3/2) inversion of Lippmann-Schwinger equations, Y. Chen,

2002 inversion of “Hierarchically semi-separable” matrices, M. Gu,
S. Chandrasekharan, et al.

2007 factorization of discrete Laplace operators, S. Chandrasekharan, M. Gu,
X.S. Li, J. Xia.



How does the inversion scheme work?

By exploiting rank deficiencies in the off-diagonal blocks.

Note: Problems with highly oscillatory kernels such as high-frequency Helmholtz
can currently not be handled. (However, things work great at low and
intermediate frequencies.)

The scheme is a multi-level algorithm operating on a hierarchical partitioning of
the computational domain.

In progressing from one level to the next coarser one, functions are split into a fine
scale part and a coarse scale part and the fine scale part is eliminated.



One-level compression:

Consider the linear system



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







q1

q2

q3

q4




=




v1

v2

v3

v4




.

We suppose that for i 6= j, the blocks Aij allow the factorization

Aij︸︷︷︸
ni×nj

= Ui︸︷︷︸
ni×ki

Ãij︸︷︷︸
ki×kj

U t
j︸︷︷︸

kj×nj

,

where the ranks ki are significantly smaller than the block sizes ni.

We then let
q̃j︸︷︷︸

kj×1

= U t
j qj︸︷︷︸

nj×1

,

be the variables of the “reduced” system.



Recall: • Aij = Ui Ãij U t
j

• qj is the variable in the original model — fine scale

• q̃j = U t
j qj — coarse scale

The system
∑

j Aij qj = vi then takes the form



A11 0 0 0 0 U1Ã12 U1Ã13 U1Ã14

0 A22 0 0 U2Ã21 0 U2Ã23 U2Ã24

0 0 A33 0 U3Ã31 U3Ã32 0 U3Ã34

0 0 0 A44 U4Ã41 U4Ã42 U4Ã43 0

−U t
1 0 0 0 I 0 0 0

0 −U t
2 0 0 0 I 0 0

0 0 −U t
3 0 0 0 I 0

0 0 0 −U t
4 0 0 0 I







q1

q2

q3

q4

q̃1

q̃2

q̃3

q̃4




=




v1

v2

v3

v4

0

0

0

0




.

Now form the Schur complement to eliminate the qj ’s.



After eliminating the “fine-scale” variables qi, we obtain



I U t
1Ã

−1
11 U1Ã12 U t

1Ã
−1
11 U1Ã13 U t

1Ã
−1
11 U1Ã14

U t
2Ã

−1
22 U2Ã21 I U t

2Ã
−1
22 U2Ã23 U t

2Ã
−1
22 U2Ã24

U t
3Ã

−1
33 U3Ã31 U t

3Ã
−1
33 U3Ã32 I U t

3Ã
−1
33 U3Ã34

U t
4Ã

−1
44 U4Ã41 U t

4Ã
−1
44 U4Ã42 U t

4Ã
−1
44 U4Ã43 I







q̃1

q̃2

q̃3

q̃4




=




U t
1A

−1
11 v1

U t
2A

−1
22 v2

U t
3A

−1
33 v3

U t
4A

−1
44 v4.




.

We set
Ãii =

(
U t

i A−1
ii Ui

)−1
,

and multiply line i by Ãii to obtain the reduced system



Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

Ã31 Ã32 Ã33 Ã34

Ã41 Ã42 Ã43 Ã44







q̃1

q̃2

q̃3

q̃4




=




ṽ1

ṽ2

ṽ3

ṽ4




.

where
ṽi = Ãii U

t
i A−1

ii vi.

(This derivation was pointed out by Leslie Greengard.)



A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress

Cluster Cluster



The critical step is to find matrices Uj such that when i 6= j,

Aij = Ui Ãij U t
j ,

for some matrix Ãij that is smaller than Aij .

To attain an O(N) scheme, one cannot afford to even look at every off-diagonal
block. Instead, one can use:

• Interpolation of the kernel function [Hackbusch, BCR, etc].

– Requires estimates of smoothness of the kernel away from the diagonal.

– Inefficient, does not work for all geometries.

• Green’s identities that the kernel must satisfy [Martinsson, Rokhlin].

– Very robust.

– Leads to representations that are very close to optimal.

• Randomized sampling. New!

To further improve the operation counts, we use “interpolative decompositions”.
Then Ãij is a submatrix of Aij when i 6= j.



The concept of “proxy charges”:

A12−→

Sources {qn}N
n=1 Potentials {vm}M

m=1

{qn}N
n=1

A12 //

?

²²

{vm}M
m=1

“Small” representation

?

55jjjjjjjjjjjjjjjjjjj

The key observation is that k = rank(A12) < min(M, N).



Skeletonization

Askel
12−→

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

77oooooooooooooo

We can pick k points in ΩS with the property that any potential in ΩT can be
replicated by placing charges on these k points.

• The choice of points does not depend on {qn}N
n=1.

• Askel
12 is a submatrix of A12.



We can “skeletonize” both Ω1 and Ω2.

Askel
12−→

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

// {vmj}k
j=1

U1

OO

Rank = 19 at ε = 10−10.



Skeletonization can be performed for ΩS and ΩT of various shapes.

Rank = 29 at ε = 10−10.



Rank = 48 at ε = 10−10.



Adjacent boxes can be skeletonized.

Rank = 46 at ε = 10−10.



{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

// {vmj}k
j=1

U1

OO

Benefits:

• The rank is optimal.

• The projection and interpolation are cheap.
U1 and U2 contain k × k identity matrices.

• The projection and interpolation are well-conditioned.

• Finding the k points is inexpensive.

• The matrix Ã12 is a submatrix of the original matrix A12.
(We loosely say that “the physics of the problem is preserved”.)

• Interaction between adjacent boxes can be compressed
(no buffering is required).



Similar schemes have been proposed by many researchers:

1993 - C.R. Anderson

1995 - C.L. Berman

1996 - E. Michielssen, A. Boag

1999 - J. Makino

2004 - L. Ying, G. Biros, D. Zorin

A mathematical foundation:

1996 - M. Gu, S. Eisenstat



Recall: We convert the system


A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







x1

x2

x3

x4




=




f1

f2

f3

f4




Fine resolution.
Large blocks.

to the reduced system



Ã11 Askel
12 Askel

13 Askel
14

Askel
21 Ã22 Askel

23 Askel
24

Askel
31 Askel

32 Ã33 Askel
34

Askel
41 Askel

42 Askel
43 Ã44







x̃1

x̃2

x̃3

x̃4




=




f̃1

f̃2

f̃3

f̃4




Coarse resolution.
Small blocks.

where Askel
ij is a submatrix of Aij when i 6= j.

Note that in the one-level compression, the only objects actually computed are the
index vectors that identify the sub-matrices, and the new diagonal blocks Ãii.

What are the blocks Ãii?



We recall that the new diagonal blocks are
defined by

Ãii︸︷︷︸
k×k

=
(

U t
i︸︷︷︸

k×n

A−1
ii︸︷︷︸

n×n

Ui︸︷︷︸
n×k

)−1
.

We call these blocks “proxy matrices”.

What are they?

Let Γ1 denote the block marked in red.

Let Γ2 denote the rest of the domain.

Γ1

Γ2

Charges on Γ2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Γ1

A−1
11 // Charges on Γ1

A21 //

Ut
1

²²

Pot. on Γ2

Pot. on Γskel
1

U1

OO

Ã−1
11 // Charges on Γskel

1

Askel
21

77oooooooooooooooo

Ã11 contains all the information the outside world needs to know about Γ1.
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1
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Pot. on Γ2
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1

U1

OO
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Ãii︸︷︷︸
k×k

=
(

U t
i︸︷︷︸

k×n

A−1
ii︸︷︷︸

n×n

Ui︸︷︷︸
n×k

)−1
.

We call these blocks “proxy matrices”.

What are they?

Let Ω1 denote the block marked in red.

Let Ω2 denote the rest of the domain.

Charges on Ω2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Ω1

A−1
11 // Charges on Ω1

A21 //

Ut
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²²

Pot. on Ω2

Pot. on Ωskel
1

U1
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ii︸︷︷︸

n×n

Ui︸︷︷︸
n×k

)−1
.

We call these blocks “proxy matrices”.

What are they?

Let Ω1 denote the block marked in red.

Let Ω2 denote the rest of the domain.

Charges on Ω2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Ω1

A−1
11 // Charges on Ω1

A21 //

Ut
1

²²

Pot. on Ω2

Pot. on Ωskel
1

U1

OO

Ã−1
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1

Askel
21

77ooooooooooooooooo
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To obtain a globally O(N) scheme, we hierarchically merge proxy matrices.











Numerical examples

In developing direct solvers, the “proof is in the pudding” — recall that from a
theoretical point of view, the problem is already solved (by Hackbusch and others).

All computations were performed on standard laptops and desktop computers in
the 2.0GHz - 2.8Ghz speed range, and with 512Mb of RAM.



An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its horizontal width is 2.



k Nstart Nfinal ttot tsolve Eres Epot σmin M

21 800 435 1.5e+01 3.3e-02 9.7e-08 7.1e-07 6.5e-01 12758

40 1600 550 3.0e+01 6.7e-02 6.2e-08 4.0e-08 8.0e-01 25372

79 3200 683 5.3e+01 1.2e-01 5.3e-08 3.8e-08 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 3.9e-08 2.9e-08 3.4e-01 81679

316 12800 1179 1.8e+02 3.9e-01 2.3e-08 2.0e-08 3.4e-01 160493

632 25600 1753 4.3e+02 8.0e-01 1.7e-08 1.4e-08 3.3e-01 350984

Computational results for an exterior Helmholtz
Dirichlet problem discretized with 10th order accurate
quadrature. The Helmholtz parameter was chosen to
keep the number of discretization points per wave-
length constant at roughly 45 points per wavelength
(resulting in a quadrature error about 10−12).

Eventually . . . the complexity is O(n + k3).



Example 2 - An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with
Dirichlet boundary data was solved using N = 6 400 discretization points, with a
prescribed accuracy of 10−10.

For k = 100.011027569 · · · , the smallest singular value of the boundary integral
operator was σmin = 0.00001366 · · · .

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10−5.



99.9 99.92 99.94 99.96 99.98 100 100.02 100.04 100.06 100.08 100.1

0.02

0.04

0.06

0.08

0.1

0.12

Plot of σmin versus k for an interior Helmholtz problem
on the smooth pentagram. The values shown were
computed using a matrix of size N = 6400. Each
point in the graph required about 60s of CPU time.



Example 3:

An electrostatics problem in a dielectrically heterogeneous medium

ε = 10−5 Ncontour = 25 600 Nparticles = 100 000

Time to invert the boundary integral equation = 46sec.

Time to compute the induced charges = 0.42sec.(2.5sec for the FMM)

Total time for the electro-statics problem = 3.8sec.



A close-up of the particle distribution.



Example 4: Inversion of a “Finite Element Matrix”

A grid conduction problem (the “five-point stencil”).

The conductivity of each bar is a random number drawn from a uniform
distribution on [1, 2].



If all conductivities were one, then we would get the standard five-point stencil:

A =




C −I 0 0 · · ·
−I C −I 0 · · ·
0 −I C −I · · ·
...

...
...

...




C =




4 −1 0 0 · · ·
−1 4 −1 0 · · ·
0 −1 4 −1 · · ·
...

...
...

...




.



N Tinvert Tapply M e1 e2 e3 e4

(seconds) (seconds) (kB)

10 000 5.93e-1 2.82e-3 3.82e+2 1.29e-8 1.37e-7 2.61e-8 3.31e-8

40 000 4.69e+0 6.25e-3 9.19e+2 9.35e-9 8.74e-8 4.71e-8 6.47e-8

90 000 1.28e+1 1.27e-2 1.51e+3 — — 7.98e-8 1.25e-7

160 000 2.87e+1 1.38e-2 2.15e+3 — — 9.02e-8 1.84e-7

250 000 4.67e+1 1.52e-2 2.80e+3 — — 1.02e-7 1.14e-7

360 000 7.50e+1 2.62e-2 3.55e+3 — — 1.37e-7 1.57e-7

490 000 1.13e+2 2.78e-2 4.22e+3 — — — —

640 000 1.54e+2 2.92e-2 5.45e+3 — — — —

810 000 1.98e+2 3.09e-2 5.86e+3 — — — —

1000 000 2.45e+2 3.25e-2 6.66e+3 — — — —

e1 The largest error in any entry of Ã−1
n

e2 The error in l2-operator norm of Ã−1
n

e3 The l2-error in the vector Ã−1
nn r where r is a unit vector of random direction.

e4 The l2-error in the first column of Ã−1
nn .
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Recall that the inversion scheme relies crucially on the fact that off-diagonal
blocks of the system matrix can be approximated by matrices of low rank.

We will next describe how randomized sampling can be used to efficiently
construct such low rank approximations.



Related work on randomized algorithms:

• Dixon (1983)

• Wozniakowski and Kuczynsky (1993)

• A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

• D. Achlioptas and F. McSherry (2001)

• P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan
(2006a, 2006b, 2006c, 2006d)

• S. Har-Peled (2006)

• A. Deshpande and S. Vempala (2006)

• S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

• T. Sarlós (2006a, 2006b, 2006c)



Algorithm 1:
Rapid computation of a
low-rank appoximation.

• Let ε denote the computational accuracy desired.

• Let A be an m× n matrix of ε-rank k.

• We seek a rank-k approximation of A.

• We can perform matrix-vector multiplies fast.

Let x1, x2, . . . be a sequence of vectors in Rn whose entries are i.i.d. random
variables drawn from a normalized Gaussian distribution.

Form the length-m vectors

y1 = Ax1, y2 = Ax2, y3 = Ax3, . . .

Each yj is a “random linear combination” of columns of A.

If l is an integer such that l ≥ k, then there is a chance that the vectors

{y1, y2, . . . , yl}
span the column space of A “to within precision ε”. Clearly, the probability that
this happens gets larger, the larger the gap between l and k.

What is remarkable is how fast this probability approaches one.
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Let us quantify how well the randomly generated vectors span the column space of A:

Recall:

• A is an m× n matrix.

• x1, x2, . . . are Gaussian random vectors in Rn.

• y1 = Ax1, y2 = Ax2, . . .

For a given integer l, we orthogonalize the vectors [y1, y2, . . . , yl],

Ql Rl Pl = [y1, y2, . . . , yl].

A measure for how well the vectors in Ql span A is, for instance,

el = ||(I −Ql Q
t
l) A||.

The singular values {σj}n
j=1 of A provide lower bounds: el ≥ σl+1.

In reality, computing el is not affordable. Instead, we compute something like

fl = max
1≤j≤10

∣∣∣∣(I −Ql Q
t
l

)
yl+j

∣∣∣∣.

We will illustrate how el and fl compare to σl+1 with numerical examples.



Example: Let A be an off-diagonal block in the double layer potential for the
following contour:

We partition the system matrix K into four blocks:

K =


 X A

B Y


 .

We seek a low-rank approximation of A.
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Was this just a lucky realization?

We collected statistics from 1 000 000 realizations:

(Recall that the exact ε-rank is 34.)

Number of matrix-vector multiplies required: Frequency:

34 (+10) 15063

35 (+10) 376163

36 (+10) 485124

37 (+10) 113928

38 (+10) 9420

39 (+10) 299

40 (+10) 3

Note: The post-processing correctly determined the rank to be 34 every time,
and the error in the factorization was always less than 10−10.



Results from a high-frequency Helmholtz problem (complex arithmetic):
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These methods do not have “Monte Carlo”-like performance.

The only similarity is in the use of randomness to address non-random problems.

When the randomized sampling method works, it is very highly accurate.
Relative accuracy of 10−10 is typical.

The likelihood of failure can inexpensively be rendered entirely negligible.
It is a user defined parameter that can be set to something like 10−5 or 10−17.
Cheap verification schemes can reduce it even further (for the truly paranoid).



Note:

Once you have a basis for the column space, you can cheaply get any factorization
you want.

To see this, suppose that Q is an orthonormal basis for the column space of A;

A = Q Qt A.

Then compute Qt A and then compute the SVD of this k × n matrix:

Qt A = Ũ D V t.

Then

A = Q
(
Qt A

)
= QŨ︸︷︷︸

=:U

D V t = U D V t.

In many environments, it is not even necessary to compute Qt A . . .



Theorem: Let A be an m× n matrix and let k be an integer.

Let l be an integer such that l ≥ k.

Let G be an n× l matrix with i.i.d. Gaussian elements.

Let Q be an m× l matrix whose columns form an ON-basis for the columns of AG.

Let σk+1 denote the (k + 1)’th singular value of A.

Then
||A−QQt A||2 ≤ 10

√
l m σk+1,

with probability at least
1− ϕ(l − k),

where ϕ is a decreasing function satisfying

ϕ(8) < 10−5

ϕ(20) < 10−17.



Recall the error bound:

||A−QQt A||2 ≤ 10
√

l m σk+1,

The high-lighted factor is somewhat undesirable for a couple of reasons:

• The algorithm cannot determine the ε-rank if ε is too close to the
computational precision.

• There could be problems in cases where the singular values decay slowly.

Important: In the applications that we have in mind, the singular values decay
exponentially. In such cases, the only effect of the

√
lm factor is that a couple too

many random vectors may be generated. The computed decomposition is still
accurate to precision ε.



How does Algorithm I perform when we do not have a fast method for applying A

to a vector?

When k ¿ min(m,n), Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: mn (k + 10) +O(k2(m + n)).

Multiplications required for Gram-Schmidt: mn 2 k +O(k2(m + n)).

Other potential benefits:

• Data-movement.

• Parallelization.

However, many environments remain in which there is little or no gain.



Algorithm 2: An O(mn log(k)) algorithm for general matrices:

Work by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.
(The speaker was — much to his regret — not involved with this development.)

Recall that Algorithm 1 determines a basis for the column space from the matrix

Y = A G.

m× l m× n n× l

Key points:

• The product x 7→ Ax can be evaluated rapidly.

• The entries of G are i.i.d. random numbers.

What if we do not have a fast algorithm for computing x 7→ Ax?

New idea: Construct G with “some randomness” and “some structure”.
Then for each 1× n row a of A, the matrix-vector product

a 7→ aG

can be evaluated using n log(l) operations.



What is this “random but structured” matrix G?

G = D F S

n× l n× n n× n n× l

where,

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk = e−2πi(j−1)(k−1)/n.

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw l columns at
random from D F .)

Note: Other successful choices of the matrix G have been tested, for instance, the
Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression).



Speed gain for square matrices of various sizes
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The time required to verify the approximation is included in the fast, but not in
the classical timings.

This slide comes from a talk by Mark Tygert.



Empirical accuracy on 2,048-long convolution
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The estimates of the accuracy of the approximation are accurate to at least two
digits of relative precision.

This slide comes from a talk by Mark Tygert.



What theory do we have for Algorithm 2? (The O(mn log(k)) one.)

It is less well developed than for Algorithm 1.

The core question is to quantify the “amount of randomness” in the matrix G. We
do not need all entries to be i.i.d. Gaussian random numbers, but what exactly do
we need?

Experiments show that for some choices of G, the computational results are
almost indistinguishable from the fully random case. Currently, we do not have
theory to back this observation up.



It is time to definitively deal with linear boundary value problems:

• We need to develop machinery for dealing with surfaces.

• We need faster and more robust solvers.

Fast direct solvers:

• 2D boundary integral equations. Finished. O(N). Very fast.
Has proven capable of solving previously intractable problems.

• 2D volume problems (finite element matrices and Lippmann-Schwinger).
Theory finished. Some code exists. O(N) or O(N log(N)). Work in progress.

• 3D surface integral equations. Theory mostly finished. (Or is it?)

Randomized sampling:

• More stable in the Lanczos environment. Probably faster too.

• For general matrices, it is O(mn log(k)).

• Very interesting tool for coarse graining in physical sciences.

• Applications to network analysis, data mining, fast solvers etc.


