
Randomized methods for the approximation of matrices

Gunnar Martinsson, The University of Colorado at Boulder

Acknowledgements:

Some of the material presented is joint work with Vladimir Rokhlin and Mark
Tygert.

Some of the material presented is work by Franco Woolfe, Edo Liberty, Vladimir
Rokhlin, and Mark Tygert

Notation — Singular Value Decompositions:

Let A be an m× n matrix, where m > n. Then we write the SVD of A as

A︸︷︷︸
m×n

= U︸︷︷︸
m×n

D︸︷︷︸
n×n

V t︸︷︷︸
n×n

,

where U and V are matrices whose columns are orthonormal, and

D =

σ1 0 0 · · · 0

0 σ2 0 · · · 0

0 0 σ3 · · · 0
...

...
...

...

0 0 0 · · · σn

.

Following standard practise, we order the singular values σj so that

σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,

and set

σ1 :=σmax = ||A||,
σn :=σmin.

Notation — “random-direction” vectors:

Let ω be a vector in Rn whose every entry is an i.i.d. random variable drawn from
the normalized Gaussian distribution, N(0, 1).

Set

ω̃ =
ω

||ω|| .

Then ω̃ is a vector drawn from a uniform distribution on the surface of the unit
ball. We call such a vector a “random-direction” vector.

Random sampling — a model problem:

Consider the following situation:

• We seek to determine a bound for the spectral norm ||A|| of an operator A.

• We have a fast algorithm for matrix-vector multiplication: x 7→ Ax.

The basic idea is to generate a set of random vectors,

{ω̃1, ω̃2, . . . , ω̃q},

and then determine a bound for ||A|| from the set

{A ω̃1, A ω̃2, . . . , A ω̃q}.

(We will talk about more challenging problems than estimating ||A|| later.)

One extreme situation: A is well-conditioned.
Let κ denote the condition number of A, and let ω̃ be a random-direction vector,
then

||A ω̃|| ≥ σmin =
σmin

σmax
||A|| = 1

κ
||A||.

In this case, an assured bound for ||A|| is obtained from a single evaluation of ||A ω̃||:

||A|| ≤ κ ||A ω̃||.

The opposite extreme: A has rank one.
Suppose that A = σmax u vt, then

||A ω̃|| = ||σmax u (v · ω̃)|| = σmax ||u|| |v · ω̃| = ||A|| |v · ω̃|.

Letting θ denote the angle between v and ω̃ we have v · ω̃ = cos θ and so

||A|| = 1
|v · ω̃| ||A ω̃|| = 1

| cos θ| ||A ω̃||.

The generic situation.
Recall the Singular Value Decomposition of A

A = U D V t

m× n m× n n× n n× n

ON columns diagonal unitary

Let ω̃ be a random-direction vector. Then

||A ω̃|| = ||U D V t ω̃|| = {Set ν̃ = V t ω̃} = ||U D ν̃|| = ||D ν̃|| =
(∑n

j=1(σj νj)2∑n
j=1 ν2

j

)1/2

.

Note that ν̃ has the same distribution as ω̃ since V is unitary. Then

||A ω̃|| ≥ σ1 |ν1|√∑n
j=1 ν2

j

= ||A|| |ν1|√∑n
j=1 ν2

j

≈ ||A|| |ν1|√
n

.

The worst case scenario is when A has rank 1 — in this case the first inequality is
in fact an equality.

Recall: ||A ω̃|| ≥ ||A|| |ν1|√
n

where ν1 ∈ N(0, 1).

Fix any µ ∈ (0, 1), then

P
(
||A|| ≥ 1

µ
||A ω̃||

)
≤ P

(
||A|| ≥ 1

µ
||A|| |ν1|√

n

)
= P

(
µ
√

n ≥ |ν1|
)

=
∫ µ

√
n

−µ
√

n

e−x2

√
2π

dx ≤ 1√
2π

2µ
√

n ≈ 0.8µ
√

n.

One option is to set µ = 1/(10
√

n). Then

10
√

n ||A ω̃||

is an upper bound for ||A|| with confidence 0.9. Repeating the experiment 10
times, we’d find that

10
√

n max(||A ω̃1||, . . . , ||A ω̃10||)

is an upper bound for ||A|| with confidence 1− 10−10.

A better option: Apply power iteration to a single random vector ω̃.

Recall the estimate

P
(
||A|| ≥ 1

µ
||A ω̃||

)
≤ 0.8µ

√
n.

Replacing A by (A∗A)k and setting µ = 10−2k we obtain

P
(
||(A∗A)k|| ≥ 102k ||(A∗A)k ω̃||

)
≤ 0.8 · 10−2k√n.

Since ||(A∗, A)k|| = ||A||2k it follows that

P
(
||A|| ≥ 10 ||(A∗A)k ω̃||1/2k

)
≤ 0.8 · 10−2k√n.

Two observations:

1. The principal advantage of a randomized scheme is that it “explores”, or
“senses”, all directions at once.

The higher the dimension n, the thinner the random vector gets spread across
the various coordinate directions. However, the weight on each direction only
decreases as 1/

√
n.

The 1/
√

n factor can hurt us if n is large and the accuracy in the
matrix-vector multiply is low.

2. Various choices of random vectors are possible, but the “random-direction”
distribution works very well. Moreover, the isotropy of this distribution is
very convenient in the analysis. In effect, it often allows us to treat the matrix
being sampled as a diagonal matrix.

Next we consider a more interesting problem.

Let A be an m× n matrix that can be approximated by a matrix of rank k:

A ≈ Q
R

A ≈ U

D V t

A ≈ S

Arow

“QR-decomposition” “SVD” “Interpolative decomposition”

Question: How do you efficiently find such approximations?

A classical answer: Compute an ON-basis for the columns of A using
e.g. Gram-Schmidt. Cost is O(mnk).

Algorithm 1: When matrix-vector products x 7→ Ax can be computed cheaply,
say at a cost Tmult, the total cost can be reduced to O(Tmult k + m k2).

Algorithm 2: When A is a general matrix (not necessarily cheap to apply), the
cost can be reduced to O(mn log(k) + (m + n) k2).

Algorithms 1 and 2 are based on randomized sampling, meaning that they have a
probability of failure. This probability is typically negligible (like 10−17).

Note:
The output of the algorithms is an orthonormal basis for the column space of A.

From this basis, any factorization can be computed.

Say that Q is an m× k matrix with ON-columns such that:

A = Q Qt A.

Then compute Qt A and then compute the SVD of this k × n matrix:

Qt A = Ũ D V t.

Then

A = Q
(
Qt A

)
= QŨ︸︷︷︸

=:U

D V t = U D V t.

In many environments, it is not even necessary to compute Qt A . . .

Related work on randomized algorithms:

• Dixon (1983)

• Wozniakowski and Kuczynsky (1993)

• A. Frieze, R. Kannan, and S. Vempala (1999, 2004)

• D. Achlioptas and F. McSherry (2001)

• P. Drineas, R. Kannan, M. W. Mahoney, and S. Muthukrishnan
(2006a, 2006b, 2006c, 2006d)

• S. Har-Peled (2006)

• A. Deshpande and S. Vempala (2006)

• S. Friedland, M. Kaveh, A. Niknejad, and H. Zare (2006)

• T. Sarlós (2006a, 2006b, 2006c)

Algorithm 1

For when the matrix-vector multiplication x 7→ Ax is cheap.

Example:

ΩS ΩT

Source points {wj}n
j=1 in ΩS at which charges (qj)n

j=1 are given.

Target points {zi}m
i=1 in ΩT at which potentials (u(zi))m

i=1 are sought.

Let A be the m× n matrix with entries Aij = log |zi − wj |. Then

u(zi) = [Aq]i =
n∑

j=1

log |zi − wj |︸ ︷︷ ︸
=Aij

qj

“A maps a charge distribution to a set of potentials.”

Using analysis to obtain an approximate factorization of A:

ΩS ΩT

O

wj

zi

u(zi) =
n∑

j=1

log(zi − wj) qj =
n∑

j=1

[
log zi + log(1− wj/zi)

]
qj

≈
n∑

j=1

[
log zi +

k−1∑

p=1

−1
p

(
wj

zi

)p]
qj

= log zi

n∑

j=1

qj

︸ ︷︷ ︸
=:Q0

+
k−1∑

p=1

−1
p zp

i

n∑

j=1

wp
j qj

︸ ︷︷ ︸
=:Qp

= log zi Q0 +
k−1∑

p=1

−1
p zp

i

Qp.

The approximation on the previous page can be written in matrix format as:

u1

u2

...

un

≈

log(z1) − 1
z1

− 1
2 z2

1
· · · − 1

(k−1) zk−1
1

log(z2) − 1
z2

− 1
2 z2

2
· · · − 1

(k−1) zk−1
2

...
...

...
...

log(zn) − 1
z2

− 1
2 z2

n
· · · − 1

(k−1) zk−1
n

1 1 · · · 1

w1 w2 · · · wm

w2
1 w2

2 · · · w2
m

...
...

...

wk−1
1 wk−1

2 · · · wk−1
m

q1

q2

...

qm

︸ ︷︷ ︸

=

Q0

Q1

...

Qk−1

Or, using a diagram ...

{qj}n
j=1

Cost O(m n) //

Cost O(n k)

²²

{ui}m
i=1

{Qp}k−1
p=0

Cost O(m k)

66lllllllllllllllll

We have reduced the computational cost from O(mn) to O(k (m + n)).

×

{qj}n
j=1

Cost O(m n) //

Cost O(n k)

²²

{ui}m
i=1

{Qp}k
p=1

Cost O(m k)

66lllllllllllllllll

We have reduced the computational cost from O(mn) to O(k (m + n)).

The requested accuracy ε satisfies ε ∼
(

R/
√

2
3R/2

)k+1
, so k ∼ log |ε|

log(3/
√

2)
.

Using the SVD to obtain an approximate factorization of A:

0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

The 10-logarithm of the singular values of A.

ΓS ΓT

The same type of spectrum is obtained for the “off-diagonal blocks” of many
integral operators:

[Au](x) =
∫

Γs

G(x, y) u(y) ds(y), x ∈ ΓT.

For instance, G could be the single or double layer kernel for the Laplace equation.

Example:

ΩS ΩT

Points {wj}n
j=1 in ΩS (“sources”).

Points {zi}m
i=1 in ΩT (“targets”).

Let A be an m× n matrix with entries Aij = H
(1)
0 (k |zi − wj |).

“A maps a charge distribution to a set of potentials.”

0 50 100 150
−16

−14

−12

−10

−8

−6

−4

−2

0

2

The 10-logarithm of the singular values of A for k = 35.

Analysis: SVD:

• No computation needed to
construct the factorization.

• Expensive — costs O(m nk).

• Suboptimal ranks.
Substantially so in many cases.

• Optimal ranks.

• Not always possible or practical. • Can always be done.

Randomized sampling is cheap, computes factorizations of optimal rank (or very
close to it), and always works. (And it doesn’t require thinking!)

Example:

Let L be the standard five-point stencil (discrete Laplacian) on a 50× 50 grid:

L =

C −I 0 0 · · ·
−I C −I 0 · · ·
0 −I C −I · · ·
...

...
...

...

C =

4 −1 0 0 · · ·
−1 4 −1 0 · · ·
0 −1 4 −1 · · ·
...

...
...

...

.

Let A be the inverse of L, and partition it:

A = L−1 =

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

.

We consider the 625× 625 submatrix A14 of the 2 500× 2 500 matrix A.

0 10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

2

The 10-logarithm of the singular values of A14.

0 10 20 30 40 50 60 70 80 90 100
−16

−14

−12

−10

−8

−6

−4

−2

0

2

The 10-logarithm of the singular values of A14 — now with random coefficients.

Why do we want to compress L−1 for a sparse matrix L?

If L results from the discretization of a PDE, then L−1 is the direct solution
operator. If we can construct L−1 rapidly, then we sidestep the need for iterative
solvers in solving PDE’s rapidly.

If L is a network matrix (representing for instance the World Wide Web), then it
is frequently of interest to compute the leading singular vectors of L. An effective
method for this is the “shifted inverse power iteration” in which standard power
iteration is applied to matrices of the type

(L− µ I)−1

(where µ is an estimate of a certain singular value). If we have a compressed
representation of L−1, this can often be updated cheaply to obtain the operator
(L− µ I)−1.

(Unless additional machinery is constructed and implemented, however, the
shifted inverse power method breaks down when µ grows large.)

Algorithm 1 — for when we can compute x 7→ Ax rapidly

Recall: A is m× n with ε-rank k.

Let ω1, ω2, . . . be a sequence of random-direction vectors in Rn.

Forma the length-m vectors

y1 = Aω1, y2 = A ω2, y3 = Aω3, . . .

Each yj is a “random linear combination” of columns of A.

If l is an integer such that l ≥ k, then there is a chance that the vectors

{y1, y2, . . . , yl}
span the column space of A “to within precision ε”. Clearly, the probability that
this happens gets larger, the larger the gap between l and k.
What is remarkable is how fast this probability approaches one.

aIn some environments, this step involves a sparse linear solve.

If A = L−1, then forming y1 = A ω1 simply means solving L y1 = ω1.

Algorithm 1 — for when we can compute x 7→ Ax rapidly

Recall: A is m× n with ε-rank k.

Let ω1, ω2, . . . be a sequence of random-direction vectors in Rn.

Forma the length-m vectors

y1 = Aω1, y2 = A ω2, y3 = Aω3, . . .

Each yj is a “random linear combination” of columns of A.

If l is an integer such that l ≥ k, then there is a chance that the vectors

{y1, y2, . . . , yl}
span the column space of A “to within precision ε”. Clearly, the probability that
this happens gets larger, the larger the gap between l and k.
What is remarkable is how fast this probability approaches one.

aIn some environments, this step involves a sparse linear solve.

If A = L−1, then forming y1 = A ω1 simply means solving L y1 = ω1.

We illustrate with a numerical example.

Let A be an m× n matrix with entries Aij = log |zi − wj | where zi and wj are
points in two separated clusters in R2.

Generate a sequence ω1, ω2, . . . of random vectors in Rn.

Compute Yl = [y1, y2, . . . , yl] = [Aω1, Aω2, . . . , Aωl].

Compute the (column pivoted) QR-factorization Yl = Ql Rl Pl.

The “error” after l steps is (using the l2-operator norm)

el = ||(I −Ql Q
t
l) A||.

Notice that in reality, we can rarely afford to compute el.
Instead, we compute something like

fl =
∣∣∣∣(I −Ql Q

t
l

)
[yl+1, yl+2, . . . , yl+10]

1
10

∣∣∣∣
Frobenius

.

Our estimate for the rank is the lowest integer l such that fl < ε.

(Notice that plenty of operations here can be optimized. A lot.)

0 5 10 15 20 25 30 35 40 45 50
−16

−14

−12

−10

−8

−6

−4

−2

0

2
Estimated remainder after j steps
True error after j steps
(j+1)−th singular value

ε = 10−10 True ε-rank = 19 Estimated ε-rank = 21 / 19.

Was this just a lucky realization?

We ran the algorithm a million times and got these estimated ranks:

k = 17: 0 times

k = 18: 0 times

k = 19: 4178 times

k = 20: 246905 times

k = 21: 664486 times

k = 22: 81789 times

k = 23: 2634 times

k = 24: 8 times

k = 25: 0 times

k = 26: 0 times

The numbers above relate to the initial estimate of the rank. The second estimate
was always 19, and the error was always less than 10−10.

Results from a high-frequency Helmholtz problem (complex arithmetic):

0 20 40 60 80 100 120 140
−16

−14

−12

−10

−8

−6

−4

−2

0

2
Estimated remainder after j steps
True error after j steps
(j+1)−th singular value

ε = 10−10 True ε-rank = 101 Estimated ε-rank = 106 / 101.

Theorem: Let A be an m× n matrix and let k be an integer.

Let l be an integer such that l ≥ k.

Let Ω be an n× l matrix with i.i.d. Gaussian elements.

Let Q be an m× l matrix whose columns form an ON-basis for the columns of AΩ.

Let σk+1 denote the (k + 1)’th singular value of A.

Then
||A−QQt A||2 ≤ 10

√
l m σk+1,

with probability at least
1− f(l − k),

where f is a decreasing function satisfying

f(8) < 10−5

f(20) < 10−17.

Mark described how to prove this theorem. More details can be found in our
paper.

An informal argument for “why” it works springs from the SVD. Recall

A = U D V t.

We have

y = Aω = U D V t ω.

Set ν = V t ω. Then

y = U D ν = ν1 σ1 u1 + ν2 σ2 u2 + · · · νn σn un.

We see that y is a linear combination of the left singular vectors of A,
weighted according to the corresponding singular values.

Recall the error bound:

||A−QQt A||2 ≤ 10
√

l m σk+1,

The high-lighted factor is somewhat undesirable for a couple of reasons:

• The algorithm cannot determine the ε-rank if ε is too close to the
computational precision.

• There could be problems in cases where the singular values decay slowly.

Important: In the applications that we have in mind, the singular values decay
exponentially. In such cases, the only effect of the

√
lm factor is that a couple too

many random vectors may be generated. The computed decomposition is still
accurate to precision ε.

How does Algorithm I perform when we do not have a fast method for applying A

to a vector?

When k ¿ min(m,n), Algorithm 1 might be slightly faster than Gram-Schmidt:

Multiplications required for Algorithm 1: mn (k + 10) +O(k2(m + n)).

Multiplications required for Gram-Schmidt: mn 2 k +O(k2(m + n)).

Other potential benefits:

• Data-movement.

• Parallelization.

However, many environments remain in which there is little or no gain.

Algorithm 2: An O(mn log(k)) algorithm for general matrices:

Work by Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark Tygert.
(The speaker was — much to his regret — not involved with this development.)

Recall that Algorithm 1 determines a basis for the column space from the matrix

Y = A Ω.

m× l m× n n× l

Key points:

• The product x 7→ Ax can be evaluated rapidly.

• The entries of Ω are i.i.d. random numbers.

What if we do not have a fast algorithm for computing x 7→ Ax?

New idea: Construct Ω with “some randomness” and “some structure”.
Then for each 1× n row a of A, the matrix-vector product

a 7→ aΩ

can be evaluated using n log(l) operations.

What is this “random but structured” matrix Ω?

Ω = D F S

n× l n× n n× n n× l

where

• D is a diagonal matrix whose entries are i.i.d. random variables drawn from a
uniform distribution on the unit circle in C.

• F is the discrete Fourier transform, Fjk = e−2πi(j−1)(k−1)/n.

• S is a matrix whose entries are all zeros except for a single, randomly placed 1
in each column. (In other words, the action of S is to draw l columns at
random from D F .)

Note: Other successful choices of the matrix Ω have been tested, for instance, the
Fourier transform may be replaced by the Walsh-Hadamard transform.

This idea was described by Nir Ailon and Bernard Chazelle (2006).
There is also related recent work by Sarlós (on randomized regression) and others.

What is the probability of failure?

The proofs obtained so far do not assure quite as high likelihood of success as the
proofs for Algorithm 1 did. (Say 1− 10−7 instead of 1− 10−17.)

The proofs may not be sharp however. An indication that this may be the case is
that the algorithm has never failed during testing.

Should it prove to be the case that Algorithm 2 occasionally fails, a cheap
verification can be put in place. (Simply note that the difference between A and
the computed approximation to A can rapidly be applied to a vector.)

Speed gain on square matrices of various sizes

0

2

4

6

8

10

12

14

8 16 32 64 128 256 512

nu
m

be
r

of
 ti

m
es

 fa
st

er
 th

an
 Q

R

rank

1,024

2,048

4,096

classical QR algorithm

The time required to verify the approximation is included in the fast, but not in
the classical timings.

This slide comes from a talk by Mark Tygert.

Empirical accuracy on 2,048-long convolution

1e-12

1e-11

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

8 16 32 64 128 256 512

ac
cu

ra
cy

 o
f t

he
 a

pp
ro

xi
m

at
io

n

rank

fast

best possible

The estimates of the accuracy of the approximation are accurate to at least two
digits of relative precision.

This slide comes from a talk by Mark Tygert.

Key points — Algorithm 2:
(Franco Woolfe, Edo Liberty, Vladimir Rokhlin, Mark Tygert)

There exists an algorithm for rank-k matrix approximation (or for computing the
top k singular values and vectors) with advantages over the classical pivoted QR

algorithms such as Gram-Schmidt:

1. Substantially faster (for most ranks k of the approximation), costing
O(n2 ln(k) + nk2) — not O(n2k) — for an n× n matrix.

2. Uses less storage when the input matrix is to be preserved, especially for
matrices evaluated on-the-fly.

3. Operates reliably and accurately on any matrix.

4. Parallelizes naturally.

A technical point:

A relatively unknown cousin of the SVD or the QR decompositions is the
“interpolatory decomposition”. It is in this environment frequently cheaper and
more convenient.

An interpolatory decomposition of an m× n matrix A of rank k, is a factorization

A︸︷︷︸
m×n

= S︸︷︷︸
m×k

Arow︸︷︷︸
k×n

where

• Arow consists of k rows of A,

• S is a matrix that contains a k × k unity matrix, and,

• no entry of S is larger than 2.

Notes on interpolatory decompositions:

• Every matrix has one.

• In typical situations, the decomposition is highly non-unique.

• An algorithm for constructing one that typically takes O(m nk) (and
assuredly never more than O(mn2)) is given by Gu and Eisenstat.

• In practise, the Gu/Eisenstat algorithm is unnecessarily complicated.
Carefully pivoted Gram-Schmidt on the rows works fine and costs ∼ 2mn k.
(Matrices for which Gram-Schmidt fails can be constructed.)

• Some authors cause themselves head-aches by insisting on finding the
absolutely optimal k. In many applications, this does not matter much since
the cost of very slightly over-estimating the rank is low. (Generally speaking,
an application is “safe” if the singular values decay appropriately fast.)

Using interpolatory approximations, it is simple to obtain a matrix factorization
of a matrix A from a basis for the column space of A. To illustrate, suppose that
we have found a matrix B such that

A ≈ B C,

where C is a matrix that we do not know.

Then at a cost of O(mk2) we determine k rows of B that form a well-conditioned
basis for the row-space of B. Collecting these into the matrix Brow, we obtain

B = P

 Ik

T

 Brow,

where P is a permutation matrix. Then

A ≈ B C = P

 Ik

T

 Brow C = P

 Ik

T

 Arow,

where Arow consists of k rows of A.

So, once B is determined, only an O(mk2), or possibly O((m+n) k2), cost remains.

A12−→

Sources {qn}N
n=1 Potentials {vm}M

m=1

{qn}N
n=1

A12 //

?

²²

{vm}M
m=1

“Small” representation

?

55jjjjjjjjjjjjjjjjjjj

The key observation is that k = rank(A12) < min(M, N).

Skeletonization

Askel
12−→

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

77oooooooooooooo

We can pick k points in ΩS with the property that any potential in ΩT can be
replicated by placing charges on these k points.

• The choice of points does not depend on {qn}N
n=1.

• Askel
12 is a submatrix of A12.

We can “skeletonize” both Ω1 and Ω2.

Askel
12−→

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

// {vmj}k
j=1

U1

OO

Rank = 19 at ε = 10−10.

Skeletonization can be performed for ΩS and ΩT of various shapes.

Rank = 29 at ε = 10−10.

Rank = 48 at ε = 10−10.

Adjacent boxes can be skeletonized.

Rank = 46 at ε = 10−10.

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

// {vmj}k
j=1

U1

OO

Benefits:

• The rank is optimal.

• The projection and interpolation are cheap.
U1 and U2 contain k × k identity matrices.

• The projection and interpolation are well-conditioned.

• Finding the k points is cheap.

• The map Ã12 is simply a restriction of the original map A12.
(We can loosely say that “the physics of the problem is preserved”.)

• Interaction between adjacent boxes can be compressed
(no buffering is required).

Work in progress:

• Develop efficient strategies for determining the rank adaptively,
and for updating the ON-basis for the column space.

• Simplify proofs.

• Investigate how different choices of random sampling vectors influence the
performance. Random vs. pseudo-random.

Applications:

• Fast algorithms for matrix algebra (matrix-vector multiplies, matrix-
inversions, spectral decompositions) involving differential and integral
operators.

• Eigen-decompositions of discrete Laplacians.

• Multiscale modeling.

• Analysis of network matrices (data mining).

