
Randomized sampling of structured matrices

Gunnar Martinsson, The University of Colorado at Boulder

What is a “structured matrix”?

The answer depends on whom you ask . . .

For our purposes, we will say that a matrix is structured if it can be tessellated
into blocks in such a way that each block is of numerically low rank.

The following figure shows one of the most common tessellations:

When a matrix has this kind of “structure”, we can exploit it to accelerate a range
of linear algebraic operations:

• Matrix-vector multiplies. (As in FMM, Barnes-Hut, panel clustering, etc.)

• Matrix-matrix multiplies.

• Matrix factorizations (QR, LU, Cholesky, etc).

• Matrix inversions.

• Eigenvalue decompositions, SVDs — in particular partial ones.

Structured matrices are ubiquitous in scientific computing:

• Numerical methods for (more or less) elliptic PDEs.

• Signal processing.

• Inverses of discrete Laplacians?

Example 1 — Integral equation methods for elliptic PDEs:

Essentially all integral operators (single layers, double layers, etc) of classical
potential theory turn into structured matrices upon discretization.

Discretizations of Green’s functions on bounded domains are structured matrices.

Approximations of Dirichlet-to-Neumann operators.

Etc, etc, . . .

Structured matrices abound in this environment.

Example 2 — Toeplitz matrices:

Let . . . , a−2, a−1, a0, a1, a2, . . . be complex numbers.

For a positive integer N , let A denote the N ×N matrix with entries

Aij = aj−i.

For instance, for N = 4, we get

A =

a0 a1 a2 a3

a−1 a0 a1 a2

a−2 a−1 a0 a1

a−3 a−2 a−1 a0

.

Then the Fourier transform of A,

Â = FN A F ∗
N

is a structured matrix. (A itself is not necessarily “structured”.)

Example 3 — Sampling of “sinc” matrix:

Let {xj}N
j=1 denote real numbers such that −∞ < x1 < x2 < · · · < xN−1 < xN < ∞.

Define for a real positive number c the N ×N matrix A by

Aij =

c i = j,

sin
(
c (xi − xj)

)
xi − xj

, i 6= j.

Then A is a structured matrix.

Recall: Prolate spheroidals are eigenfunctions of the sinc operator — Hong’s talk.

Example 4 — Inverse of discrete Laplacian on a square uniform grid:

Let L be the standard five-point stencil (discrete Laplacian) on a 50× 50 grid:

L =

C −I 0 0 · · ·
−I C −I 0 · · ·
0 −I C −I · · ·
...

...
...

...

C =

4 −1 0 0 · · ·
−1 4 −1 0 · · ·
0 −1 4 −1 · · ·
...

...
...

...

.

Let A be the inverse of L, and partition it:

A = L−1 =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

.

We consider the 625× 625 submatrix A14 of the 2 500× 2 500 matrix A.

0 10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

2

The 10-logarithm of the singular values of A14.

0 10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

2

The 10-logarithm of the singular values of A14 — now with random coefficients.

Example 5 — More general incarnations of discrete Laplacians . . . ?

Important: Many of the structured matrices that arise in applications have
complicated tessellation structures.

[Shiv’s example]

For simplicity, we will be concerned only with the most basic tessellation:

(In honesty, there are reasons for this beyond just notational simplicity. . .)

Fast matrix-vector multiply for a low-rank matrix:

Let A be an N ×N matrix with a rank-k approximate factorization,

A = U V t.

and let x be an N × 1 vector.

Computing Ax directly requires N2 flops.

Instead, use that Ax = U (V t x).
Evaluating y = V t x costs N k flops.
Evaluating x = U y costs N k flops.
Total cost is 2N k flops.

Fast matrix-vector multiply for a structured matrix:

Suppose that each block has rank at
most k.

At level p, there are 2p blocks of size
N/2p so the cost is

Tp = 2p 2
N

2p
k = 2 N k.

There are log(N) levels, so the total
cost is

Ttotal = 2 k N log(N).
Level 1 blocks are red.
Level 2 blocks are blue.
Level 3 blocks are green.

Fast matrix-matrix multiply for a structured matrix:

Suppose that A and B are two structured matrices with the same block structure.

AB =

 A11 A12

A21 A22

 B11 B12

B21 B22

 =

 A11 B11 + A12 B21 A11 B12 + A12 B22

A21 B11 + A22 B21 A21 B12 + A22 B22

 .

The matrices A11, A22, B11, B22 are themselves “structured”.
The green products involve two rank-k matrices.
The blue products involve one rank-k matrix and one structured matrix.
The red products involve two structured matrices.

Recurse!

Let TN denote the cost for multiplying two N ×N structured matrices. Then

TN = 2 TN/2 + α k (N/2) log(N/2).

It follows that
TN ∼ k N log(N)2.

Fast matrix inversion for a structured matrix:

Suppose that A is a structured matrix.

Recall that

A−1 =

 A11 A12

A21 A22

−1

=

 X11 + X11 A12 X22 A21 X11 −X11 A12 X22

−X22 A21 X11 X22

 ,

where

X11 =A−1
11 ,

X22 =
(
A22 −A21 A−1

11 A12

)−1 =
(
A22 −A21 X11 A12

)−1
.

Again, if TN is the cost to invert an N ×N structured matrix, then

TN = 2 TN/2 + α k (N/2) log(N/2),

so
TN ∼ k N log(N)2.

Fast (partial) spectral decomposition of a structured matrix:

Recall shifted inverse iteration for a matrix A:

• Let {λ, v} be an estimate for an eigenpair for A.

• Construct a new estimate for the eigenvector via

v′ =
(A− λI)−k v

||(A− λI)−k v|| .

• Construct a new estimate for the eigenvalue via

λ′ = (v′)t Av′.

• Repeat!

Now suppose that:

1. You can (fairly) quickly compute an estimate for (A− λI)−1.

2. You can (very) quickly update (A− λI)−1 to construct (A− λ′I)−1.

3. You have a fast matrix-vector multiplier for A.

You could then perform power iteration pretty darn fast . . .

Getting rid of the “log(N)” factors.

Use “nested” basis functions.

Let X, Y , and Z be the blocks marked in the
figure, and suppose that
X = UX X̂,
Y = UY Ŷ ,
Z = UZ Ẑ,
for some matrices UX , UY , and UZ that each
have k orthonormal columns. We say that the
basis matrices are “nested” if

X

Y
Z

UZ =

 UX 0

0 UY

 ÛZ ,

for some 2k × k matrix ÛX . Then

U t
Z f = Û t

Z

 U t

X 0

0 U t
Y

 f1

f2

 = Û t

Z

 U t

X f1

U t
Y f2

 .

So U t
Z f can cheaply be computed from U t

X f1 and U t
Y f2.

When “nested” bases are used, we get “wavelet-like” algorithms.

Construct the expansion of a function f in all bases at the finest level:
loop over all boxes τ at the finest level

fτ = U t
τ f(Iτ)

end loop

Recursively construct the expansion of f in the bases at the higher levels:
loop over levels, finer to coarser, p = P − 1, P − 2, . . . , 1

loop over all boxes τ on level p

Let σ1 and σ2 denote the sons of τ .

fτ = Û t
τ

 fσ1

fσ2

end loop
end loop

The total cost is O(k N) instead of O(k N log(N)).

OK, so nested bases are great, but how do you construct them?

Remark 1: Not all structured matrices have nested bases.

Remark 2: Simply compressing the small matrices first will not work.

What you (at least in principle) need to do is to compress blocks like this one:

This leads us to what Gu and Chandrasekaran call “Hierarchically
Semi-Separable” (HSS) matrices.

An HSS matrix is one for which all “HSS blocks” are rank deficient.
(For simplicity, we assume that they all have the same ε-rank k.)

Illustration of “HSS blocks” at various levels:

Level 3 Level 2 Level 1

We consider the case of symmetric matrices only.

= +

A H(p) D(p)

For a box τ at level p, corresponding to index set Iτ , set

Rτ = H(Iτ , :).

= +

A H(p) D(p)

For a box τ at level p, corresponding to index set Iτ , set

Rτ = H(Iτ , :).

Iσ1

Iσ2

Iτ

Rσ1 Rσ2 Rτ

(in red) (in red) (in blue)

Factor Rσ1 and Rσ2 :

Rσ1 = Uσ1 R̂σ1 , and Rσ2 = Uσ2 R̂σ2 .

Then

Rτ (:, Ic
τ) =

 Rσ1(:, I

c
τ)

Rσ2(:, I
c
τ)

 =

 Uσ1 0

0 Uσ2

 R̂σ1(:, I

c
τ)

R̂σ2(:, I
c
τ)

 =

 Uσ1 0

0 Uσ2

 Ûτ R̃τ (:, Ic

τ).

The straight-forward implementation of this idea leads to an O(k N2) scheme.

How to reduce the cost to O(k N)?

Suppose that we have a fast matrix-vector multiplier.

(And that we can afford to evaluate a small number of actual entries of A.)

The randomized sampling machinery tells us that if Ω is an N × (k + 10) matrix
whose entries are i.i.d. Gaussian random variables, then we can construct Uτ from

Ψτ = Rτ Ω.

All the matrices {Ψτ}τ can be generated from the global product AΩ.

First compute
Ψ = A Ω.

Then on the finest level, level P , compute

Ψ(P) = H(P) Ω = (A−D(P)) Ω = Ψ−D(P) Ω.

From Ψ(P) we directly extract for any box τ on the finest level

Ψτ = Ψ(P)(Iτ , :).

Since Ψτ = Rτ Ω, we can construct Uτ from Ψτ .

On the next coarser level, level P − 1, we find that

Ψ(P−1) = H(P−1) Ω = (A−D(P))Ω−(D(P−1)−D(P))Ω = Ψ(P)−(D(P−1)−D(P))Ω.

From Ψ(P−1), we construct Uτ for any cell τ on level P − 1.

Then proceed recursively,

Ψ(p−1) = Ψ(p) − (D(p−1) −D(p))Ω.

Iσ1

Iσ2

The method as described so far only constructs bases for the off-diagonal blocks,
not full factorizations.

Consider the block Bσ1σ2 marked in red in the figure above. We know that

Bσ1σ2 = Uσ1 B̂σ1σ2 U t
σ2

,

for some as yet unknown matrix B̂σ1σ2 .

Note: It is of course the case that B̂σ1σ2 = U t
σ1

Bσ1σ2 Uσ2 , but it’s too expensive
to actually compute these matrix-matrix products.

Let us extract the core question:

Suppose that we are given:

• An N ×N matrix B of rank k ¿ N .

• An N × k matrix U1 such that B = U1 U t
1 B.

• An N × k matrix U2 such that B = B U2 U t
2.

We do not have a fast matrix-vector multiplier.
Can you still compute a factorization for B in less than O(N2) time?

Yes, by using interpolative decompositions! Pick k rows of U1 that span its
row-space, and k rows of U2 that span its row-space,

U1 = X1 U1(J1, :), and U2 = X2 U2(J2, :).

Then, since B = U1 (U t
1 B U2) U t

2,

(1) B = X1 B(J1, J2) Xt
2.

Post-processing easily converts (1) to an SVD using O(N k2) flops.

Returning to the context of computing bases for the “HSS-blocks” Rτ ...

Iσ1

Iσ2

Iτ

Rσ1 Rσ2 Rτ

(in red) (in red) (in blue)

Recall that σ1 and σ2 are the two children of box τ .

Pick k rows of Rσ1 that span the row space of Rσ1 and k rows of Rσ2 that span
the row space of Rσ2 . Then pick k rows of Rτ out of the 2k rows that span Rσ1

and Rσ2 to span the row space of Rτ .

Added bonus: We actually only need to carry the rows of the Ψ(p)’s that
correspond to the spanning rows! This is how the algorithm described gets O(N)
rather than O(N log N) complexity.

Key points:

• Structured matrices are common in scientific computing.

• There exist fast algorithms for performing linear algebra operations on
structured matrices once they have been compressed.

• Randomized sampling can in many environments be used to simultaneously
compress all low-rank blocks in a structured matrix.

Open question:

Can this machinery be extended to Laplacians on “general” network matrices?

