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A model problem

Consider heat conduction on the
simple square lattice Z2. Let u(m)
denote the temperature of node m ∈
Z2 and let f(m) denote an external
heat source. Then the equilibrium
equations read

[Au](m) = f(m), ∀ m ∈ Z2,

where

[Au](m) = 4u(m1,m2) −u(m1 − 1,m2)− u(m1 + 1,m2)

−u(m1,m2 − 1)− u(m1,m2 + 1).

The operator A is known as the discrete Laplace operator.



Boundary conditions:

Collect the N nodes in Ω ⊂ Z2.
Split Ω = Ωi ∪ ΓD ∪ ΓN, where

Ωi are the interior nodes,

ΓD is the Dirichlet boundary,

ΓN is the Neumann boundary.

We can now formulate the discrete boundary value problem




Au = f , on Ωi,

u = g, on ΓD,

∂νu = h, on ΓN,

where A is the discrete Laplace operator.



Similar equations model linear interactions between atoms in a crystal.



For the problems considered; traditional homogenization techniques do
not perform very well.

Concentrated loads are common.

It is important to capture the mechanics at boundaries and corners.

The most interesting cases involve lattice imperfections, modelling
buckling of bars, etc.

In other words, there is typically no separation of length-scales.



Our solution:

1. Derive a fundamental solution for an infinite lattice.

2. For finite structures, use the fundamental solution to rewrite the
equilibrium equations as an equation on the boundary.
This is an exact procedure, no approximation is involved.

3. If the boundary equations involve too many degrees of freedom, use
asymptotic expansions in the fundamental solution.



Earlier work (an emphatically non-complete bibliography!):

• Fourier methods for analyzing difference equations.
Babuška 1970
Fix and Strang 1973, Stefan 1976, Saltzer 1958, Duffin 1953.

• Homogenization
Babuška 1975, 1976, 1977, 1979, 2000,. . .
Berlyand and Kolpakov 2001, Blanc, LeBris and Lions 2002,
Cioranescu and Saint Jean Paulin 1999, Gibson and Ashby 1989,
Lakes 1991, Panasenko 1998, Vogelius 1991.

• Analysis of lattice structures
Babuška and Morgan 1991, Babuška and Sauter 2004
Evans, Hutchinson and Ashby 1998, Friesecke and Theil 2002, Noor
1998, Ostoja-Starzewski 2002, Schwab and Matache 2000.

• Fast summation methods
Greengard and Rokhlin 1987.



Step 1: Derive a fundamental solution
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We apply a heat source of unit strength at the origin of the lattice and
calculate the resulting equilibrium temperature. We label this solution
G = G(m), for m ∈ Z2. Then, G satisfies the equation

[AG](m) = δ(m), m ∈ Z2,

where δ is the Dirac delta function,

δ(m) =





1 for m = 0,

0 for m ∈ Z2\{0}.
0



From the previous slide, we have the equilibrium equation

(1) [AG](m) = δ(m), m ∈ Z2.

The discrete Fourier transform is defined by

ũ(ξ) = [Fu](ξ) =
∑

m∈Z2

eim·ξu(m), for ξ ∈ (−π, π)2.

Fourier transforming (1) we obtain the formula

(2) σ(ξ)G̃(ξ) = 1, for ξ ∈ (−π, π)2,

where σ(ξ) is the symbol of A,

σ(ξ) = 4− eiξ1 − e−iξ1 − eiξ2 − e−iξ2 = 4
(

sin2 ξ1

2
+ sin2 ξ2

2

)
.

From (2), we get G̃ = 1/σ, and then

G(m) =
1

(2π)2

∫

(−π,π)2
e−iξ·mG̃(ξ) dξ =

1
(2π)2

∫

(−π,π)2
e−iξ·m 1

σ(ξ)
dξ.



Mea culpa

We have cheated, |ξ|−2 is not integrable in two dimensions ...

Without going into details, we simply assert that the following
regularization works:

G(m) =
1

(2π)2

∫

(−π,π)2

e−im·ξ − 1
σ(ξ)

dξ.



−5

0

5

−5

0

5
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

Plot of the lattice Green’s function.



Asymptotic expansion of the Lattice Green’s Function

G(m) =
1

(2π)2

∫

(−π, π)2

e−im·ξ − 1
σ(ξ)

dξ

The singularity of σ(ξ)−1 is captured by the expansion

1
σ(ξ)

=
1
|ξ|2 +

1
12

ξ4
1 + ξ4

2

|ξ|4 + O(|ξ|2).

We then expect that

G(m) ≈ 1
(2π)2

∫

R2

[
e−im·ξ − 1

|ξ|2 + e−im·ξ 1
12

ξ4
1 + ξ4

2

|ξ|4
]

dξ =: G1(m),

which evaluates to (for m 6= 0)

G1(m) = − 1
2π

(
log |m|+ γ +

log 8
3

)
+

1
24π

m4
1 − 6m2

1m
2
2 + m4

2

|m|6 .



Remarks on the lattice Green’s function G(m):

• G(m) is a matrix for multi-atomic lattices.

• The asymptotic expansion can be computed automatically using
symbolic algebra software.

• Homogenized equations can directly be read off from the asymptotic
expansion.

• G(m) captures the close-range behavior exactly.



Mechanical lattices of two types. (Much more interesting!)

Truss Lattices

Strength from axial stiffness.

Symbol is always a matrix:
2 degrees of freedom per node.

Asymptotics: Classical elasticity.

Frame Lattices

Strength from bending stiffness.

Symbol is always a matrix:
3 degrees of freedom per node.

Asymptotics: Cosserat elasticity.

Typically very anisotropic.

Asymptotic expansions can again be derived automatically.

Everything works . . . the theory for all this is fairly well understood.



Step 2: A distributed load on an infinite lattice
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The equilibrium equation reads

[Au](m) = f(m), m ∈ Zd

The solution is simply a convolution between f and G;

u(m) = [G ∗ f ](m) =
∑

n∈Z2

G(m− n)f(n).

Recall that there is no explicit formula for the fundamental solution G!
However, we know the asymptotic expansion of G, and can use this in
combination with fast summation methods similar to the FMM.



Step 3: Bounded domains

We consider a Dirichlet problem
on the L-shaped domain

Au = 0, on Ωi,

u = g, on Γ.

Make a “double layer Ansatz”:

u(m) =
∑

n∈Γ

∂νnG(m− n)φ(n) =: [KD φ](m),

where ∂νnG(m−n) is a discrete analogue of the double layer kernel. Then

(3)
∑

n∈Γ

∂νnG(m− n)φ(n) = g(m), ∀ m ∈ Γ.

Numerical experiments indicate that (3) is very well-conditioned.
(We have no proofs.)



The discrete double layer kernel ∂νnG(m− n)

∂ν is an external difference operator: given
a boundary node n, let Dn ⊂ Ωc be the set
of nodes that connect to n, then

[∂νψ](n) =
∑

k∈Dn

(ψ(k)− ψ(n)) .

Thus, the ansatz corresponds to placing charges of opposite signs on the
red and the green nodes in the figure below



Step 4: Bounded domains and lattice imperfections

As long as the sites of irregularities do not dominate the problem, they
can easily be included in the set of point on which the “boundary
equation” is defined.



Main point: The method of reformulating a linear PDE as a boundary
integral equation can be applied to problems with periodic lattice
micro-structures.

Benefits:

• Model simplification does not rely on separation of length-scales.

• Boundaries and concentrated loads cause no loss of accuracy.

• The equations to be solved are inherently well-conditioned.

• Homogenization of integral operator rather than differential operator.

• Full error control. Errors on the order of 10−10 are easily achievable.

Possible extensions:

• Problems with continuum periodic micro-structure.

Principal limitations:

• Linear problems.

• Periodic micro-structures. (Localized imperfections are OK.)


