
Fast direct solvers

P.G. Martinsson, The University of Colorado at Boulder

Acknowledgements: Some of the work presented is joint work with Vladimir
Rokhlin and Mark Tygert at Yale University.

In this talk, we will discuss numerical methods for solving the equation

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

where A is a linear constant-coefficient partial differential operator, and
B is some local linear boundary operator.

Examples include:

• Laplace’s equation.

• Helmholtz’ equation.

• Stokes’ equation.

• The Yukawa equation.

• The equations of linear elasticity.

Specifically, we will be concerned with the fast solution of the system of linear
equations obtained upon discretization of (BVP).

There are two standard techniques for obtaining the discretized system:

Linear boundary value problem.

↙

Direct discretization of the differ-
ential operator via Finite Element
Method (FEM), Finite Difference
Method, Finite Volume Method, . . .

↘

↘

Conversion of the BVP to a Bound-
ary Integral Operator (BIE).

↓

Discretization of (BIE) using
Nyström, collocation, Boundary
Element Method,

↙

N ×N system of linear algebraic equations.

1 – Methods based on discretizing PDEs:
Discretize the differential operator directly; instead of

(BVP)

{
Au(x) = g(x), x ∈ Ω,

u(x) = f(x), x ∈ Γ,

solve

(BVP-DISC) AN uN = hN ,

where uN is a function in an N -dimensional function space, AN is an N ×N

matrix discretizing the operator A (obtained via Finite Elements / Finite
Differences / . . .), and hN is a vector of data derived from f and g.

Equation (BVP-DISC) is typically very large, and requires fast solvers.
Most such solvers are based on iterative methods.

Fundamental problem: A is an unbounded operator ⇒
The matrix AN is ill-conditioned ⇒ The iterative solver converges slowly.

Pre-conditioners can help solving ill-conditioned linear systems.

A pre-conditioner is an operator PN such that:

• It is cheap to apply PN to a vector.

• The product PN AN is well-conditioned.

Loosely speaking, PN ≈ A−1
N .

The idea is to use an iterative solver to solve

PN AN uN = PN hN .

The popular multigrid algorithm is a form of a pre-conditioner.

However, many problems related to ill-conditioning remain.

Would it be possible to directly compute A−1
N ?

2 – Methods based on discretizing integral equations:
Reformulate the BVP as an Integral Equation.

The idea is to convert a partial differential equation

(BVP)

{
Au(x) = g(x), x ∈ Ω,

B u(x) = f(x), x ∈ Γ,

to an “equivalent” integral equation

(BIE) v(x) +
∫

Γ
k(x, y) v(y) ds(y) = h(x), x ∈ Γ.

• The kernel k is derived from the operator A.

• The data function h is derived from the data of (BVP).

• The conversion from (BVP) to (BIE) sometimes involves the evaluation of
certain integrals over Γ and/or Ω.

• Sometimes the integral equation must be formulated on Ω.

• . . .

Example:

Let us consider the equation

(BVP)

{−∆u(x) = 0, x ∈ Ω,

u(x) = f(x), x ∈ Γ,

We make the following Ansatz:

u(x) =
∫

Γ

(
n(y) · ∇y log |x− y|)v(y) ds(y), x ∈ Ω,

where n(y) is the outward pointing unit normal of Γ at y. Then the boundary
charge distribution u satisfies the Boundary Integral Equation

(BIE) v(x) + 2
∫

Γ

(
n(y) · ∇y log |x− y|)v(y) ds(y) = 2f(x), x ∈ Γ.

• (BIE) and (BVP) are in a strong sense equivalent.

• (BIE) is appealing mathematically (2nd kind Fredholm equation).

When integral equation formulations are available, there are compelling
arguments in their favor, these include:

Conditioning:
When there exists an IE formulation that is a Fredholm equation of the second
kind, the mathematical equation itself is well-conditioned.

Dimensionality:
Frequently, an IE can be defined on the boundary of the domain.

Integral operators are benign objects:
It is (relatively) easy to implement high order discretizations of integral operators.
Relative accuracy of 10−10 or better is often achieved.

There is a fundamental difficulty with using integral operators in numerics:

Discretization of integral operators
typically results in dense matrices.

In the 1950’s when computers made numerical PDE solvers possible, researchers
faced a grim choice:

PDE-based: Ill-conditioned, N is too large, low accuracy.

Integral Equations: Dense system.

The integral equations lost and were largely forgotten
— they were simply too expensive.

(Except in some scattering problems where there was no choice.)

The situation changed dramatically in the 1980’s. It was discovered that while
KN (the discretized integral operator) is dense, it is possible to evaluate the
matrix-vector product

v 7→ KN v

in O(N) operations – to high accuracy and with a small constant.

A very succesful such algorithm is the Fast Multipole Method by Rokhlin and
Greengard (circa 1985).

Combining such methods with iterative solvers (GMRES / conjugate gradient /
. . .) leads to very fast solvers for the integral equations, especially when second
kind Fredholm formulations are used.

A prescription for rapidly solving BVPs:

(BVP)

{−∆v(x) = 0, x ∈ Ω,

v(x) = f(x), x ∈ Γ.

Convert (BVP) to a second kind Fredholm equation:

(BIE) u(x) +
∫

Γ

(
n(y) · ∇y log |x− y|)u(y) ds(y) = f(x), x ∈ Γ.

Discretize (BIE) into the discrete equation

(DISC) (I + KN)uN = fN

where KN is a (typically dense) N ×N matrix.

Fast Multipole Method — Can multiply KN by a vector in O(N) time.

Iterative solver — Solves (DISC) using
√

κ matrix-vector multiplies, where κ is
the condition number of (I + KN).

Total complexity — O(
√

κN). (Recall that κ is small. Like 14.)

However, integral equation based methods are quite often not a choice:

Fundamental limitations: They require the existence of a fundamental solution to
the (dominant part of the) partial difference operator. In practise, this means that
the (dominant part of the) operator must be linear and constant-coefficient.

Practical limitations: Underdeveloped infra-structure; there does not exist a
general framework for discretizing surfaces. Lack of engineering strength codes.
Etc.

To summarize:

• There exist O(N) (or O(N logp N)) algorithms for a wide range of BVPs.

• For some BVPs, the N in O(N) can be the number of degrees of freedom
required to discretize the boundary.

• Almost all existing O(N) methods rely on iterative solvers.

• Regardless of how a BVP is discretized, there are complications in solving the
resulting linear system.

– Finite Element Methods: system is sparse but ill-conditioned.

– Boundary Integral Methods: system is dense (and sometimes
ill-conditioned, too).

In some environments, the linear solve presents a serious challenge:

1. Problems whose geometries require a very large number of unknowns:

• Modeling of heterogeneous materials.

• Radar scattering off of the ocean surface.

2. Applications that require a very large number of solves:

• Molecular Dynamics.

• Optimal design.

3. Problems that are inherently ill-conditioned:

• Scattering problems at intermediate or high frequencies.

• Ill-conditioning due to geometry (elongated domains, percolation, etc).

The inadequacy of existing methods in these environments stems from their
reliance on iterative solvers. We need direct solvers.

What is a direct solver?

Recall that many BVPs can be cast in the following form:

(BIE) u(x) +
∫

Γ
g(x, y)u(y) ds(y) = f(x), x ∈ Γ.

Upon discretization, equation (BIE) turns into a discrete equation

(DISC) (I + KN)u = f

where KN is a (typically dense) N ×N matrix.

A direct method computes a compressed representation for (I + KN)−1.

• Cost for pre-computing the inverse.

• Cost for applying the inverse to a vector.

In many environments, both of these costs can be made O(N).

Direct methods are good for (1) ill-conditioned problems, (2) problems with
multiple right-hand sides, (3) spectral decompositions, (4) updating, . . .

Practical considerations:

Direct methods tend to be more robust than iterative ones.

This makes them more suitable for “black-box” implementations.

Commercial software developers appear to avoid implementing iterative solvers
whenever possible. (Sometimes for good reasons.)

The effort to develop direct solvers should be viewed as a step towards getting a
LAPACK-type environment for solving the basic linear boundary value problems
of mathematical physics.

Sampling of related work:

1991 Sparse matrix algebra / wavelets, Beylkin, Coifman, Rokhlin,

1996 scattering problems, E. Michielssen, A. Boag and W.C. Chew,

1998 factorization of non-standard forms, G. Beylkin, J. Dunn, D. Gines,

1998 H-matrix methods, W. Hackbusch, et al,

2002 O(N3/2) inversion of Lippmann-Schwinger equations, Y. Chen,

2002 inversion of “Hierarchically semi-separable” matrices, M. Gu,
S. Chandrasekharan, et al,

2004 O(N) inversion of boundary integral equations in 2D, Martinsson, Rokhlin,

2007 O(N log N) inversion of 2D finite element matrices, Martinsson.

Current state of the research

The fast direct solvers currently being developed exploit the fact that off-diagonal
blocks of the matrix to be inverted have low rank.

This restricts the range of application to non-oscillatory, or moderately oscillatory
problems. In other words, such methods currently can handle:

• Laplace’s equation, equations of elasticity, Yukawa’s equation,. . .

• Helmholtz’ and Maxwell’s equations for low and intermediate frequencies.
(In special cases, high frequency problem can also be solved.)

Holy grail: Fast inversion scheme for high-frequency problems.

How does the inversion scheme for 2D boundary integral equations work?

Consider the linear system



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







q1

q2

q3

q4




=




v1

v2

v3

v4




.

We suppose that for i 6= j, the blocks Aij allow the factorization

Aij︸︷︷︸
ni×nj

= Ui︸︷︷︸
ni×ki

Ãij︸︷︷︸
ki×kj

U t
j︸︷︷︸

kj×nj

,

where the ranks ki are significantly smaller than the block sizes ni.

We then let
q̃i︸︷︷︸

ki×1

= U t
i qi︸︷︷︸

ni×1

,

be the variables of the “reduced” system.

Recall: Aij = Ui Ãij U t
j and q̃i = U t

i qi.

The system
∑

j Aij qj = vi then takes the form




A11 0 0 0 0 U1Ã12 U1Ã13 U1Ã14

0 A22 0 0 U2Ã21 0 U2Ã23 U2Ã24

0 0 A33 0 U3Ã31 U3Ã32 0 U3Ã34

0 0 0 A44 U4Ã41 U4Ã42 U4Ã43 0

−U t
1 0 0 0 I 0 0 0

0 −U t
2 0 0 0 I 0 0

0 0 −U t
3 0 0 0 I 0

0 0 0 −U t
4 0 0 0 I







q1

q2

q3

q4

q̃1

q̃2

q̃3

q̃4




=




v1

v2

v3

v4

0

0

0

0




.

Now form the Schur complement to eliminate the qj ’s.

After eliminating the “fine-scale” variables qi, we obtain



I U t
1Ã

−1
11 U1Ã12 U t

1Ã
−1
11 U1Ã13 U t

1Ã
−1
11 U1Ã14

U t
2Ã

−1
22 U2Ã21 I U t

2Ã
−1
22 U2Ã23 U t

2Ã
−1
22 U2Ã24

U t
3Ã

−1
33 U3Ã31 U t

3Ã
−1
33 U3Ã32 I U t

3Ã
−1
33 U3Ã34

U t
4Ã

−1
44 U4Ã41 U t

4Ã
−1
44 U4Ã42 U t

4Ã
−1
44 U4Ã43 I







q̃1

q̃2

q̃3

q̃4




=




U t
1A

−1
11 v1

U t
2A

−1
22 v2

U t
3A

−1
33 v3

U t
4A

−1
44 v4.




.

We set
Ãii =

(
U t

i A−1
ii Ui

)−1
,

and multiply line i by Ãii to obtain the reduced system



Ã11 Ã12 Ã13 Ã14

Ã21 Ã22 Ã23 Ã24

Ã31 Ã32 Ã33 Ã34

Ã41 Ã42 Ã43 Ã44







q̃1

q̃2

q̃3

q̃4




=




ṽ1

ṽ2

ṽ3

ṽ4




.

where
ṽi = Ãii U

t
i A−1

ii vi.

(This derivation was pointed out by Leslie Greengard.)

A globally O(N) algorithm is obtained by hierarchically repeating the process:

↓ Compress ↗ ↓ Compress ↗ ↓ Compress

Cluster Cluster

The one-level coarse-graining involves the following steps:

• Compute Ui and Ãij so that Aij = Ui Ãij U t
j .

• Compute the new diagonal matrices

Ãii =
(
U t

i A−1
ii Ui

)−1
,

• Compute the new loads

ṽi = Ãii U
t
i A−1

ii vi.

For the algorithm to be O(N), it has to be able to carry out these steps locally.

To achieve this, we use interpolative representations.

Ãij will be a submatrix of Aij , so it will not need to be computed.

A12−→

Sources {qn}N
n=1 Potentials {vm}M

m=1

{qn}N
n=1

A12 //

?

²²

{vm}M
m=1

“Small” representation

?

55jjjjjjjjjjjjjjjjjjj

The key observation is that k = rank(A12) < min(M, N).

Skeletonization

Askel
12−→

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

77oooooooooooooo

We can pick k points in ΩS with the property that any potential in ΩT can be
replicated by placing charges on these k points.

• The choice of points does not depend on {qn}N
n=1.

• Askel
12 is a submatrix of A12.

We can “skeletonize” both Ω1 and Ω2.

Askel
12−→

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

// {vmj}k
j=1

U1

OO

Rank = 19 at ε = 10−10.

Skeletonization can be performed for ΩS and ΩT of various shapes.

Rank = 29 at ε = 10−10.

Rank = 48 at ε = 10−10.

Adjacent boxes can be skeletonized.

Rank = 46 at ε = 10−10.

{qn}N
n=1

A12 //

Ut
2

²²

{vm}M
m=1

{q̃nj}k
j=1

Askel
12

// {vmj}k
j=1

U1

OO

Benefits:

• The rank is optimal.

• The projection and interpolation are cheap.
U1 and U2 contain k × k identity matrices.

• The projection and interpolation are well-conditioned.

• Finding the k points is cheap.

• The map Ã12 is simply a restriction of the original map A12.
(We can loosely say that “the physics of the problem is preserved”.)

• Interaction between adjacent boxes can be compressed
(no buffering is required).

Similar schemes have been proposed by many researchers:

1993 - C.R. Anderson

1995 - C.L. Berman

1996 - E. Michielssen, A. Boag

1999 - J. Makino

2004 - L. Ying, G. Biros, D. Zorin

A mathematical foundation:

1996 - M. Gu, S. Eisenstat

Let us return to the direct solver environment. Recall:

We convert the system



A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44







x1

x2

x3

x4




=




f1

f2

f3

f4




.

to the reduced system



Ã11 Askel
12 Askel

13 Askel
14

Askel
21 Ã22 Askel

23 Askel
24

Askel
31 Askel

32 Ã33 Askel
34

Askel
41 Askel

42 Askel
43 Ã44







x̃1

x̃2

x̃3

x̃4




=




f̃1

f̃2

f̃3

f̃4




.

We know that Askel
ij is a submatrix of Aij when i 6= j.

What is Ãii?

We recall that the new diagonal blocks are
defined by

Ãii︸︷︷︸
k×k

=
(

U t
i︸︷︷︸

k×n

A−1
ii︸︷︷︸

n×n

Ui︸︷︷︸
n×k

)−1
.

We call these blocks “proxy matrices”.

What are they?

Let Ω1 denote the block marked in red.

Let Ω2 denote the rest of the domain.

Charges on Ω2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Ω1

A−1
11 // Charges on Ω1

A21 //

Ut
1

²²

Pot. on Ω2

Pot. on Ωskel
1

U1

OO

Ã−1
11 // Charges on Ωskel

1

Askel
12

77ooooooooooooooooo

Ã11 contains all the information the outside world needs to know about Ω1.

We recall that the new diagonal blocks are
defined by

Ãii︸︷︷︸
k×k

=
(

U t
i︸︷︷︸

k×n

A−1
ii︸︷︷︸

n×n

Ui︸︷︷︸
n×k

)−1
.

We call these blocks “proxy matrices”.

What are they?

Let Ω1 denote the block marked in red.

Let Ω2 denote the rest of the domain.

Charges on Ω2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Ω1

A−1
11 // Charges on Ω1

A21 //

Ut
1

²²

Pot. on Ω2

Pot. on Ωskel
1

U1

OO

Ã−1
11 // Charges on Ωskel

1

Askel
12

77ooooooooooooooooo

Ã11 contains all the information the outside world needs to know about Ω1.

To obtain a globally O(N) scheme, we hierarchically merge proxy matrices.

Numerical examples

In developing direct solvers, the “proof is in the pudding” — recall that from a
theoretical point of view, the problem is already solved (by Hackbusch and others).

All computations were performed on standard laptops and desktop computers in
the 2.0GHz - 2.8Ghz speed range, and with 512Mb of RAM.

An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its horizontal width is 2.

k Nstart Nfinal ttot tsolve Eres Epot σmin M

21 800 435 1.5e+01 3.3e-02 9.7e-08 7.1e-07 6.5e-01 12758

40 1600 550 3.0e+01 6.7e-02 6.2e-08 4.0e-08 8.0e-01 25372

79 3200 683 5.3e+01 1.2e-01 5.3e-08 3.8e-08 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 3.9e-08 2.9e-08 3.4e-01 81679

316 12800 1179 1.8e+02 3.9e-01 2.3e-08 2.0e-08 3.4e-01 160493

632 25600 1753 4.3e+02 8.0e-01 1.7e-08 1.4e-08 3.3e-01 350984

Computational results for an exterior Helmholtz
Dirichlet problem discretized with 10th order accurate
quadrature. The Helmholtz parameter was chosen to
keep the number of discretization points per wave-
length constant at roughly 45 points per wavelength
(resulting in a quadrature error about 10−12).

Eventually . . . the complexity is O(n + k3).

Example 2 - An interior Helmholtz Dirichlet problem

The diameter of the contour is about 2.5. An interior Helmholtz problem with
Dirichlet boundary data was solved using N = 6 400 discretization points, with a
prescribed accuracy of 10−10.

For k = 100.011027569 · · · , the smallest singular value of the boundary integral
operator was σmin = 0.00001366 · · · .

Time for constructing the inverse: 0.7 seconds.

Error in the inverse: 10−5.

99.9 99.92 99.94 99.96 99.98 100 100.02 100.04 100.06 100.08 100.1

0.02

0.04

0.06

0.08

0.1

0.12

Plot of σmin versus k for an interior Helmholtz problem
on the smooth pentagram. The values shown were
computed using a matrix of size N = 6400. Each
point in the graph required about 60s of CPU time.

Example 3:

An electrostatics problem in a dielectrically heterogeneous medium

ε = 10−5 Ncontour = 25 600 Nparticles = 100 000

Time to invert the boundary integral equation = 46sec.

Time to compute the induced charges = 0.42sec.(2.5sec for the FMM)

Total time for the electro-statics problem = 3.8sec.

A close-up of the particle distribution.

Example 4: Inversion of a “Finite Element Matrix”

A grid conduction problem (the “five-point stencil”).

The conductivity of each bar is a random number drawn from a uniform
distribution on [1, 2].

N Tinvert Tapply M e1 e2 e3 e4

(seconds) (seconds) (kB)

10 000 5.93e-1 2.82e-3 3.82e+2 1.29e-8 1.37e-7 2.61e-8 3.31e-8

40 000 4.69e+0 6.25e-3 9.19e+2 9.35e-9 8.74e-8 4.71e-8 6.47e-8

90 000 1.28e+1 1.27e-2 1.51e+3 — — 7.98e-8 1.25e-7

160 000 2.87e+1 1.38e-2 2.15e+3 — — 9.02e-8 1.84e-7

250 000 4.67e+1 1.52e-2 2.80e+3 — — 1.02e-7 1.14e-7

360 000 7.50e+1 2.62e-2 3.55e+3 — — 1.37e-7 1.57e-7

490 000 1.13e+2 2.78e-2 4.22e+3 — — — —

640 000 1.54e+2 2.92e-2 5.45e+3 — — — —

810 000 1.98e+2 3.09e-2 5.86e+3 — — — —

1000 000 2.45e+2 3.25e-2 6.66e+3 — — — —

e1 The largest error in any entry of Ã−1
n

e2 The error in l2-operator norm of Ã−1
n

e3 The l2-error in the vector Ã−1
nn r where r is a unit vector of random direction.

e4 The l2-error in the first column of Ã−1
nn .

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5

3
x 10

−4

Tinvert

N
versus N

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Tapply√
N

versus N

0 1 2 3 4 5 6 7 8 9 10

x 10
5

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

M√
N

versus N .

Existing fast direct solvers:

• 2D boundary integral equations. Very fast.
Has proven capable of solving previously intractable problems.

• Certain 2D scattering problems.

• 2D finite element matrices.
1 000 000× 1 000 000 matrix inverted in 4 minutes using 7Mb of memory,
subsequent solves take 0.03 seconds.

In development:

• Fast inversion schemes for 2D volume integral equations.

• 3D boundary integral equations.

• Applications to biochemical modelling.

• Applications to multiscale modelling.

