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Boundary methods for solving PDEs

Suppose that we wish to find a solution of the boundary value problem

(BVP)

{−∆v(x) = 0, x ∈ Ω,

v(x) = f(x), x ∈ Γ.

We make the Ansatz

v(x) =
∫

Γ

(
n(y) · ∇y log |x− y|)u(y) ds(y), x ∈ Ω,

where n(y) is the outward pointing unit normal of Γ at y. Then v solves
(BVP) if and only if u solves the boundary integral equation

(BIE)
1
2
u(x) +

∫

Γ

(
n(y) · ∇y log |x− y|)u(y) ds(y) = f(x), x ∈ Γ.

• (BIE) and (BVP) are in a strong sense equivalent.

• (BIE) is appealing mathematically (2nd kind Fredholm equation).



Numerical methods for BIEs

Suppose that we wish to numerically solve the integral equation

u(x) +
∫

Γ
K(x, y)u(y) ds(y) = f(x), x ∈ Γ.

We first discretize the contour into n points

Γ ∼ [x1, . . . , xn].

Then the operator
∫

Γ
K(x, y)u(y) ds(y)

turns into a matrix A with entries (sort of)

Aij = K(xi, xj), i, j = 1, . . . , n.

Γ

xi

Since A is dense, it appears that

the cost for constructing A is O(n2) (with a large constant),

the cost for solving (I + A)u = f is O(n3).



Fast solution of boundary integral equations

We let A denote the dense n× n matrix discretizing the operator
∫

Γ
K(x, y)u(y) ds(y).

There exist O(n logq n) algorithms (q = 0, 1, 2) that evaluate the map

u 7→ Au.

These include the Fast Multipole Method, Panel Clustering, multigrid,
wavelets,. . .
Developed circa 1980 – 1985.

Using iterative methods (GMRES seems popular), the equation

(I + A)u = f

can then be solved using O(
√

κ · n logq n) operations, where κ is the
condition number of I + A.



BIE formulations exist for many classical BVPs

Laplace −∆u = f ,

Elasticity
1
2
Eijkl

(
∂2uk

∂xl∂xj
+

∂2ul

∂xk∂xj

)
= fi,

Stokes ∆u = ∇p, ∇ · u = 0,

Helmholtz (−∆− k2)u = f ,

Schrödinger (−∆ + V )Ψ = i
∂Ψ
∂t

,

Maxwell




∇ ·E = ρ ∇×E = − ∂B

∂t

∇ ·B = 0 ∇×B = J +
∂E
∂t



Boundary formulations are frequently optimal solvers:

Accurate: The computational error should be roughly κ ε, where ε is the
machine precision and κ is the actual condition number.

Efficient: The CPU time requirement should be roughly proportional to
N , the actual complexity of the problem.

Robust: The computation should be black-box with no need for
fine-tuning, parameter-selection, pre-conditioning et c. In particular,
delicate mesh-requirements currently form a major obstacle.

Under some conditions, methods exist that satisfy these criteria —
FEM+multigrid, FFT, BIE + FMM, et c.



When should boundary methods be used?

The technique of solving boundary value problems (BVP) via fast iterative
techniques for solving boundary integral equations (BIE) works best when

(1) there is no body force,

(2) the differential operator has constant coefficients

(or piece-wise constant coefficients),

(3) the BVP is linear,

(4) the BIE that is used is well-conditioned.

Over the last 20 years, much progress has been made in extending the
technique to overcome the apparent obstreperousness of problems
violating conditions (1), (2) and (3).

The recent development of direct solvers has done much to overcome
obstacle (4).



A problem with periodic micro-structure

The lattice Laplace equation
{−∆u(m) = 0, m ∈ Ω ⊂ Z2,

u(m) = g(m), m ∈ Γ = ∂Ω.

where m = (m1,m2) is an integer index and

∆u(m1,m2) =u(m1 − 1,m2)− 2u(m1, m2) + u(m1 + 1,m2)+

u(m1,m2 − 1)− 2u(m1, m2) + u(m1, m2 + 1),

has a well-conditioned boundary formulation on Γ.



Example:

Implementation of BIE + FMM for modeling radar scattering problems
at Boing led to an increase in problem size of 1–2 orders of magnitude,
and an increase in accuracy from 10−2 to 10−9.

Let us look at three different stealth aircraft:

• F-117 Nighthawk, developed 1978 – 1983.

• B-2 Spirit, developed 1985 – 1993.

• F-22 Raptor, developed 1994 – ?.

(Incidentally, a single B-2 costs about 2.2 billion dollars; while the budget
for the F-22 program at this point exceeds 72 billion dollars.)



The Fast Multipole Method

Given a set of points {xn}N
n=1 ⊂ R2 and a set of “charges” {qn}N

n=1,
consider the problem of evaluating the harmonic potential u caused by
the charges

u(xn) =
N∑

m=1
m6=n

log |xn − xm|qm, for n = 1, . . . , N.

If direct summation is used, O(N2) floating point operations are required.

The Fast Multipole Method performs this task in O(N) operations.

The method works for a wide class of kernels, but for simplicity, we will
use the logarithmic kernel in 2D in all formulas.



What the FMM is good for:

• Evaluation of potential fields (gravitational fields in cosmology,
electric force fields in molecular dynamics, etc).

• Application of integral operators: Given a function σ that is defined
on a set Γ, evaluate

u(x) =
∫

Γ
K(x, y)σ(y) dy.

Useful for rapid solution of integral equations.

• Application of a unitary matrix to another matrix. (Actually; yes.)
Useful in constructing very fast methods for computing SVDs, etc.

• Non-uniform FFT, interpolation, expansion in orthogonal bases (such
as spherical harmonics), fast Gauss transform, . . .



How it works: Suppose first that we have

• M source points {ym}M
m=1 ⊂ ΩS ⊂ C,

• N target points {xn}N
n=1 ⊂ ΩT ⊂ C,

and that ΩS and ΩT are separate sets.
Using complex arithmetic, we want to evaluate

u(xm) =
N∑

n=1

log(xm − yn) qn, for m = 1, . . . , M.

ΩS ΩT



Let Q = [Q0, Q1, . . . , QP ] denote the P -term multipole expansion of the
charges in ΩS. (In other words, Q0 is the total charge, Q1 is the dipole
moment of the charge, Q2 is the quadrupole moment, etc.)

Then divide the computation into two steps:

1. Compute a multipole expansion Q ∈ CP from q ∈ CN .

2. Evaluate u ∈ CM from Q ∈ CP .

q ∈ CN
O(MN) //

O(PN)

²²

u ∈ CM

Q ∈ CP

O(PM)

77oooooooooooooooo

The total cost is proportional to PM + PN .
P = O(| log ε|), so the total cost is O(| log ε|(M + N)).



ΩS ΩT

O

yn

xm

u(xm) =
N∑

n=1

log(xm − yn)qn

=
N∑

n=1

qn

(
log xm + log(1− yn/xm)

)

≈
N∑

n=1

qn

(
log xm +

P∑

p=1

−1
p

(
yn

xm

)p)

=

(
N∑

n=1

qn

)

︸ ︷︷ ︸
=:Q0

log xm +
P∑

p=1

(
N∑

n=1

qnyp
n

)

︸ ︷︷ ︸
=:Qp

−1
p xp

m

=Q0 log xm +
P∑

p=1

Qp
−1

p xp
m

.



In the case where the target and the source regions are identical,
we hierarchically subdivide the computational domain into boxes.

Level 1 Level 2 Level 3 Level 4



Step 1: For each box on every level, compute the multipole expansion of
the charges inside it. Cost ∼ P N log N .

Step 2: For each particle, evaluate its interaction with the remaining
particles by replacing charges in far-away boxes by as large a box as
possible. Cost ∼ P N log N .



The algorithm just described is called Barnes-Hut.

It reduces the computational cost from O(N2) to O(N log N).

However, the constant is large.



We can accelerate Step 1 – the computation of the multipole moments –
from O(N log N) to O(N) by computing them hierarchically.

If we know the multipole expansions of four boxes that form a larger box
on the coarser level, we can compute the multipole expansion of the larger
box from the four expansions.

↗ ↖

↘ ↙

We know the mpole
expansions for

these four centers.

Merge the four
expansions to

form the new one.

The new expansion.



In the Fast Multipole Method, there is also a downward sweep through
which the potentials are computed from the multipole expansions.

To make this work, we keep for each box track of both an outgoing
representation Q (the multipole expansion), and an incoming
representation U (an expansion of the potential in harmonic polynomials).

The total cost is O(| log ε|N).

q ∈ CN
O(MN) //

O(PN)

²²

u ∈ CM

Q ∈ CP

O(PM)

88qqqqqqqqqqqqqqq

q ∈ CN
O(MN) //

O(PN)

²²

u ∈ CM

Q ∈ CP

O(P 2)
// U ∈ CP

O(PM)

OO

Barnes-Hut FMM



q ∈ CN
O(MN) //

O(PN)

²²

u ∈ CM

Q ∈ CP

O(P 2)
// U ∈ CP

O(PM)

OO

The scheme can be accelerated as follows:

• The representations Q and U can be formed in such a way that the
map Q 7→ U is diagonal and requires only O(P ) operations.

– Especially important in 3D.

– Crucially important for oscillatory problems.

• Adaptive compression can be used to obtain optimally compressed
representations (i.e. the smallest possible P is used).

– The Singular Value Decomposition can be used.

– Tabulation is better.



A (surprisingly?) simple way of representing functions.

Again, let us assume that we are given

• M source points {ym}M
m=1 ⊂ ΩS ⊂ C,

• N target points {xn}N
n=1 ⊂ ΩT ⊂ C.

We want to evaluate

u(xm) =
N∑

n=1

log(xm − yn)qn, for m = 1, . . . , M.

Suppose that the M ×N matrix A with entries log(xm − yn) has rank k.
We want to find an efficient way of representing q and u:

q ∈ CN A //

?

²²

u ∈ CM

Q∈Ck

Outgoing rep ?
// U∈Ck

Incoming rep

?

OO

ΩS ΩT



ΩS ΩT

We can find k source points (marked with red dots) with the property
that any potential on ΩT caused by charges in ΩS, can be reproduced by
placing charges on these k points.

Important: The choice of the points depends only on the geometry (not
on the given charge distribution).



ΩS ΩT

Similarly, we can find k points in ΩT with the property that any potential
caused by charges on ΩS can be interpolated locally if its values are
known at the k green points.



q ∈ CN A //

k(N−k)

²²

u ∈ CM

Q∈Ck

Outgoing rep k2
// U∈Ck

Incoming rep

k(M−k)

OO

Benefits:

• The rank is optimal.

• The projection and interpolation are cheap.

• The projection and interpolation are well-conditioned.

• Finding the k points is cheap.

• The map Q 7→ U is simply a restriction of the original map.

• Interaction between adjacent boxes can be compressed
(no buffering is required).

• Very useful for constructing direct solvers.



A highly optimized version of the FMM for one-dimensional
non-oscillatory problems has been developed:

• Kernel independent.

• Entirely stable and with adaptive error control.

The break-even point at 14 digits of accuracy is 90.



Example: Crack in a bi-phase material

Uncompressed Compressed



The claims above are actually pure linear algebra:

Lemma 1 (Gu & Eisenstat) Let A be an M ×N matrix of rank k.
There exists a factorization

(3) A = X ◦ Ã ◦ Y,

where

• X is a k ×N matrix containing a k × k unit submatrix. No entry of
X has magnitude larger than 1.

• Y is an M × k matrix containing a k × k unit submatrix. No entry of
Y has magnitude larger than 1.

• Ã is a k × k submatrix of A.

Recall that
u = Aq.

Setting
Q = Y q, and U = ÃQ,

we find that by virtue of (3), u can be reconstructed via

u = X U.



There is also an interesting connection to interpolation of functions:

Lemma 2 Let A be a k-dimensional space of real-valued functions on a
compact set Ω. There exists a set of k points {xj}k

j=1 ⊂ Ω, and a set of
functions {ϕj}k

j=1 such that

u(x) =
k∑

j=1

u(xj)ϕj(x),

for any u ∈ A. Moreover, for j = 1, . . . , k,

|ϕj(x)| ≤ 1, ∀x ∈ Ω.



Direct solvers:

It has recently been demonstrated that in many environments there exist
O(N log N) and O(N) methods for inverting the boundary integral
operator

u(x) 7→ u(x) +
∫

Γ
K(x, y)u(y) dy.

Benefits:

• Increased robustness.

• Less sensitive to ill-conditioned problems.
Important for solving near-resonant scattering problems.

• Very efficient for problems with multiple right-hand sides.

• Can be used to construct spectral decompositions of operators.

Work in progress.



Research directions:

• Direct solvers.

• Continued development of Fast Multipole Methods.

• Harmonic analysis; representation of function spaces, interpolation.

• Application of hierarchical techniques to multiscale modelling. The
new understanding of techniques for representation of functions is
crucial here.

• Application of Fast Multipole Methods to various fields (modelling of
macro-molecules, semi-conductors, emulsions, molecular dynamics).

• Local collaborations!


