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Mini-review of fast algorithms for boundary integral equations

We consider the integral equation

(1) u(x) +
∫

Γ
K(x, y)u(y) ds(y) = f(x), x ∈ Γ.

Upon discretization, equation (1) turns into a discrete equation

(2) (I + A)u = f

where A is a (typically dense) n× n matrix.

• FMM — Can multiply A by a vector in O(n) time.

• Iterative solver — Solves (2) using
√

κ matrix-vector multiplies,
where κ is the condition number of (I + A).

• Total complexity — O(
√

κn).



Some definitions:

A fast method solves a problem using O(n logq n) arithmetic operations.
(q = 0, 1, 2).

A direct solver computes a representation for (I + A)−1.



Direct solvers tend to outperform iterative solvers for problems involving:

• ill-conditioned matrices,

• multiple right-hand sides,

• up-dating a known solution to find the solution of another problem
that is “close”,

• constructing the SVD and other factorizations of the matrix.

The method to be presented can be viewed as a generalization of previous
work by E. Michielssen, A. Boag and W.C. Chew (1996).

Related work:

• G. Beylkin and N. Coult (1998),

• H-matrix methods (ca. 1998), W. Hackbusch, S. Börm, et c.

• Y. Chen (2002).



(3) u(x) +
∫

Γ
K(x, y)u(y) ds(y) = f(x), x ∈ Γ.

We will present a fast direct solver for (3) in the following environment:

• The manifold Γ is one-dimensional.
(We will also assume that Γ ⊂ R2 but this is not essential.)

• The kernel K is the single- or double-layer kernel associated with

– Laplace’s equation

– Stokes’ equation

– Elasticity

– Helmholtz (at low or moderate frequencies)

– Maxwell (at low or moderate frequencies)

– etc

• First kind equations can also be handled.



Γ1 Γ2

−→
A21

←−A12

We consider the interaction between the two contours Γ1 and Γ2:

Charges on Γ2
A12 // Pot. on Γ1

A−1
11 // Charges on Γ1

A21 // Pot. on Γ2

The maps A12 and A21 are typically rank-deficient (to finite precision).

Example: Laplace double layer kernel: to accuracy 10−10, the rank is 30.



Γskel
1

(in bold)
Γ2

←−Askel
12

Let k denote the rank of A12.

There exist a set Γskel
1 ⊂ Γ1 with k points and a map Eval such that the

following diagram commutes.

Charges on Γ2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Γ1

Pot. on Γskel
1

Eval

OO



Γskel
1

(in bold)
Γ2

−→
Askel

21

Analogously, we can compress A21:

There exist a set Γskel
1 ⊂ Γ1 with k points and a map Proj such that the

following diagram commutes.

Charges on Γ1
A21 //

Proj
²²

Pot. on Γ2

Charges on Γskel
1

Askel
21

77oooooooooooooooo



Γskel
1

(in bold)
Γ2

−→
Askel

21

←−Askel
12

Now we can compress the entire interaction. . .

Charges on Γ2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Γ1

A−1
11 // Charges on Γ1

A21 //

Proj
²²

Pot. on Γ2

Pot. on Γskel
1

Eval

OO

Charges on Γskel
1

Askel
12

77oooooooooooooooo



Γskel
1 Γ2

−→
Askel

21

←−Askel
12

. . . and completely forget about the original points!

Charges on Γ2
A12 //

Askel
12 ''OOOOOOOOOOOOOOOO Pot. on Γ1

A−1
11 // Charges on Γ1

A21 //

Proj
²²

Pot. on Γ2

Pot. on Γskel
1

Eval

OO

Ã−1
11 // Charges on Γskel

1

Askel
12

77oooooooooooooooo



Notes:

• Askel
12 consists of k of the rows of A12.

• Askel
21 consists of k of the columns of A21.

• The process consists of pure linear algebra.

• Proven to be accurate and well-conditioned.

– Gu and Eisenstat (1996)

– Cheng, Gimbutas, Martinsson, Rokhlin (2003)

– Martinsson and Rokhlin (2003)























































To be precise, each “compression” corresponds to a block-diagonal
transformation.

In the end, we obtain a telescoped factorization

A−1 = B(1)
(
B(2)Ã−1C(2) + D(2)

)
C(1) + D(1).

A is the original matrix,
Ã is the compressed matrix,
B(j), C(j), D(j) are block-diagonal, well-conditioned matrices.

The final step is to invert Ã by brute force.



So far, the algorithm is at best O(n2).

The bottle-neck is the formation and compression of the off-diagonal
blocks.

Γ1

A segmented contour . . . . . . and the corresponding matrix.



Localization using Green’s identity:

Γ1

Γ\Γ1

Instead of compressing the large
matrix representing the interac-
tion between Γ1 and all of the
rest of the contour...

Γ1

Γartif

... it is sufficient to compress only
the interaction between Γ1 and
the artificial contour Γartif .

For non-oscillatory problems on one-dimensional contours, this technique
brings the computational cost down to (at most) O(n log2 n).



Numerical examples

The algorithm was implemented in Matlab (using mex-programs for the
skeletonization).

The experiments were run on a Pentium IV with a 2.8Ghz processor and
512 Mb of RAM.



Example 1 - an exterior Laplace Dirichlet problem

(a) (b)

(a) A rippled contour. (b) A close-up of the area
marked by a dashed rectangle in (a). The number
of ripples change between the different experiments to
keep a constant ratio of 80 discretization nodes per
wavelength.



Nstart Nfinal ttot tsolve Eactual Eres Epot σmin M

400 160 2.4e-01 4.6e-03 2.3e-09 2.0e-09 1.2e-09 4.0e-02 954

800 214 4.7e-01 8.9e-03 2.3e-09 2.5e-09 2.8e-10 3.1e-02 2110

1600 286 7.5e+00 2.6e-02 1.9e-09 2.1e-09 9.8e-11 2.2e-02 4710

3200 361 1.1e+01 3.7e-02 — 1.4e-09 1.8e-10 1.8e-02 9781

6400 437 1.5e+01 7.2e-02 — 2.0e-09 1.3e-10 1.5e-02 20484

12800 508 2.1e+01 1.5e-01 — 1.6e-09 9.2e-11 1.4e-02 42307

25600 559 3.7e+01 2.9e-01 — 2.0e-09 1.3e-10 1.3e-02 86481

51200 599 8.0e+01 6.1e-01 — 1.8e-09 2.8e-10 — 177442

102400 634 1.9e+02 1.2e+00 — 1.4e-09 — — 365495

Computational results for the double layer potential asso-
ciated with an exterior Laplace Dirichlet problem on the
rippled contour.



Example 2 - An exterior Helmholtz Dirichlet problem

A smooth contour. Its length is roughly 15 and its
horizontal width is 2.



k Nstart Nfinal ttot tsolve Eres Epot σmin M

21 800 435 1.5e+01 3.3e-02 9.7e-08 7.1e-07 6.5e-01 12758

40 1600 550 3.0e+01 6.7e-02 6.2e-08 4.0e-08 8.0e-01 25372

79 3200 683 5.3e+01 1.2e-01 5.3e-08 3.8e-08 3.4e-01 44993

158 6400 870 9.2e+01 2.0e-01 3.9e-08 2.9e-08 3.4e-01 81679

316 12800 1179 1.8e+02 3.9e-01 2.3e-08 2.0e-08 3.4e-01 160493

632 25600 1753 4.3e+02 7.5e+00 1.7e-08 1.4e-08 3.3e-01 350984

Computational results for an exterior Helmholtz
Dirichlet problem discretized with 10th order accurate
quadrature. The Helmholtz parameter was chosen to
keep the number of discretization points per wave-
length constant at roughly 45 points per wavelength
(resulting in a quadrature error about 10−12).



The points left after two rounds of compression.
The crosses mark the boundary points between adjacent
clusters.
(The figure actually shows the results of a Laplace problem.)



Example 3 - An interior Helmholtz Dirichlet problem

Close to a resonance.

A smooth pentagram. Its diameter is 2.5 and its
length is roughly 8.3.



j pj nj γj tj ||C(j)||∞ ||B(j)||∞ ||D(j)||∞
1 128 50.00 0.76 15.50 1.12e+00 1.12e+00 4.20e-02

2 64 76.00 0.59 14.32 3.27e+01 3.27e+01 1.75e+00

3 32 89.72 0.60 8.94 1.63e+01 1.62e+01 9.28e-01

4 16 107.00 0.64 6.27 9.09e+00 9.17e+00 2.41e+00

5 8 138.00 0.72 5.97 7.32e+00 7.31e+00 3.64e+00

6 4 199.50 0.80 7.76 3.22e+00 3.23e+00 3.86e+00

Interior Helmholtz Dirichlet problem on a smooth pentagram for the
case N = 6 400, k = 100.011027569 · · · and σmin = 0.00001366 · · · .
For each level j, the table shows the number of clusters pj on that
level, the average size of a cluster nj , the compression ratio γj , the time
required for the factorization tj and the size of the matrices B(j), C(j)

and D(j) in the maximum norm. For this computation, Eres = 2.8·10−10

and Epot = 3.3 · 10−5.
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Plot of σmin versus k for an interior Helmholtz problem
on the smooth pentagram. The values shown were
computed using a matrix of size N = 6400. Each
point in the graph required about 60s of CPU time.



Example 4
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Contour: ttot Nstart Nfinal M

Rippled dumb-bell 37s 25 600 559 86Mb

Star-fish lattice 172s 25 600 1202 210Mb

Test results for two experiments concerning the matrix obtained
by discretizing a double layer Laplace Dirichlet problem.

For the lattice problem, the computational complexity turns
out to be O(N3/2).
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Fig. (a) shows a close-up of the star-fish lattice. Fig. (b)
shows the nodes remaining after the interaction between the
cluster formed by the points inside the parallelogram and the
remainder of the contour has been compressed.



Summary

We have presented an O(n log2 n) direct solver for contour integral
equations with non-oscillatory (or moderately oscillatory) kernels.

Work in progress:

• Applications of the scheme.

• Computing standard factorizations (SVD) of a dense matrix.

• Integral equations defined on surfaces rather than curves.

• Highly oscillatory problems.

Tech reports describing these techniques are available on the web (off the
Yale math department home page) or by request.


