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This thesis describes a set of efficient algorithms for handling large dense

matrices that have rank-structure. To simplify slightly, this means that they

can be tessellated into O(N) submatrices in such a way that each submatrix

is either small, or of numerically low rank. A matrix that is rank-structured

can be stored economically, and is amenable to fast algorithms for performing

arithmetic operations such as matrix-vector multiplication. Rank-structured

matrices arise in solvers for elliptic PDEs, for problems in data mining and

statistics involving smooth kernel functions, and many more.

Recent algorithms [64,77] compute approximations to rank-structured

matrices by accessing the matrix only through a black-box matrix-vector

multiplication routine (e.g., an FMM). The need to operate directly on off-

diagonal blocks is avoided by instead using randomized samples of the full

matrix. The first part of this thesis presents new algorithms for black-box
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randomized compression of rank-structured matrices. These algorithms improve

on prior work in terms of both their efficiency and their range of applicability.

In general, a matrix that admits a rank-structured approximation only

does so under an appropriate ordering of its rows and columns. Therefore,

finding a suitable ordering of the rows and columns of a matrix is an essential

step in building a rank-structured approximation. In prior work, ordering

techniques were developed for special classes of rank structured matrices,

such as those arising from a given sparse matrix, or through a kernel matrix

associated with a given set of points. The second part of the thesis describes new

techniques that apply to broader classes of rank-structured matrices and achieve

a balance between computational cost, storage requirements, and accuracy.
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This thesis describes a set of efficient algorithms for handling large dense

matrices that have rank structure. To simplify slightly, this means that an

N×N matrix can be tessellated into O(N) blocks in such a way that each block

is either small or of low numerical rank (cf. Fig. 1.1). This structure allows the

matrix to be stored and applied to vectors efficiently, often with cost that scales

linearly or close to linearly with N . Sometimes, it is also possible to compute

an approximate inverse or LU factorization in linear or close to linear time.

Matrices of this type have turned out to be ubiquitous in both engineering and

data sciences, and have been the subject of much research in recent decades,

going under names such as H-matrices [8, 12, 43]; HODLR matrices [3, 75],

Hierarchically Block Separable (HBS) or Hierarchically Semi-Separable (HSS)

matrices [16, 17, 102], Recursive Skeletonization [34, 48, 84, 86], and many more.

Figure 1.1 The figure shows an example of a rank-structured matrix. Each off-
diagonal block (gray) has low numerical rank, and each diagonal block (red) is small.
The tessellation pattern shown is just one example among many possibilities. For
matrices of this type, efficient algorithms exist for matrix-vector multiplication, matrix
inversion, LU decomposition, etc.

The original algorithms for rank-structured matrices were developed

for accelerating the simulation of physical phenomena such as acoustic and

electromagnetic scattering problems, for evaluating electrostatic interactions
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in molecular dynamics simulations, and so on. Among the best known early

techniques is the celebrated Fast Multipole Method (FMM) of Greengard

and Rokhlin [38]. These techniques were later generalized by Hackbusch and

co-workers [43], who developed the so called H-matrix techniques to extend

the range of supported arithmetic operations to include tasks such as inversion,

LU factorization, and matrix-matrix multiplication.

Recent algorithms [64,77] compute approximations to rank-structured

matrices by accessing the matrix only through a black-box matrix-vector

multiplication routine (e.g., an FMM). The need to operate directly on off-

diagonal blocks is avoided by instead using randomized samples of the full

matrix. The first part of this thesis presents new algorithms for black-box

randomized compression of rank-structured matrices. These algorithms improve

on prior work in terms of both their efficiency and their range of applicability.

The FMM and related techniques based on rank-structured matrices

are at this time widely used in traditional scientific computing. Recently, it

has been demonstrated that they also hold great promise for applications in

machine learning and data science. These environments pose new challenges,

however. The second part of this thesis addresses the challenge of finding

permutations that reveal rank structure for matrices that are neither sparse

nor for which geometric information is available.
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1.1 Black-box randomized compression

The black-box randomized compression problem is the following: Sup-

pose that A is an N ×N matrix that we know is rank-structured, but we do

not have direct access to the low-rank factors that define the compressible

off-diagonal blocks. Instead, we have access to fast algorithms that given tall

thin matrices Ω,Ψ ∈ R
N×ℓ, evaluate the matrix-matrix products

Y = AΩ, and Z = A∗Ψ.

The problem is then to recover A from the information in the set {Y, Ω, Z, Ψ}.

The presented schemes have several important applications. First,

they can be used to derive a rank-structured representation of any integral

operator for which a fast matrix-vector multiplication algorithm, such as the

Fast Multipole Method [38,40], is available. Such a representation opens the

door to a wider range of matrix operations such as LU factorization, matrix

inversion, and sometimes even full spectral decompositions. Second, it can

greatly simplify algebraic operations involving products of rank-structured

matrices. For instance, the perhaps key application of rank-structured matrix

algebra is the acceleration of sparse direct solvers, as the dense matrices

that arise during LU factorization are often rank-structured. In the course

of such a solver, a typical operation would be to form a Schur complement

such as S22 = A21A
−1
11 A12 that would arise when the top left block A11 is

eliminated from a 2×2 blocked matrix. If A11 is rank-structured, then A−1
11 can

easily be applied to vectors via an LU factorization. If, additionally, A12 and

23



A21 are either sparse or rank-structured, then S22 can easily be applied to a

vector. The technique described will then enable one to construct a data-sparse

representation of S22. In contrast, to directly evaluate the product A21A
−1
11 A12

is both onerous to code and slow to execute.

Prior work on these problems include the randomized compression

algorithm of [76]. Those algorithms require only ∼ k samples to compress a

matrix with the HBS format (also known as the HSS format), and they have

linear complexity when the cost of applying A to a vector is O(N). However,

they are not true black box algorithms since, in addition to randomized samples,

they also require direct evaluation of a small number of entries of the matrix.

Another family of algorithms [64, 77], known as peeling algorithms, are true

black-box algorithms in that they only access A through matrix-vector products

and do not require directly accessing matrix entries. However, they require

∼ k logN samples, and ∼ k2N logN additional floating-point operations, so

they do not have linear complexity.

To our knowledge, the method presented in Chapter 2 (and also in ??)

is the first linear-complexity black-box algorithm for compressing HBS matri-

ces. The compression algorithm requires only ∼ k samples and it has linear

complexity when the cost of applying A to a vector is O(N). It is inspired by

the randomized compression algorithms of [76], which also require only ∼ k

samples to compress an HBS matrix, but are not truly black-box.

The method described in Chapter 3 (and also in ??) is inspired by

the peeling algorithm of [64], which to the best of our knowledge is the first
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true black box algorithm described in the literature. The method of [64] has

formally the same sample complexity ℓ ∼ k log(N) as our method, but involves

substantially larger pre-factors. To be precise, [64] is targeted specifically for H1-

and H
2-matrices arising from the discretization of integral equations. Strong

admissibility, and regular tree structures are used. In this environment, the

method requires ℓ ∼ k 8d log(N) matrix-vector products involving A and A∗,

where d is the dimension of space in which the underlying integral equation is

defined. In contrast, the method presented here has complexity ℓ ∼ k 6d log(N)

for fully populated uniform trees. For more general trees, the acceleration

over the method of [64] is even more dramatic, since the adaptivity of our

method enables it to exploit situations where the matrix arises from a set

of points located on a lower dimensional geometric object. This method is

not competitive with the one of Chapter 3 in terms of computational cost,

but it nonetheless represents an advance over prior peeling algorithms, and is

applicable to additional classes of rank-structured matrices.

1.2 Permutation to reveal rank-structure

In general, a matrix that admits a rank-structured approximation only

does so under an appropriate ordering of its rows and columns. The second part

of this thesis considers the problem of finding permutations of matrices that

reveal rank structure. Prior methods are limited to kernel matrices with some

associated geometric information or to sparse matrices. We present two new

approaches to the permutation problem that apply to previously unaddressed
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classes of rank-structured matrices: one for dense symmetric positive definite

matrices and one for general dense matrices. In Chapter 4, we describe the

Geometry-Oblivious Fast Multipole Method (GOFMM) [107], with which we

approach the problem of reordering a symmetric positive-definite matrix by

viewing the matrix as a kernel matrix with the linear kernel K(φi, φj) = 〈φi, φj〉

applied to a set of Gram vectors {φi} whose coordinates are unspecified. While

it would be possible to compute coordinates of the Gram vectors, doing so would

be prohibitively expensive. Instead, we operate on the Gram vectors implicitly

by defining measures of similarity on pairs of Gram vectors expressed in terms

of only a small number matrix entries. We use the geometry-oblivious similarity

measures to generalize techniques developed in the ASKIT algorithm [72] for

approximation of rank-structured kernel matrices.

In Chapter 5, we present an approach for reordering matrices to reveal

rank structure (assuming such latent structure exists) for general dense matrices.

The reordering of the matrix is determined using statistical leverage scores.

Leverage scores have a rich history of application in regression diagnostics

and, more recently, for randomized low-rank approximation [30, 65, 88]. We

use leverage scores to partition certain blocks of a matrix into compressible

and incompressible blocks, leading to a reordering of the matrix with low-rank

off-diagonal blocks.

1.3 Contributions

A summary of contributions by CSEM area follows.
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Area A

• The presented works draw on numerous areas of mathematical theory

including cluster analysis (Chapters 4 and 5), optimization (Chapter 5),

graph theory (Chapter 3). In particular, randomized linear algebra plays

a critical role throughout the thesis.

• The compression schemes apply statistical and linear algebraic techniques

to estimate the error in various parts of the approximation. Such tech-

niques are used during the process of compression, e.g., for adaptively

determining the rank of a low-rank approximation in order to meet some

error tolerance. They are also used for a posteriori error estimation of

the data-sparse representation.

• In Chapter 3, we analyze the number of vertices the degree of the graphs

we construct. These properties are useful in analyzing the complexity of

our algorithms.

Area B

• Two algorithms for black-box randomized compression of rank-structured

matrices are developed and implemented. Notably, the algorithm of

Chapter 2 is, to our knowledge, the first algorithm for compressing HBS

matrices that is black-box and has linear-complexity.

• Two algorithms for generalized permutation of rank-structured matrices

are developed and implemented.
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• The implementations are designed with performance and numerics in

mind, and include features to enhance usability, such as the ability to

adaptively determining approximation ranks of compressible blocks so as

to meet a user-specified error tolerance.

• Experimental results analyze scalability, accuracy, and efficacy of each

algorithm.

Area C

• The geometry-aware variant of the GOFMM compression algorithm are

applied to matrices arising from problems in electromagnetic scattering.

• The black-box randomized compression algorithms are tested on several

applications including discretization of boundary integral equations and

frontal matrices in nested dissection.

1.3.1 Published and in-progress works

• Levitt, J. L., Martinsson, P.-G. (2022). Linear-Complexity Black-Box

Randomized Compression of Hierarchically Block Separable Matrices.

arXiv preprint arXiv:2205.02990.

• Levitt, J. L., Martinsson, P.-G. (2022). Compressing rank-structured

matrices with graph coloring. arXiv preprint arXiv:2205.03406.

• Yu, C. D., Levitt, J., Reiz, S., & Biros, G. (2017). Geometry-oblivious

FMM for compressing dense SPD matrices. In Proceedings of the In-
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ternational Conference for High Performance Computing, Networking,

Storage and Analysis (pp. 1-14).

• Mang, A., Tharakan, S., Gholami, A., Himthani, N., Subramanian, S.,

Levitt, J., Azmat, M., Mehl, M., Davatzikos, C., Barth, B., & Biros,

G. (2017). SIBIA-GlS: Scalable Biophysics-Based Image Analysis for

Glioma Segmentation. The multimodal brain tumor image segmentation

benchmark (BRATS), MICCAI.

• Levitt, J. L., Boman, E. G., Rajamanickam, S., & Biros, G. (2018).

Nonsymmetric algebraic FMM with application to combined field integral

equations. In Center for Computing Research Summer Proceedings 2018,

2018. Technical Report SAND2019-5093R.

• Levitt, J. L., Biros, G. (2022). Rank-structured approximation of general

dense matrices with leverage score clustering. Unpublished manuscript,

The University of Texas at Austin, Oden Institute for Computational

Engineering and Sciences, Austin, USA.

1.4 Outline

The remainder of this thesis is structured as follows.

Part I addresses the problem of black-box randomized compression of

rank-structured matrices. Chapter 2 presents a linear-complexity algorithm

for compressing HBS matrices, and Chapter 3 presents peeling algorithms
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accelerated with graph coloring for compressing H
1, uniform H

1, and H
2

matrices.

Part II covers the permutation schemes for revealing rank structure.

Chapter 4 describes the Geometry-Oblivious Fast Multipole Method for per-

muting symmetric positive-definite matrices, and Chapter 5 describes the

leverage score clustering scheme for general dense matrices. Chapter 6 presents

an application of the geometry-aware variant of the GOFMM compression

algorithm to matrices arising from problems in electromagnetic scattering.
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Part I

Black-Box Randomized
Compression of

Rank-Structured Matrices
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Chapter 2

Linear-Complexity Black-Box Randomized

Compression of Hierarchically Semiseparable

Matrices1

1The content in this chapter is based on work done in collaboration with Per-Gunnar
Martinsson and published in [60].

32



A randomized algorithm for computing a compressed representation of a

given rank structured matrix A ∈ R
N×N is presented. The algorithm interacts

with A only through its action on vectors. Specifically, it draws two tall thin

matrices Ω, Ψ ∈ R
N×s from a suitable distribution, and then reconstructs A by

analyzing the matrices AΩ and A∗Ψ. For the specific case of a “Hierarchically

Block Separable (HBS)” matrix (a.k.a. Hierarchically Semi-Separable matrix)

of block rank k, the number of samples s required satisfies s = O(k), with

s ≈ 3k being a typical scaling. While a number of randomized algorithms

for compressing rank structured matrices have previously been published, the

current algorithm appears to be the first that is both of truly linear complexity

(no N log(N) factors) and fully black-box in nature (in the sense that no matrix

entry evaluation is required).

2.1 Introduction

This work describes a set of efficient algorithms for handling large dense

matrices that have rank structure. To simplify slightly, this means that an

N×N matrix can be tessellated into O(N) blocks in such a way that each block

is either small or of low numerical rank, cf. Fig. 2.2. This structure allows the

matrix to be stored and applied to vectors efficiently, often with cost that scales

linearly or close to linearly with N . Sometimes, it is also possible to compute

an approximate inverse or LU factorization in linear or close to linear time.

Matrices of this type have turned out to be ubiquitous in both engineering and

data sciences, and have been the subject of much research in recent decades,
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going under names such as H-matrices [8, 12, 43]; HODLR matrices [3, 75],

Hierarchically Block Separable (HBS) or Hierarchically Semi-Separable (HSS)

matrices [16, 17, 102], Recursive Skeletonization [34, 48, 84, 86], and many more.

The specific problem we address is the following: Suppose that A is an

N × N matrix that we know has HBS structure, but we do not have direct

access to the low-rank factors that define the compressible off-diagonal blocks.

Instead, we have access to fast “black-box” algorithms that given tall thin

matrices Ω,Ψ ∈ R
N×s, evaluate the matrix-matrix products

Y = AΩ, and Z = A∗Ψ.

The problem is then to recover A from the information in the set {Y, Ω, Z, Ψ}.

The algorithms described here solve the reconstruction problem using s = O(k)

sample vectors, where k is an upper bound on the ranks of the off-diagonal

blocks. (The pre-factor hidden in the formula s = O(k) is often modest, with

s ≈ 3k being representative.)

The scheme presented has several important applications. First, it can

be used to derive a rank-structured representation of any integral operator

for which a fast matrix-vector multiplication algorithm, such as the Fast

Multipole Method [38, 40], is available. Such a representation opens the

door to a wider range of matrix operations such as LU factorization, matrix

inversion, and sometimes even full spectral decompositions. Second, it can

greatly simplify algebraic operations involving products of rank-structured

matrices. For instance, the perhaps key application of rank-structured matrix
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algebra is the acceleration of sparse direct solvers, as the dense matrices

that arise during LU factorization are often rank-structured. In the course

of such a solver, a typical operation would be to form a Schur complement

such as S22 = A21A
−1
11 A12 that would arise when the top left block A11 is

eliminated from a 2×2 blocked matrix. If A11 is rank-structured, then A−1
11 can

easily be applied to vectors via an LU factorization. If, additionally, A12 and

A21 are either sparse or rank-structured, then S22 can easily be applied to a

vector. The technique described will then enable one to construct a data-sparse

representation of S22. In contrast, to directly evaluate the product A21A
−1
11 A12

is both onerous to code and slow to execute.

The method we describe is inspired by the randomized compression

algorithms of [76]. The algorithms described in that work require only O(k)

samples to compress an HBS matrix, and they have linear complexity when the

cost of applying A to a vector is O(N). However, they are not true black-box

algorithms since, in addition to randomized samples, they also require direct

evaluation of a small number of entries of the matrix. In contrast, the method

presented here is truly black-box.

Remark 1 (Peeling algorithms). A related class of algorithms for random-

ized compression of rank-structured matrices is described in [64, 77]. These

techniques are “true” black-box algorithms in that they only access the matrix

through the black-box matrix-vector multiplication routines, but they require

O(k log(N)) samples and O(k2 N log(N)) floating point operations, so they do

not have linear complexity.
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The manuscript is structured as follows: Section 2.2 surveys some basic

linear algebraic techniques that we rely on. Section 2.3 introduces our formalism

for HBS matrices. Section 2.4 describes the new algorithm, and analyzes its

asymptotic complexity. Section 2.5 describes numerical results.

2.2 Preliminaries

In introducing well-known material, we follow the presentation of [77].

2.2.1 Notation

Throughout the paper, we measure a vector x ∈ R
n by its Euclidean

norm ‖x‖ = (
∑

i |xi|2)
1
2 . We measure a matrix A ∈ R

m×n with the correspond-

ing operator norm ‖A‖ = sup‖x‖=1 ‖Ax‖, and in some cases with the Frobenius

norm ‖A‖Fro = (
∑

i,j |A(i, j)2)1/2. To denote submatrices, we use the notation

of Golub and van Loan [35]: If A is an m × n matrix, and I = [i1, i2, . . . , ik]

and J = [j1, j2, . . . , jk], then A(I, J) denotes the k × l matrix

A(I, J) =




A(i1, j1) A(i1, j2) . . . A(i1, jl)
A(i2, j1) A(i2, j2) . . . A(i2, jl)

...
...

...
A(ik, j1) A(ik, j2) . . . A(ik, jl)




We let A(I, :) denote the column submatrix A(I, [1, 2, . . . , n]) and let A(:, J)

denote the analogous row submatrix of A. We let A∗ denote the transpose of

A, and we say that matrix U is orthonormal if its columns are orthonormal,

U∗U = I.
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2.2.2 The QR factorization

The full QR factorization of a matrix A of size m× n takes the form

A = Q R,
m× n m×m m× n

(2.1)

where Q is orthonormal and R is upper-triangular. For a matrix of rank k, the

rank-k partial QR factorization of A is given by

A = Q(:, 1 : k) R(1 : k, 1 : k),
m× n m× k k × n

and the last m− k columns of Q contain an orthonormal basis of the nullspace

of A,

span(Q(:, (k + 1) : m)) = N(A).

2.2.3 Randomized compression

Let A be an m × n matrix that can be accurately approximated by

a matrix of rank k, and suppose we seek to determine a matrix Q with

orthonormal columns (as few as possible) such that ‖A − QQ∗A‖ is small.

In other words, we seek a matrix Q whose columns form an approximate

orthornomal basis (ON-basis) for the column space of A. This task can

efficiently be solved via the following randomized procedure:

1. Pick a small integer p representing how much “oversampling” is done.

(p = 10 is often good.)

2. Form an n×(k+p) matrix G whose entries are independent and identically

distributed (i.i.d.) normalized Gaussian random numbers.
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3. Form the “sample matrix” Y = AG of size m× (k + p).

4. Construct an m× (k+ p) matrix Q whose columns form an ON basis for

the columns of Y.

Note that each column of the sample matrix Y is a random linear

combination of the columns of A. We would therefore expect the algorithm

described to have a high probability of producing an accurate result when p is

a large number. It is perhaps less obvious that this probability depends only

on p (not on m or n, or any other properties of A) and that it approaches

1 extremely rapidly as p increases. In fact, one can show that the basis Q

determined by the scheme above satisfies

‖A−QQ∗A‖ ≤ [1 + 11
√

k + p ·
√
min{m,n}]σk+1 (2.2)

with probability at least 1 − 6 · p−p (see [46, sec. 1.5]), where σk+1 is the

(k + 1)-largest singular value of A. The error bound Eq. (2.2) indicates that

the error produced by the randomized sampling procedure can be larger than

the theoretically minimal error σk+1 by a factor of 1+ 11
√
k + p ·

√
min{m,n}.

This crude bound is typically very pessimistic, in particular for matrices whose

singular values decay rapidly; cf. [46].

2.2.4 Functions for computing orthonormal bases

We write

Q = qr(B, k),
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for a function call that returns the first k columns of Q in a QR factorization,

and we write

Q = null(B, k),

for a function call that returns the last k columns of Q in a QR factorization.

We only call null with inputs B, k for a matrix B that is known to have a

nullspace of dimension at least k.

2.3 Hierarchically semiseparable matrices

In this section, we review important concepts relating to HBS matrices,

based on the presentation of [79]. We introduce a binary tree structure that

specifies the tessellation of an HBS matrix, give the precise definition of an

HBS matrix, and describe telescoping factorizations of HBS matrices.

2.3.1 A tree structure

Let I = [1, 2, . . . , N ] be a vector of indices corresponding to the rows

and columns of an N ×N matrix. We define a tree T, in which each node τ is

associated with a contiguous subset of the indices Iτ . To the root node of the

tree, we assign the full set of indices I. The two children of the root node are

given index vectors [1, . . . , ⌈N/2⌉] and [⌈N/2⌉+ 1, . . . , N ]. We continue evenly

splitting the indices of each node to form two child nodes until we reach a level

of the tree in which the size of each node is below some given threshold m. We

refer to a node with children as a parent node, and a node with no children as

a leaf node. The depth of a node is defined as its distance from the root node,
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Level 0

Level 1

Level 2

I1

I2

I4 I5

I3

I6 I7

I1 = [1, 2, ..., 400]

I2 = [1, ..., 200], I3 = [201, ..., 400]

I4 = [1, ..., 100], I5 = [101, ..., 200],
...

Figure 2.1 A binary tree structure, where the levels of the tree represent successively
refined partitions of the index vector [1, 2, ..., 400].

and level ℓ of the tree is defined as the set of nodes with depth ℓ, so that level

0 consists of only the root node, level 1 consists of the two children of the root

node, and so on. The levels of the tree represent successively finer partitions of

I. The depth of the tree is defined as the maximum node depth, denoted by

L ≈ log2 N/m. For simplicity, we only consider fully populated binary trees.

An example tree structure is depicted in Fig. 2.1.

2.3.2 The HBS matrix format

Let T be a tree defined on index vector I = [1, 2, . . . , N ]. Matrix A of

size N ×N is said to be hierarchically block separable with block rank k with

respect to T if the following conditions are satisfied.

(1) Assumptions on the ranks of off-diagonal blocks of the finest level:

For every pair of distinct leaf nodes τ and τ ′, we define

Aτ,τ ′ = A(Iτ , Iτ ′)

and require that every such matrix have rank of at most k. Additionally, for

each leaf node τ there must exist basis matrices Uτ and Vτ such that for every
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leaf node τ ′ 6= τ we have

Aτ,τ ′ = Uτ Ãτ,τ ′ V∗
τ ′ .

m×m m× k k × k k ×m
(2.3)

(2) Assumptions on the ranks of off-diagonal blocks of levels L− 1, L− 2, . . . 1.

The following conditions must hold for each level ℓ = L− 1, L− 2, . . . , 1. For

every pair of distinct nodes τ and τ ′ on level ℓ with children (α, β) and (α′, β′),

respectively, we define

Aτ,τ ′ =

[
Ãα,α′ Ãα,β′

Ãβ,α′ Ãβ,β′

]

and require that every such matrix have rank of at most k. Additionally, for

each node τ on level ℓ there must exist basis matrices Uτ and Vτ such that for

every node τ ′ 6= τ on level ℓ, we have

Aτ,τ ′ = Uτ Ãτ,τ ′ V∗
τ ′ .

2k × 2k 2k × k k × k k × 2k

Notably, no assumptions are made on the ranks of the on-diagonal

blocks of level L, and those blocks may have full rank. An example tessellation

of an HBS matrix showing compressible and incompressible blocks is given in

Fig. 2.2.

2.3.3 Telescoping factorizations

We define the following block-diagonal basis matrices.

U(ℓ) = diag(Uτ : τ is a node on level ℓ), ℓ = 1, 2, . . . , L

V(ℓ) = diag(Vτ : τ is a node on level ℓ), ℓ = 1, 2, . . . , L
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Figure 2.2 Tessellation of an HBS matrix with depth 3. Low-rank blocks are shown
in gray, and blocks that are not necessarily low-rank are shown in pink.

Then we obtain a factorization of level L of the form

A = U(L)Ã
(L)

(V(L))∗ +D(L), (2.4)

where
Ã

(L)
= (U(L))∗AV(L)

D(L) = A−U(L)Ã
(L)

(V(L))∗.

Equation (2.4) can be viewed as a decomposition of A into a term that “fits”

into the low-rank approximation using basis matrices U(L) and V(L) and a

42



discrepancy term D(L) that does not.

For successively coarser levels ℓ = L− 1, L− 2, . . . , 1, we similarly have

Ã
(ℓ+1)

= U(ℓ)Ã
(ℓ)
(V(ℓ))∗ +D(ℓ), (2.5)

where
Ã

(ℓ)
= (U(ℓ))∗Ã

(ℓ+1)
V(ℓ)

D(ℓ) = Ã
(ℓ+1) −U(ℓ)Ã

(ℓ)
(V(ℓ))∗.

For the root level, we define

D(0) = Ã
(ℓ+1)

.

Equations (2.4) and (2.5) define a telescoping factorization of A. For example,

a factorization with L = 3 takes the form

A = U(3)(U(2)(U(1)D(0)(V(1))∗ +D(1))(V(2))∗ +D(2))(V(3))∗ +D(3).

Algorithm 2.3.1 describes the process of efficiently applying the telescoping

factorization to a vector.

It follows from Eq. (2.3) that matrices D(ℓ), ℓ = 0, 1, . . . L, are also

block-diagonal. Matrix D(ℓ) can be described in terms of its on-diagonal blocks

as

D(ℓ) = diag(Dτ : τ is a node on level ℓ),

where

Dτ = Aτ,τ −UτU
∗
τAτ,τVτV

∗
τ . (2.6)
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Algorithm 2.3.1 Apply a compressed HBS matrix to a vector: u = Aq.

Upward pass
for level ℓ = L,L− 1, . . . , 1 do

for node τ in level L do
if τ is a leaf node then

q̂τ = V∗
τq(Iτ )

else
Let α and β be the children of τ .

q̂τ = V∗
τ

[
q̂α

q̂β

]

Downward pass
for levels ℓ = 0, 1, . . . , L do

if τ is the root node then
Let α and β be the children of τ .[
ûα

ûβ

]
= Dτ

[
q̂α

q̂β

]

else if τ is a parent node then
Let α and β be the children of τ .[
ûα

ûβ

]
= Uτ ûτ +Dτ

[
q̂α

q̂β

]

else
u(Iτ ) = Uτ ûτ +Dτq(Iτ )
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Remark 2. A common practice is to define the telescoping factorization with

D(L) as the block-diagonal part of A and with Ã
(L)

as all but the block-diagonal

part of A, and to define D(ℓ) and Ã
(ℓ)

similarly for ℓ = 0, 1, . . . , L − 1. That

approach, which is taken by [76], necessitates directly accessing entries of the

matrix to form the matrices D(ℓ). Our definition of the telescoping factorization

facilitates compressing the matrix while accessing it only through randomized

sampling, as will become clear in later sections.

2.4 Compressing HSS matrices

In this section we present the main algorithm for compressing an HBS

matrix. Let A be an N ×N HBS matrix with block rank k, and let r = k + p,

where p represents a small amount of oversampling (p = 5 or p = 10 are

often sufficient). Let Ω and Ψ be N × s Gaussian test matrices, where

s ≥ max(r +m, 3r), and define sample matrices Y = AΩ and Z = A∗Ψ. Our

objective is to use the information contained in the test and sample matrices

to construct a telescoping factorization of A, as defined in Section 2.3.3.

We begin this section by describing the process of finding the level-L

basis matrices U(L) and V(L) and the level-L discrepancy matrix D(L). Next,

we describe how to proceed to coarser levels of the tree. Finally, we analyze

the asymptotic complexity of the compression algorithm.

45



2.4.1 Computing basis matrices U,V

We start by describing the process of computing the basis matrix U(L)

of the finest level, which involves finding for each τ on level L a basis matrix

Uτ that spans the range of A(Iτ , I
′
τ ) for every node τ ′ 6= τ on level L. We will

compute Uτ by applying the randomized algorithm described in Section 2.2.3 to

A(Iτ , I
c
τ ), where Icτ = I \ Iτ is the set of indices that are not in Iτ . Importantly,

the procedure does not require the ability to apply A(Iτ , I
c
τ ) to random vectors;

rather we compute the randomized samples only using information contained

in Ω and Y.

We define the following blocks of size m× s associated with τ .

Ωτ = Ω(Iτ , :)

Yτ = Y(Iτ , :)

Since Ωτ is of size m× s, it has a nullspace of dimension at least s−m ≥ r,

so we can find a set of r orthonormal vectors that belong to its nullspace

Pτ = null(Ωτ , r)

so that ΩτPτ = 0.

Then ΩPτ is of size N × r with (ΩPτ )(Iτ , :) = ΩτPτ = 0, and

(ΩPτ )(I
c
τ , :) is a standard Gaussian random matrix of size (N −m)× r. Consid-

ering the structure of ΩPτ , the product AΩPτ can be viewed as a randomized

sample of A, excluding contributions from columns A(:, Iτ ). Then the rows of

AΩPτ indexed by Iτ contain a randomized sample of A(Iτ , I
c
τ ). Moreover, since

(AΩPτ )(Iτ , :) = (YPτ )(Iτ , :) = YτPτ , we can obtain that sample inexpensively
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by simply multiplying YτPτ . Then we orthonormalize the sample to find basis

matrix Uτ ,

Uτ = qr(YτPτ , r). (2.7)

We repeat the same procedure to find Uτ for each node τ on level L. A

similar process using Ψ and Z yields basis matrices Vτ ,

Qτ = null(Ψτ , r)

Vτ = qr(ZτQτ , r).
(2.8)

2.4.2 Computing discrepancy matrix D

Once we have computed U(L) and V(L), we next compute D(L). We

proceed by rewriting Eq. (2.6) as

Dτ = (I−UτU
∗
τ )Aτ,τ +UτU

∗
τAτ,τ (I− VτV

∗
τ ), (2.9)

and deriving formulas for computing (I−UτU
∗
τ )Aτ,τ and UτU

∗
τAτ,τ (I− VτV

∗
τ )

separately.

For (I−UτU
∗
τ )Aτ,τ , we first express Yτ as a blocked matrix product

Yτ =
∑

τ ′ in level ℓ

Aτ,τ ′Ωτ ′ .

Multiplying (I−UτU
∗
τ ) and applying Eq. (2.3) gives

(I−UτU
∗
τ )Yτ = (I−UτU

∗
τ )Aτ,τΩτ .

Solving a least-squares problem with Ωτ gives

(I−UτU
∗
τ )Aτ,τ = (I−UτU

∗
τ )YτΩ

†
τ . (2.10)
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A similar derivation yields

Aτ,τ (I− VτV
∗
τ ) = ((I− VτV

∗
τ )ZτΨ

†
τ )

∗. (2.11)

Substituting Eqs. (2.10) and (2.11) into Eq. (2.9) gives the formula

Dτ = (I−UτU
∗
τ )YτΩ

†
τ +UτU

∗
τ ((I− VτV

∗
τ )ZτΨ

†
τ )

∗. (2.12)

2.4.3 Compressing levels ℓ = L− 1, L− 2, . . . , 0

After compressing level L, we proceed to the next coarser level L− 1.

That is, we seek U(L−1),V(L−1), and D(L−1) that satisfy Eq. (2.5). We do so by

first obtaining randomized samples of Ã
(L)

, and then finding U(L−1),V(L−1),

and D(L−1) using the same procedure as for level L.

To compute randomized samples of Ã
(L)

, we multiply Eq. (2.4) with Ω

and rearrange to obtain

Y = AΩ = (U(L)Ã
(L)

(V(L))∗ +D(L))Ω

(U(L))∗(Y −D(L)Ω) = Ã
(L)

((V(L))∗Ω)

Then (U(L))∗(Y − D(L)Ω) contains s randomized samples of Ã
(L)

with test

matrix (V(L))∗Ω. Then for each node τ on level L− 1, we define

Ωτ =

[
V∗

αΩα

V∗
βΩβ

]

Yτ =

[
U∗

α(Yα −DαΩα)
U∗

β(Yβ −DβΩβ)

]
,

where α and β are the children of τ . We define Ψτ and Zτ analogously. Once

we have Ωτ ,Ψτ ,Yτ ,Zτ for each τ on level L − 1, we compute Uτ ,Vτ , and
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Dτ for each node τ on level L − 1 exactly as before using Eqs. (2.7), (2.8),

and (2.12).

This process is applied to successively coarser levels of the tree until

the root node is reached. For the root node τ , we have Yτ = D(0)Ωτ , so we

simply solve D(0) = YτΩ
†
τ . The full compression procedure is summarized in

Algorithm 2.4.1.

Remark 3. The computation of Dτ involves solving least squares problems with

Gaussian matrices Ωτ and Ψτ of size m× s or 2r× s. Gaussian matrices with

nearly square shapes have non-negligible probabilities of being ill-conditioned,

but the probabilities quickly become negligible even for slightly rectangular matri-

ces [20,31]. Such concerns can be alleviated by choosing s to be sufficiently large.

For the numerical experiments in Section 2.5, we simply use s = r +m = 3r.

Remark 4. For levels l = L−1, L−2, ..., 1, V(l) depends on the draw of Ω, and

therefore the test matrices defined in Section 2.4.3 may not exactly be standard

Gaussian matrices. However, we observe empirically that the dependence is

very weak, and the new test matrices behave like Gaussian test matrices.

2.4.4 Asymptotic complexity

We assume for simplicity that m = 2r and s = 3r. Algorithm 2.4.1

requires s matrix-vector products of A and A∗, and an additional O(r3) op-

erations for each node in the tree, of which there are approximately 2N/m.
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Algorithm 2.4.1 Compressing an HBS matrix

Compute randomized samples of A and A∗.
Form Gaussian random test matrices Ω and Ψ of size N × s.
Multiply Y = AΩ and Z = A∗Ψ.

Compress level by level from finest to coarsest.
for level ℓ = L,L− 1, . . . , 0 do

for node τ in level ℓ do
if τ is a leaf node then

Ωτ = Ω(Iτ , :), Ψτ = Ψ(Iτ , :)

Yτ = Y(Iτ , :), Zτ = Z(Iτ , :)
else

Let α and β denote the children of τ .

Ωτ =

[
V∗

αΩα

V∗
βΩβ

]
, Ψτ =

[
U∗

αΨα

U∗
βΨβ

]

Yτ =

[
U∗

α(Yα −DαΩα)
U∗

β(Yβ −DβΩβ)

]
, Zτ =

[
V∗

α(Zα −D∗
αΨα)

V∗
β(Zβ −D∗

βΨβ)

]

if ℓ > 0 then
Pτ = null(Ωτ , r), Qτ = null(Ψτ , r)

Uτ = qr(YτPτ , r), Vτ = qr(ZτQτ , r)

Dτ = (I−UτU
∗
τ )YτΩ

†
τ +UτU

∗
τ

(
(I− VτV

∗
τ )ZτΨ

†
τ

)∗
else

Find Dτ for root node τ .
Dτ = YτΩ

†
τ
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Therefore, the total compression time is

Tcompress = 6rN × Trand + 6r × Tmult + O(r2N)× Tflop,

where Trand denotes the time to sample a value from the standard Gaussian

distribution, Tmult denotes the time to apply A or A∗ to a vector, and Tflop

denotes the time to carry out a floating point arithmetic operation.

Remark 5 (Comparison of information efficiency). If we view each randomized

sample as carrying N values worth of information about A, and still assume m =

2r and s = 3r, we find that the compression algorithm requires a total of 6rN

values to reconstruct the matrix. The algorithm of [76] requires only r samples

of A and A∗, but it also requires access to ∼ mN matrix entries that form the

block-diagonal part of A as well as ∼ rN elements that appear in interpolative

decompositions, for a total of 5rN values worth of information. Therefore, the

algorithm in the present work requires only slightly more information to recover

A, while having the advantage of being truly black-box.

2.5 Numerical experiments

In this section, we present a selection of numerical results. In Sec-

tions 2.5.1 to 2.5.4, we report the following quantities for a number of test

problems and rank structure formats: (1) the time to compress the operator,

(2) the time to apply the compressed representation to a vector, (3) the relative

accuracy of the compressed representation, and (4) the storage requirements

of the compressed representation measured as the number of values per de-
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gree of freedom. For compression time, we report both the total time taken

for compression as well as the compression time excluding the time spent by

the black-box multiplication routine for computing randomized samples. The

algorithms for compressing matrices and applying compressed representations

are written in Python, and the black-box multiplication routines are written in

MATLAB. The experiments were carried out on a workstation with an Intel

Core i9-10900K processor with 10 cores and 128GB of memory.

We measure the accuracy of the compressed matrices using the relative

error

‖Ã− A‖
‖A‖

computed via 20 iterations of the power method. We also report the maximum

leaf node size m and the number r of random vectors per test matrix, which

are inputs to the compression algorithm.

2.5.1 Boundary integral equation

We consider a matrix arising from the discretization of the Boundary

Integral Equation (BIE)

1

2
q(x) +

∫

Γ

(x− y) · n(y)
4π|x− y|2 q(y) ds(y) = f(x), x ∈ Γ, (2.13)

where Γ is the simple closed contour in the plane shown in Figure 2.3, and

where n(y) is the outwards pointing unit normal of Γ at y. The BIE (2.13) is a

standard integral equation formulation of the Laplace equation with boundary

condition f on the domain interior to Γ. The BIE (2.13) is discretized using
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Figure 2.3 Contour Γ on which the BIE (2.13) is defined.

the Nyström method on N equispaced points on Γ, with the Trapezoidal rule

as the quadrature (since the kernel in (2.13) is smooth, the Trapezoidal rule

has exponential convergence).

The fast matrix-vector multiplication is in this case furnished by the

recursive skeletonization (RS) procedure of [84]. To avoid spurious effects due

to the rank structure inherent in RS, we compute the matrix-vector products

at close to double precision accuracy, and with an entirely uncorrelated tree

structure.

Results are given in Fig. 2.4.

Remark 6. The problem under consideration here is artificial in the sense

that there is no actual need to use more than a couple of hundred points to

resolve (2.13) numerically to double precision accuracy. It is included merely

to illustrate the asymptotic scaling of the proposed method.
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Figure 2.4 Results from applying the compression algorithm to a double layer
potential on a simple contour in the plane. Here r = 30 and m = 60.

2.5.2 Operator multiplication

We next investigate how the proposed technique performs on a matrix

matrix multiplication problem. Specifically, we determine the Neumann-to-

Dirichlet operator T for the contour shown in Figure 2.3 using the well known

formula

T = S

(
1

2
I +D∗

)−1

,

where S is the single layer operator [Sq](x) =
∫
Γ
− 1

2π
log |x−y| q(y) ds(y), and

where D∗ is the adjoint of the double-layer operator [D∗q](x) =
∫
Γ

n(x)·(x−y)
2π|x−y|2

q(y) ds(y).
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Figure 2.5 Results from applying the compression algorithm to the Neumann-to-
Dirichlet operator. Here r = 100 and m = 200.

The operators S and D are again discretized using a Nyström method on equi-

spaced points (with sixth order Kapur-Rokhlin [53] corrections to handle the

singularity in S), resulting in matrices S and D. The S
(
0.5I+D∗

)−1
is again

applied using the recursive skeletonization procedure of [84].

Results are given in Fig. 2.5.
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2.5.3 Fast multipole method

2.5.4 Frontal matrices in nested dissection

Our next example is a simple model problem that illustrates the behavior

of the proposed method in the context of sparse direct solvers. The idea here

is to use rank structure to compress the increasingly large Schur complements

that arise in the LU factorization of a sparse matrix arising from the finite

element or finite difference discretization of an elliptic PDE, cf. [80, Ch. 21].

As a model problem, we consider an N ×N matrix C that encodes the stiffness

matrix for the standard five-point stencil finite difference approximation to the

Poisson equation on a rectangle. We use a grid with N×51 nodes. We partition

the grid into three sets {1, 2, 3}, as shown in Fig. 2.6, and then tessellate C

accordingly,

C =



C11 0 C13

0 C22 C23

C31 C32 C33


 .

The matrix we seek to compress is the Schur complement

A = C33 − C31C
−1
11 C31 − C32C

−1
22 C23.

In our example, we apply A to vector by calling standard sparse direct solvers

for the left and the right subdomains, respectively.

Results are given in Fig. 2.7.

2.5.5 Summary of observations

• The results exhibit linear scaling of computation time for compressing

the operators and for applying the compressed representations to vectors.
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I1 I2

I3

Figure 2.6 An example of the grid in the sparse LU example described in Section
2.5.4. There are N × n points in the grid, shown for N = 10, n = 51.

• The approximations achieve high accuracy in every case.

• The asymptotic storage cost, reported as number of floating point numbers

per degree of freedom, is depends on r and m, but is independent of the

problem size N .

2.6 Conclusions

This paper presents an algorithm for black-box randomized compression

of Hierarchically Block Separable matrices. To compress an N ×N matrix A,

the algorithm requires only O(k) samples of A and A∗, where k is the block rank

of A. Numerical experiments demonstrate that the algorithms are accurate

and very computationally efficient, with compression time scaling linearly in

N when the cost of applying A and A∗ to a vector is O(N).
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Figure 2.7 Results from applying the compression algorithm to frontal matrices in
the nested dissection algorithm. Here r = 30 and m = 60.
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Chapter 3

Randomized Compression of Rank-Structured

Matrices with Graph Coloring1

1The content in this chapter is based on work done in collaboration with Per-Gunnar
Martinsson and published in [61].
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A randomized algorithm for computing a data sparse representation

of a given rank structured matrix A (a.k.a. an H-matrix) is presented. The

algorithm draws on the randomized singular value decomposition (RSVD), and

operates under the assumption that algorithms for rapidly applying A and

A∗ to vectors are available. The algorithm analyzes the hierarchical tree that

defines the rank structure using graph coloring algorithms to generate a set of

random test vectors. The matrix is then applied to the test vectors, and in a

final step the matrix itself is reconstructed by the observed input-output pairs.

The method presented is an evolution of the “peeling algorithm” of L. Lin,

J. Lu, and L. Ying, “Fast construction of hierarchical matrix representation

from matrixvector multiplication,” JCP, 230(10), 2011. For the case of uniform

trees, the new method substantially reduces the pre-factor of the original

peeling algorithm. More significantly, the new technique leads to dramatic

acceleration for many non-uniform trees since it constructs sample vectors that

are optimized for a given tree. The algorithm is particularly effective for kernel

matrices involving a set of points restricted to a lower dimensional object than

the ambient space, such as a boundary integral equation defined on a surface

in three dimensions.

3.1 Introduction

This work describes a set of efficient algorithms for handling large dense

matrices that have rank structure. To simplify slightly, this means that an

N × N matrix can be tessellated into O(N) blocks in such a way that each
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block is either small or of low numerical rank, cf. Figures 3.3 and 3.1. This

structure allows the matrix to be stored and applied to vectors efficiently, often

with cost that scales linearly or close to linearly with N . Sometimes, it is also

possible to compute an approximate inverse or LU factorization in linear or

close to linear time. Matrices of this type have turned out to be ubiquitous in

both engineering and data sciences, and have been the subject of much research

in recent decades, going under names such as H-matrices [8, 12,43]; HODLR

matrices [3, 75], Hierarchically Semi-Separable (HSS) matrices [16, 17, 102],

Recursive Skeletonization [34,48,84,86], and many more.

The specific problem we address is the following: Suppose that A is an

N×N matrix that we know is rank-structured, but we do not have direct access

to the low-rank factors that define the compressible off-diagonal blocks. Instead,

we have access to fast algorithms that given tall thin matrices Ω,Ψ ∈ R
N×ℓ,

evaluate the matrix-matrix products

Y = AΩ, and Z = A∗Ψ.

The problem is then to construct two random matrices Ω and Ψ for which A

can be recovered from the information in the set {Y, Ω, Z, Ψ}. The algorithms

described here solve the reconstruction problem using ℓ ∼ k log(N) sample

vectors, where k is an upper bound on the ranks of the off-diagonal blocks.

The key novelty is the formulation of a graph coloring problem to analyze

the cluster tree that defines the rank structure to build test matrices that are

optimized for the specific problem under consideration.
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The scheme presented has several important applications. First, it can

be used to derive a rank-structured representation of any integral operator

for which a fast matrix-vector multiplication algorithm, such as the Fast

Multipole Method [38, 40], is available. Such a representation opens the

door to a wider range of matrix operations such as LU factorization, matrix

inversion, and sometimes even full spectral decompositions. Second, it can

greatly simplify algebraic operations involving products of rank-structured

matrices. For instance, the perhaps key application of rank-structured matrix

algebra is the acceleration of sparse direct solvers, as the dense matrices

that arise during LU factorization are often rank-structured. In the course

of such a solver, a typical operation would be to form a Schur complement

such as S22 = A21A
−1
11 A12 that would arise when the top left block A11 is

eliminated from a 2×2 blocked matrix. If A11 is rank-structured, then A−1
11 can

easily be applied to vectors via an LU factorization. If, additionally, A12 and

A21 are either sparse or rank-structured, then S22 can easily be applied to a

vector. The technique described will then enable one to construct a data-sparse

representation of S22. In contrast, to directly evaluate the product A21A
−1
11 A12

is both onerous to code and slow to execute.

The method we describe is inspired by the “peeling algorithm” of [64],

which to the best of our knowledge was the first true black box algorithm

described in the literature. The method of [64] has formally the same sample

complexity ℓ ∼ k log(N) as our method, but involves substantially larger

pre-factors. To be precise, [64] is targeted specifically for H1- and H
2-matrices
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arising from the discretization of integral equations. Strong admissibility, and

regular tree structures are used. In this environment, the method requires

ℓ ∼ k 8d log(N) matrix-vector products involving A and A∗, where d is the

dimension of space in which the underlying integral equation is defined. In

contrast, the method presented here has complexity ℓ ∼ k 6d log(N) for fully

populated uniform trees. For more general trees, the acceleration over the

method of [64] is even more dramatic, since the adaptivity of our method

enables it to exploit situations where the matrix arises from a set of points

located on a lower dimensional geometric object. As an illustration, Section 3.5

reports on experiments involving a boundary integral equation defined on a 2D

surface in three dimensional space, as well as examples in higher dimensions.

Another advantage of the techniques presented here is that they are not

limited to the H
1 structure. To compress uniform H

1 and H
2 matrices, the

presented algorithms obtain uniform basis matrices by sampling the interactions

of a box with its entire interaction list collectively. This process results in

higher quality samples while requiring fewer matrix-vector products compared

to existing methods that approximate interactions between boxes separately

and then apply a recompression step to obtain uniform basis matrices. More

generally, the formulation of a graph coloring problem can be used to design

test matrices for any tessellation (e.g., arising from some other geometric or

algebraic admissibility condition).

Remark 7 (Linear complexity schemes). A related class of algorithms for com-

puting a rank-structured matrix by observing its action on certain structured
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Figure 3.1 An H
1 matrix for a quadtree over a uniform grid in the plane. Dense

blocks are shown in dark gray, and low-rank blocks are represented with a white
background and light gray rectangles representing the shapes of the low-rank factors.

random vectors was described in [76]. These techniques have true linear com-

plexity (no logarithmic terms), and tend to be very fast in practice. However,

they are not true black box algorithms, as they require the direct evaluation of a

small number of entries of the matrix. In contrast, the method presented here

is truly black box, like the methods of [64,77].

The manuscript is structured as follows: Section 3.2 surveys some basic

linear algebraic techniques that we rely on. Section 3.3 introduces our formalism

for rank-structured matrices. Section 3.4 describes the new algorithm, and

analyzes its asymptotic complexity. Section 3.5 describes numerical results.
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3.2 Preliminaries

3.2.1 Notation

Throughout the paper, we measure a vector x ∈ R
n by its Euclidean

norm ‖x‖ = (
∑

i |xi|2)
1
2 . We measure a matrix A ∈ R

m×n with the correspond-

ing operator norm ‖A‖ = sup‖x‖=1 ‖Ax‖, and in some cases with the Frobenius

norm ‖A‖Fro = (
∑

i,j |A(i, j)2)1/2. To denote submatrices, we use the notation

of Golub and van Loan [35]: If A is an m × n matrix, and I = [i1, i2, . . . , ik]

and J = [j1, j2, . . . , jk], then A(I, J) denotes the k × l matrix

A(I, J) =




A(i1, j1) A(i1, j2) . . . A(i1, jl)
A(i2, j1) A(i2, j2) . . . A(i2, jl)

...
...

...
A(ik, j1) A(ik, j2) . . . A(ik, jl)




We let A(I, :) denote the column submatrix A(I, [1, 2, . . . , n]) and analogously

let A(:, J) denote a row submatrix of A. We let A∗ denote the transpose of

A, and we say that matrix U is orthonormal if its columns are orthonormal,

U∗U = I.

3.2.2 The QR factorization

The column-pivoted QR factorization of a matrix A of size m× n takes

the form

A P = Q R,
m× n n× n m× r r × n

(3.1)

where r = min(m,n), Q is orthonormal, R is upper-triangular, and P is a

permutation matrix. Representing the permutation matrix P as the vector

J ⊂ Z
n
+ of column indices such that P = I(:, J), the factorization Eq. (3.1) can
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be expressed as

A(:, J) = Q R.
m× n m× r r × n

For a matrix that is numerically low-rank, a rank-k approximation of A is given

by a “partial QR factorization of A,”

A(:, J) ≈ Qk Rk.
m× n m× k k × n

3.2.3 The singular value decomposition (SVD)

The singular value decomposition of a matrix A of size m× n takes the

form

A = U Σ V∗,
m× n m× r r × r r × n

(3.2)

where r = min(m,n), U and V are orthonormal matrices, and Σ is a diagonal

matrix with diagonal elements {σj}rj=1 ordered such that σ1 ≥ σ2 ≥ · · · ≥ σr ≥

0. The columns of U and V, denoted by {ui}ri=1 and {vi}ri=1, are the left and

right singular vectors of A.

We let Ak denote the rank-k approximation obtained by truncating the

SVD to its first k terms, so that Ak =
∑k

j=1 σjujv
∗
j . It then follows that

‖A− Ak‖ = σk+1 and that ‖A− Ak‖Fro =




min(m,n)∑

j=k+1

σ2
j




1/2

.

The Eckart–Young theorem asserts that Ak achieves the smallest possible

approximation error of A, in both the operator and Frobenius norms, of any

rank-k matrix.
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3.2.4 Randomized compression

In this section, we give a brief review of randomized low-rank approx-

imation, following the presentation of [77]. Let A be an m × n matrix that

can be accurately approximated by a matrix of rank k, and suppose we seek

to determine a matrix Q with orthonormal columns (as few as possible) such

that ‖A−QQ∗A‖ is small. In other words, we seek a matrix Q whose columns

form an approximate orthornomal basis (ON-basis) for the column space of A.

This task can efficiently be solved via the following randomized procedure:

1. Pick a small integer p representing how much “oversampling” is done.

(p = 10 is often good.)

2. Form an n×(k+p) matrix G whose entries are independent and identically

distributed (i.i.d.) normalized Gaussian random numbers.

3. Form the “sample matrix” Y = AG of size m× (k + p).

4. Construct an m× (k+ p) matrix Q whose columns form an ON basis for

the columns of Y.

Note that each column of the sample matrix Y is a random linear

combination of the columns of A. We would therefore expect the algorithm

described to have a high probability of producing an accurate result when p is

a large number. It is perhaps less obvious that this probability depends only

on p (not on m or n, or any other properties of A) and that it approaches
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1 extremely rapidly as p increases. In fact, one can show that the basis Q

determined by the scheme above satisfies

‖A−QQ∗A‖ ≤ [1 + 11
√

k + p ·
√
min{m,n}]σk+1 (3.3)

with probability at least 1− 6 · p−p; see [46, sec. 1.5]. The error bound Eq. (3.3)

indicates that the error prodcued by the randomized sampling procedure can

be larger than the theoretically minimal error σk+1 by a factor of 1+11
√
k + p ·

√
min{m,n}. This crude bound is typically very pessimistic, in particular for

matrices whose singular values decay rapidly; cf. [46].

Now, suppose we would like to use the above sampling procedure to

compute a low-rank factorization of the form

A = U B V,
m× n m× r r × r r × n

(3.4)

where U and V have orthonormal columns and B is a square matrix, not

necessarily diagonal. We review two methods of completing this task using

randomized sampling. The algorithm summarized in Algorithm 3.2.1 involves

two randomized samples, one of A and one of A∗. It is based on so-called

single-view algorithms for matrix compression [83,98]. The second method [46],

summarized in Algorithm 3.2.2, uses a randomized sample of A to compute

the column basis matrix U, and then operates on the product A∗U to obtain B

and V. We will use both methods in the algorithms described in Section 3.4.
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Algorithm 3.2.1 Compress A ≈ UBV∗ via two randomized samples

Form n × (k + p) Gaussian random matrix G1 and m × (k + p) Gaussian
random matrix G2.
Multiply Y = AG1.
Orthonormalize U = qr(Y, k).
Multiply Z = A∗G2.
Orthonormalize V = qr(Z, k).
Solve B = (G∗

2U)†G∗
2AG1(V

∗G1)
†.

return U,B,V.

Algorithm 3.2.2 Compress A ≈ UBV∗ with one randomized and one deter-
ministic sample

Form an n× (k + p) Gaussian random matrix G.
Multiply Y = AG.
Orthonormalize U = qr(Y).
Multiply W = A∗Q.
Orthonormalize [V,B∗] = qr(W).
return U,B,V.
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3.2.5 Functions for low-rank factorizations

We introduce the following notation to denote calls to functions that

return the results of QR factorizations and singular value decompositions.

Function calls to evaluate the full factorizations are written as

[Q,R, J ] = qr(A), [U,Σ,V] = svd(A).

Calls to evaluate the rank-k truncated factorizations are written as

[Q,R, J ] = qr(A, k), [U,Σ,V] = svd(A, k).

We write

[Q,R] = qr(A), Q = qr(A)

to compute an unpivoted QR factorization and to compute just the factor Q

via the Gram-Schmidt process, respectively.

3.2.6 The degree of saturation graph coloring algorithm

A vertex coloring of graph is an assigment of a color to each vertex

in such a way that no pair of adjacent vertices shares the same color. The

problem of finding a vertex coloring with the minimum number of colors is

NP-hard, but there exist a number of algorithms for efficiently coloring graphs,

though they may produce colorings with more than the minimum number of

colors.

Greedy graph coloring algorithms process the vertices in sequence, at

each iteration assigning to one vertex the first available color that hasn’t already
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been assigned to one of its neighbors. In the degree of saturation (DSatur)

algorithm [13], the choice of which vertex to color at each step is made by

selecting from the remaining uncolored vertices the one whose neighbors have

the greatest number of distinct colors (the so-called degree of saturation). The

procedure is summarized in Algorithm 3.2.3.

Algorithm 3.2.3 Greedy graph coloring with DSatur

Initialize priority queue q of vertices keyed by degree of saturation (initially
all zero)
Initialize for each vertex a set of invalid colors (initially all empty)
while q is not empty do

Pop from q the vertex v with highest degree of saturation ⊲ O(log |V |)
Assign a color to v, creating a new one if necessary ⊲ O(deg(G))
for each vertex w adjacent to v do

Add the color of v to the set of invalid colors for w ⊲ O(1)
Update the priority of w within q ⊲ O(log |V |)

While the asymptotic complexity of DSatur is often described as quadratic

in the number of vertices, the algorithm can be implemented with quasilinear

complexity, assuming the degree of the graph is bounded. Summing the costs

listed in Algorithm 3.2.3, we find that the asymptotic complexity is

Tcolor ∼ deg(G)|V | log |V |, (3.5)

where deg(G) denotes the degree of the graph. for the step of assigning a

color to vertex v, we note that a greedy coloring algorithm uses no more than

deg(G) + 1 colors in the worst case, so checking the existing colors for whether

they belong to the set of invalid colors for v requires O(deg(G)) operations.
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3.3 Rank-structured matrices

Let X = [0, 1]d be a d-dimensional hypercube. We introduce a tree of

boxes, each level of which represents a partition of X into smaller boxes. Level

0 only contains a single node, which corresponds to X. The boxes belonging

to level l + 1 are obtained by bisecting each of the boxes in level l along each

dimension to form 2d smaller boxes. The 2d boxes in level l + 1 obtained by

splitting a box in level l are designated as the children of that box, giving rise

to the tree structure. Boxes that do not contain any points are omitted from

the tree, so the branching factor of the tree may be less than 2d, depending

on the distribution of points. The splitting procedure is applied recursively to

boxes that contain more than m points, where m is a prespecified maximum

number of points to allow in a leaf box. We let L denote the depth of the tree,

and assume that the points are distributed throughout the domain in such a

way that L ∼ logN .

Two boxes that belong to the same level and have overlapping boundaries

are said to be neighbors. The neighbors of box τ , of which there are up to 3d

(including τ itself), are stored in the neighbor list of τ , denoted by L
nei
τ . The

interaction list of τ , denoted by L
int
τ contains the children of neighbors of the

parent of τ , excluding those that are neighbors of τ . The interaction list of a

box contains up to 6d − 3d boxes.

Let {xi}Ni=1 ⊂ X be a set of points within the domain, and let A be an
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Level 0

Level 1

Level 2

I1

I2

I4 I5

I3

I6 I7

I1 = [1, 2, ..., 400]

I2 = [1, ..., 200], I3 = [201, ..., 400]

I4 = [1, ..., 100], I5 = [101, ..., 200],
...

Figure 3.2 A binary tree structure, where the levels of the tree represent successively
refined partitions of the index vector [1, ..., 400].

N -by-N matrix where

A(i, j) = K(xi, xj) 1 ≤ i ≤ N, 1 ≤ j ≤ N,

for some kernel function K. That is, the (i, j) entry of A represents an

interaction between points xi, xj as defined by K. For each box τ , we assign a

list of indices of the points contained by the box, Iτ = {i : xi ∈ τ}. Fig. 3.2

shows an example tree structure and index lists.

Matrix A is said to have H
1 structure if block A(Iα, Iβ) is numerically

low-rank, for all pairs of boxes α, β belonging to the interaction lists of one

another. Such blocks, and the corresponding pairs of boxes, are said to be

admissible. Fig. 3.3 shows a tessellation of a matrix consisting of the admissible

blocks as well as a number of inadmissible blocks of interactions between

neighboring boxes in level L, which are not necessarily low-rank. Constructing

a compressed representation of an H
1 matrix consists of finding low rank

approximations

A(Iα, Iβ) ≈ Uα,βBα,βVα,β

for each admissible pair (α, β) and storing the inadmissible blocks corresponding

to neighbor interactions of boxes in level L.
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A4,6 A4,7

A5,7

A6,4

A7,4 A7,5

A8,10 A8,11

A9,11

A10,8 A10,12A10,13

A11,8 A11,9 A11,13

A12,10 A12,14A12,15

A13,10A13,11 A13,15

A14,12

A15,12A15,13

A8,9

A9,10

A10,11

A11,12

A12,13

A13,14

A14,15

A9,8

A10,9

A11,10

A12,11

A13,12

A14,13

A15,14

A8,8

A9,9

A10,10

A11,11

A12,12

A13,13

A14,14

A15,15

I1

I3

I7
I15

I14

I6
I13

I12

I2

I5
I11

I10

I4
I9

I8

I1

I2

I4

I8 I9

I5

I10 I11

I3

I6

I12 I13

I7

I14 I15

Figure 3.3 An H
1 matrix with depth 3 based on a grid over [0, 1]. Admissible blocks

are shown in gray, and inadmissible blocks are shown in pink.

An H
1 matrix A is said to have uniform H

1 structure if it further

satisfies the condition that there exist low-rank basis matrices Uα spanning

A
(
Iα,∪β∈Lint

α
Iβ
)

and Vα spanning A
(
∪β∈Lint

α
Iβ, Iα

)
for each box α. Construct-

ing a compressed representation of a uniform H
1 matrix consists of finding the

matrices Uα, Vα for each box α and the matrices Bα,β such that

A(Iα, Iβ) ≈ UαBα,βVβ

for each admissible pair (α, β) and storing the inadmissible blocks corresponding
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to neighbor interactions of boxes in level L.

A uniform H
1 matrix A is said to have H

2 structure if there exist

low-rank basis matrices Uα spanning A
(
Iα,
(
∪β∈Lnei

α
Iβ
)c)

and Vα spanning

A
((
∪β∈Lnei

α
Iβ
)c
, Iα
)

for each box α. Then the basis matrices of a non-leaf box

can be expressed in terms of the basis matrices of its children. For example, if

τ is a box with children α, β, then

Uτ =

[
Uα 0

0 Uβ

]
Uτ , (3.6)

where Uγ is the “long” column basis matrix of size |γ| × k associated with

γ ∈ {τ, α, β}, and Uτ is a “short” basis matrix of size 2k × k. Analogous

relationships must hold for row basis matrices Vτ ,Vα,Vβ. Using such nested

basis matrices eliminates the need to explicitly store Uτ since it is fully specified

by Uα,Uβ and Uτ . Likewise, if α or β have children of their own, then their

basis matrices will be expressed in terms of their own small basis matrices and

the basis matrices of their children.

3.4 Compressing rank-structured matrices with graph
coloring

3.4.1 H
1 matrix compression

In this section, we present the process of constructing an H
1 rep-

resentation of a matrix by applying Algorithm 3.2.1 to compute low-rank

approximations of the admissible blocks of levels 2, . . . , L and then extracting

the inadmissible blocks of level L. We apply A and A∗ to a set of carefully
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constructed test matrices, and from those products we extract randomized

samples of each admissible block. We demonstrate the techniques on a matrix

shown in Fig. 3.3, which is based on points in one dimension, but the algorithm

generalizes in a straightforward way to points higher dimensions.

3.4.1.1 Compressing level 2

We construct the compressed representation by processing levels of the

tree in sequence from the coarsest level to the finest. There are no admissible

blocks associated with levels 0 and 1, so we begin by computing low-rank

approximations of the 6 admissible blocks associated with level 2 of the tree.

To that end, we define four test matrices of size N × r

Ω1 =




G4

0

0

0


 , Ω2 =




0

G5

0

0


 , Ω3 =




0

0

G6

0


 , Ω4 =




0

0

0

G7


 ,

where G4,G5,G6,G7 are random matrices of size N/4 × r whose entries are

drawn from the standard normal distribution. We invoke the black-box matrix-

vector product routine to evaluate the products Yi = AΩi, i ∈ {1, 2, 3, 4}, with

the following structures. Contained within these products are randomized

samples of each admissible block of level 2.

Y1 = AΩ1 =




∗
∗

A6,4G4

A7,4G4


 , Y2 = AΩ2 =




∗
∗
∗

A7,5G5




Y3 = AΩ3 =




A4,6G6

∗
∗
∗


 , Y4 = AΩ4 =




A4,7G7

A5,7G7

∗
∗




(3.7)
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We then obtain a basis matrix for the column space of each admissible

block by orthonormalizing the relevant block of one of the sample matrices.

U4,6 = qr(Y3(I4, :))

U4,7 = qr(Y4(I4, :))

U5,7 = qr(Y4(I5, :))

U6,4 = qr(Y1(I6, :))

U7,4 = qr(Y1(I7, :))

U7,5 = qr(Y2(I7, :))

(3.8)

To find a basis matrix for the row space of each admissible block, we

follow a similar process using A∗ in place of A. That is, we compute another set

of sample matrices Zi = A∗Ψi, i ∈ {1, 2, 3, 4}, from which we orthonormalize

the relevant blocks to obtain row bases Vα,β for each admissible pair (α, β).

Finally, we solve for the matrices Bα,β as follows. Note that the products

Aα,βGβ have already been obtained from the samples in Eq. (3.7).

Bα,β = (GαUα)
†
GαAα,βGβ (VβGβ)

† for each admissible pair (α, β) (3.9)

3.4.1.2 Compressing levels 3, ..., L

After we have obtained low-rank approximations of the blocks associated

with level 2 of the tree, we proceed to level 3. One approach would be to extend

the procedure for level 2 by using one test matrix corresponding to each box,

for a total of eight test matrices. That approach would grow to be prohibitively
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expensive for finer levels of the tree as the number of matrix-vector products

required would grow proportionately with the number of boxes. Instead, we

present a more efficient procedure, which requires a number of matrix-vector

products that is bounded across all levels.

Following [77], we define the level-l truncated matrix A(l) to be the

matrix obtained by replacing with zeros every block of A corresponding to

levels finer than level l. Note that a matrix-vector product involving A(l) can be

computed inexpensively using the low-rank approximations already computed

when processing levels 2, . . . , l − 1. The structures of the level-2 truncated

matrix and the difference A− A(2) are shown below.

A(2) = 0

A4,6 A4,7

A5,7

A6,4

A7,4 A7,5

, A− A(2) =

0 0

0

0

0 0

We will sample the admissible blocks of level 3 by applying A− A(2) to

a set of test matrices subject to certain conditions on their sparsity structure.

For example, to isolate a sample of A8,10 (see Fig. 3.3), we must avoid unwanted

contributions from A8,8,A8,9,A8,11, so we multiply A− A(2) with a test matrix

whose rows indexed by I8, I9, I11 are all zeros and whose rows indexed by I10

are filled with random values drawn from the standard normal distribution.
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The contents of the other rows are irrelevant for the purpose of sampling A8,10

since they will be multiplied with zeros in A− A(2). More generally, to sample

some admissible block Aα,β of level 3, we require a test matrix Ω that satisfies

the following sampling constraints.

Ω(Iβ, :) = Gβ

Ω(Iγ, :) = 0 for all γ ∈ L
nei
α ∪ L

int
α \ {β}

(3.10)

where Gβ is a random matrix of size |Iβ|-by-r. If test matrix Ω satisfies those

sampling constraints, then the rows of the product AΩ− A(2)Ω indexed by Iα

will contain a randomized sample of the column space of Aα,β.

To sample all of the admissible blocks, we require a set of test matrices

{Ωi} such that for every admissible pair (α, β), there is a test matrix within

the set that satisfies the constraints (3.10) associated with that pair. Moreover,

we would like that set to be as small as possible to minimize cost.

In order to minimize the number of test matrices, we aim to form a small

number of groups of compatible sampling constraints. We say that two sets of

sampling constraints are compatible if it is possible to form a test matrix Ω that

satisfies both sets of constraints. We then define a constraint incompatibility

graph, which represents compatibility relationships between pairs of constraint

sets. The graph corresponding to the 18 admissible blocks belonging to level 3

is depicted in Figure 3.4.

Definition 1 (Constraint incompatibility graph). The constraint incompatibil-

ity graph for level l of the tree is the graph in which each vertex corresponds to
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a distinct constraint set (3.10), and pairs of vertices are connected by an edge

if their corresponding constraint sets are incompatible.

We then compute a vertex coloring of the constraint incompatibility

graph using the DSatur algorithm (Algorithm 3.2.3). For a valid coloring of

the graph, each subset of vertices sharing the same color represents a mutually

compatible collection of sampling constraints. Then for each color, we can

define one test matrix that satisfies all of the sampling constraints associated

with the vertices of that color. The coloring shown in Figure 3.4 yields test

matrices with the following structures.

[
Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

]
=




G8 0 0 0 0 0

0 G9 0 0 0 0

0 0 G10 0 0 0

0 0 0 G11 0 0

0 0 0 0 G12 0

0 0 0 0 0 G13

G14 0 0 0 0 0

0 G15 0 0 0 0




(3.11)

As in Section 3.4.1.1, we evaluate the samples Yi = AΩi − A(2)Ωi and

orthonormalize the relevant blocks to obtain orthonormal bases Uα,β of the

column spaces of the admissible blocks. A similar process yields orthormal

bases Vα,β of the row spaces. Finally, we solve for Bα,β again using (3.9).

3.4.1.3 Extracting inadmissible blocks of the leaf level

Once we have computed low-rank approximations of the admissible

blocks for every level, we finally extract the the inadmissible blocks of the leaf
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Ω(I8, :) = 0

Ω(I9, :) = 0

Ω(I10, :) = G10

Ω(I11, :) = 0

A8,10

Ω(I8, :) = 0

Ω(I9, :) = 0

Ω(I10, :) = 0

Ω(I11, :) = G11

A8,11,A9,11

Ω(I8, :) = G8

Ω(I9, :) = 0

Ω(I10, :) = 0

Ω(I11, :) = 0

Ω(I12, :) = 0

Ω(I13, :) = 0

A10,8,A11,8

Ω(I8, :) = 0

Ω(I9, :) = 0

Ω(I10, :) = 0

Ω(I11, :) = 0

Ω(I12, :) = G12

Ω(I13, :) = 0

A10,12

Ω(I8, :) = 0

Ω(I9, :) = 0

Ω(I10, :) = 0

Ω(I11, :) = 0

Ω(I12, :) = 0

Ω(I13, :) = G13

A10,13,A11,13

Ω(I8, :) = 0

Ω(I9, :) = G9

Ω(I10, :) = 0

Ω(I11, :) = 0

Ω(I12, :) = 0

Ω(I13, :) = 0

A11,9

Ω(I10, :) = G10

Ω(I11, :) = 0

Ω(I12, :) = 0

Ω(I13, :) = 0

Ω(I14, :) = 0

Ω(I15, :) = 0

A12,10,A13,10

Ω(I10, :) = 0

Ω(I11, :) = 0

Ω(I12, :) = 0

Ω(I13, :) = 0

Ω(I14, :) = G14

Ω(I15, :) = 0

A12,14

Ω(I10, :) = 0

Ω(I11, :) = 0

Ω(I12, :) = 0

Ω(I13, :) = 0

Ω(I14, :) = 0

Ω(I15, :) = G15

A12,15,A13,15

Ω(I10, :) = 0

Ω(I11, :) = G11

Ω(I12, :) = 0

Ω(I13, :) = 0

Ω(I14, :) = 0

Ω(I15, :) = 0

A13,11

Ω(I12, :) = G12

Ω(I13, :) = 0

Ω(I14, :) = 0

Ω(I15, :) = 0

A14,12,A15,12

Ω(I12, :) = 0

Ω(I13, :) = G13

Ω(I14, :) = 0

Ω(I15, :) = 0

A15,13

Figure 3.4 The constraint incompatibility graph corresponding to the 18 admissible
blocks belonging to level 3 of the matrix shown in Figure 3.3. Each vertex corresponds
to a distinct set of sampling constraints (3.10). Edges connect pairs of vertices that
are incompatible. The number of vertices is less than the number of admissible blocks
since some admissible blocks share the same set of sampling constraints.

level. Since the inadmissible blocks are not necessarily low-rank, they cannot

be recovered from a small number of randomized samples. Instead, we use test

matrices that will multiply the inadmissible blocks with appropriately sized

identity matrices. Also, at this point we already have low-rank approximations

of the admissible blocks belonging to level L, so the test matrices only need to

avoid contributions from other inadmissible blocks, resulting in fewer constraints
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than (3.10). To extract inadmissible block Aα,β of level L, we require a test

matrix Ω that satisfies the following sampling constraints.

Ω(Iβ, :) = I

Ω(Iγ, :) = 0 for all γ ∈ L
nei
α \ {β}

If test matrix Ω satisfies these constraints, then the rows of the product

AΩ − A(2)Ω indexed by Iα will contain Aα,β. The graph corresponding to

the 22 inadmissible blocks belonging to level 3 is depicted in Figure 3.5, and

its coloring produces test matrices with the following structures. The entire

process of compressing an H
1 matrix is summarized in Algorithm 3.4.1.

[
Ω1 Ω2 Ω3

]
=




G8 0 0

0 G9 0

0 0 G10

G11 0 0

0 G12 0

0 0 G13

G14 0 0

0 G15 0




3.4.1.4 General patterns in the test matrices for H
1 compression

In this section, we describe sets of test matrices that are sufficient for

compressing any H
1 matrix based on points in arbitrary dimensions. Though

sufficient, these sets of test matrices are not necessarily the smallest possible,

and the proposed method of constructing problem-specific test matrices via

graph coloring often yields a smaller set of test matrices, resulting in fewer

matrix-vector products. The test matrices described in this section establish
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Algorithm 3.4.1 Randomized compression of an H
1 matrix

for level l ∈ [2, ..., L] do
Compute randomized samples of A− A(l)

Construct structured random test matrices {Ωi} of size N × (k + p) as
in Section 3.4.1.2 or Section 3.4.1.4

for all Ωi do
Multiply Yi = AΩi − A(l)Ωi

Compute orthonormal basis matrices Uα,β

for all interacting pairs α, β in level l do
Identify Yi that contains a sample of Aα,β in Yi(Iα, :)
Orthonormalize Uα,β = qr(Yi(Iα, :), k)

Compute randomized samples of A∗ − A(l)∗

Construct structured random test matrices {Ψi} of size N × (k + p) as
in Section 3.4.1.2 or Section 3.4.1.4 (if the rank structure of A is symmetric,
then the test matrices {Ωi} can be reused)

for all Ψi do
Multiply Zi = A∗Ψi − A(l)∗Ψi

Compute orthonormal basis matrices Vα,β

for all interacting pairs α, β in level l do
Identify Zi that contains a sample of A∗

α,β in Zi(Iβ, :)
Orthonormalize Vα,β = qr(Zi(Iβ, :), k)

Solve for B

for all interacting pairs α, β in level l do
Bα,β = (GαUα)

†
GαAα,βGβ (VβGβ)

†

Extract the inadmissible blocks of level L
Construct structured random test matrices {Ωi} of size N ×m as in Sec-
tion 3.4.1.3 or Section 3.4.1.4
for all Ωi do

Multiply Yi = AΩi − A(L)Ωi

for all neighbor pairs α, β in level L do
Identify Yi that contains Aα,β

Extract the block Aα,β from Yi(Iα, :)

83



an upper bound on the number of matrix-vector products that improves on the

number given in [64], and they also imply a bound on the chromatic number

of the graph, which appears in the estimate of asymptotic complexity.

A general set of test matrices for sampling admissible blocks The

structures of the test matrices derived in Sections 3.4.1.2 and 3.4.1.3 exhibit

patterns that generalize to finer and higher-dimensional grids. The sampling

constraints Eq. (3.10) for admissible block Aα,β specify that the rows of the

test matrix corresponding to β must be filled with random values, and the

rows of the test matrix corresponding to the other boxes in L
nei
α ∪Lint

α must be

filled with zeros. For a 1-dimensional problem, the indices corresponding to

L
nei
α ∪ L

int
α form 6 contiguous blocks of the test matrix. Accordingly, each of

the test matrices defined in Eq. (3.7) has every sixth block filled with random

values and the other blocks filled with zeros, a pattern that generalizes to an

arbitrarily fine grid in one dimension.

To describe a general set of test matrices for a problem in 2 dimensions,

we partition the domain into tiles, each of which covers 6× 6 boxes. We define

36 test matrices, each activating a set of boxes that share the same position

within their respective tiles. The set of boxes activated by one of the test

matrices is shown in Fig. 3.6. The sampling constraints in Eq. (3.10) apply to

L
nei
α ∪Lint

α , which form a square of 6×6 boxes, and they specify that exactly one

of those boxes must be activated. Therefore, those constraints will be satisfied

by one of the 36 test matrices. By a similar argument, this pattern generalizes
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to higher-dimensional problems, requiring at most 6d test matrices to sample

one level of admissible blocks for a problem in d dimensions. Furthermore,

since these test matrices satisfy Eq. (3.10), they must correspond to a valid

coloring of the graph described in Section 3.4.1.2, bounding the chromatic

number of the graph by

χnonunif ≤ 6d.

A general set of test matrices for extracting inadmissible blocks A

similar argument proves that extracting inadmissible blocks of the leaf level

can be accomplished using 3d test matrices. The set of boxes activated by

one of the test matrices for a problem in two dimensions is shown in Fig. 3.6.

Therefore, the chromatic number of the graph described in Section 3.4.1.3 is

bounded by

χleaf ≤ 3d.

3.4.1.5 Asymptotic complexity

Let L ∼ logN denote the depth of the tree, Tmult denote the time to

apply A or A∗ to a vector, and Tflop denote the time to execute one floating

point operation. There are 2dl boxes belonging to level l of the tree, and the

interaction list of each box consists of up to 6d − 3d other boxes, so there are

approximately (6d − 3d)2dl admissible blocks associated with level l. The cost

of applying the low-rank approximation of an admissible block associated with

level l to a vector is ∼ kN/2dl operations. Therefore, the cost of applying the
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level-l truncated matrix A(l) (or its transpose) to a vector is

TA(l) ∼ Tflop ×
l∑

j=0

(6d − 3d)2djk
N

2dj
∼ Tflop × (6d − 3d)lkN.

The cost of compressing the admissible blocks associated with level l of

the tree is

Tl ∼ (Tmult + TA(l))× 2χnonunifk + Tflop × (6d − 3d)2dlk2 N

2dl
,

since we require ∼ χnonunifk applications of A− A(l) and its transpose, where

χnonunif denotes the chromatic number of the graph described in Section 3.4.1.2,

and we require an additional ∼ k2N/2dl operations for each admissible block

to compute low-rank approximations.

Finally, summing Tl over each level gives the total time to construct

an H
1 representation as follows. The cost of extracting inadmissible blocks

associated with the leaf level of the tree is omitted as it only contributes a

lower order term to the overall cost. We also omit the costs associated with the

graph coloring problem since it is only worthwhile for problems that exhibit

low-dimensional structure, in which case the costs would be much lower than

the worst-case analysis would suggest, and we observe in practice that the cost

of graph coloring represents a small portion of the total cost of compression. For

problems without low-dimensional structure, one may skip the graph coloring

step and instead use the general set of test matrices described in Section 3.4.1.4.

Tcompress ∼ Tmult × 2χnonunifk logN + Tflop × (6d − 3d)2χnonunifk
2N (logN)2
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3.4.2 Uniform H
1 matrix compression

A uniform H
1 approximation requires for each box τ a column basis

matrix Uτ and a row basis matrix Vτ such that

Aα,β ≈ UαU
∗
αAα,βVβV

∗
β

for all admissible pairs (α, β). In other words, Uα must span the column space

of A
(
Iα,∪β∈Lint

α
Iβ
)
, the submatrix of interactions between α and the boxes in

its interaction list. Similarly, Vβ must span the row space of A
(
∪α∈Lint

β
Iα, Iβ

)
.

The algorithms for compressing H
1 and uniform H

1 matrices have a two

important differences. For a uniform H
1 matrix, we use Algorithm 3.2.2, rather

than Algorithm 3.2.1 to compute low-rank approximations. Also, instead of

sampling the column space of each admissible block Aα,β separately, we will

sample the interactions between each box and all of the boxes in its interaction

list together.

We return to the task of compressing the admissible blocks associated

with level 3 of the tree as described in Section 3.4.1.2. As before, we will sample

A−A(2) with a set of test matrices. To sample those interactions for some box

α, we require a test matrix Ω that satisfies the following sampling constraints.

Ω(Iβ, :) = Gβ for all β ∈ L
int
α

Ω(Iγ, :) = 0 for all γ ∈ L
nei
α

(3.12)

If test matrix Ω satisfies the above sampling constraints, then the rows

of the product AΩ−A(2)Ω indexed by Iα will contain a randomized sample of
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the column space of A
(
Iα,∪β∈Lint

α
Iβ
)
, the submatrix of interactions between α

and the boxes in its interaction list.

We have one set of sampling constraints for each box α, and we use

them to form the constraint incompatibility graph (Definition 1) shown in

Fig. 3.7. As in Section 3.4.1.2, we compute a vertex coloring of the graph.

The coloring of the graph in Fig. 3.7 specifies test matrices with the following

structures.

[
Ω1 Ω2 Ω3 Ω4 Ω5

]
=




0 0 G8 G8 ∗
0 0 0 G9 ∗
G10 0 0 0 G10

G11 G11 0 0 0

0 G12 G12 0 0

0 0 G13 G13 0

0 0 0 ∗ G14

G15 0 0 ∗ G15




We evaluate the samples Yi = AΩi − A(2)Ωi for each test matrix Ωi,

and orthonormalize the relevant blocks of the sample matrices Yi to obtain

orthonormal column basis matrix Uα for each box α. That is, if Ωi is the test

matrix satisfying the sampling constraints of box α, then

Yi(Iα, :) =
∑

β∈Lint
α

Aα,βGβ,

so we compute

Uα = qr (Yi(Iα, :)) .

For the second stage of compression using Algorithm 3.2.2, we must

compute A∗
α,βUα for each admissible block Aα,β. To do so, we use the procedure
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for sampling an H
1 matrix with non-uniform basis matrices (Section 3.4.1.2),

but rather than filling blocks of the test matrices with random values, we fill

them with appropriately chosen uniform basis matrices. With that modification,

we have the following sampling constraints for each admissible pair (α, β).

Ψ(Iβ, :) = Uβ

Ψ(Iγ, :) = 0 for all γ ∈ L
nei
α ∪ L

int
α \ {β}

We construct a suitable set of test matrices via graph coloring and

evaluate the products Zi =
(
A− A(2)

)∗
Ψi for each test matrix Ψi. Then

for each admissible pair (α, β), there is some Zi such that Zi(Iα, :) = A∗
α,βUβ.

With those results, we compute the uniform basis matrices Vα and the matrices

Bα,β as follows.

Vβ = qr


 ∑

α∈Lint

β

Zi(Iα, :)


 = qr


 ∑

α∈Lint

β

A∗
α,βUα




Bα,β = Zi(Iα, :)
∗
Vβ = (A∗

α,βUα)
∗
Vβ

Remark 8. An alternative approach for uniform H
1 compression [64] is ob-

tained by adding a uniformization step to the H
1 compression algorithm. With

that approach, one first computes low-rank approximations Aα,β = Uα,βBα,βV
∗
α,β

with non-uniform basis matrices. Those low-rank approximations are recom-

pressed to obtain uniform basis matrices, followed by a change of basis.

Aα,β ≈ Uα

(
U

∗
αUα,βBα,βV

∗
α,βVβ

)
V

∗
β

One disadvantage of that approach is that Uα and Vα are based on samples

of the factorizations Uα,βBα,βV
∗
α,β, which may only be approximate, rather
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than direct samples of the blocks Aα,β themselves, potentially resulting in lower

accuracy. Another difference is that the procedure for sampling a uniform H
1

matrix presented in this section requires fewer matrix-vector products than

the procedure for sampling an H
1 matrix, as described in Sections 3.4.1.4

and 3.4.2.1.

3.4.2.1 General patterns in the test matrices for uniform H
1 com-

pression

As in Section 3.4.1.4, we describe a general set of test matrices that is

applicable to finer and higher-dimensional grids. To sample the interactions of

box α for a problem in 2 dimensions, the blocks of the test matrix corresponding

to the boxes in L
nei
α must be filled with zeros, and the blocks corresponding to

the boxes in L
int
α must be filled with random values Eq. (3.12). The pattern of

activated boxes for one test matrix is shown in Fig. 3.8. The complete set of

25 test matrices is obtained by shifting the pattern horizontally and vertically.

The pattern generalizes to higher-dimensional problems, requiring at most 5d

test matrices to carry out the first stage of uniform H
1 sampling for a problem

in d dimensions. Therefore, we establish the upper bound

χunif ≤ 5d.

3.4.3 H
2 matrix compression

To obtain an algorithm for computing an H
2 representation, we apply

two modifications to the algorithm for computing a uniform H
1 representation.
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First, we enrich the basis matrices of each box so that they span the relevant

parts of the basis matrices of its parent. Specifically, if box τ is the parent of box

α, then when computing the basis matrix Uα, we augment Yi(Iα, :), the sam-

ple of A
(
Iα,∪β∈Lint

α
Iβ
)
, with Uτ (Iα, :)Σ

in
τ Gk, a sample of A

(
Iα,
(
∪β∈Lnei

τ
Iβ
)c)

,

where Gk is a k-by-k Gaussian random matrix.

Yi(Iα, ; ) =
∑

β∈Lint
α

Aα,βGβ

[Uα,Σ
in
α ,∼] = svd

(
Yi(Iα, :) +UτΣ

in
τ Gk

)

We use a similarly augmented sample when computing Vα.

[Vα,Σ
out
α ,∼] = svd


 ∑

β∈Lint
α

A∗
β,αUβ + VτΣ

out
τ Gk




Second, after we have computed long basis matrices of its children, we compute

the short basis matrix Uτ by solving (3.6), and then we can discard Uτ .

Similarly, we compute Vτ and discard Vτ . The process of compressing uniform

H
1 and H

2 matrices are summarized in Algorithm 3.4.2. The algorithm for

applying a level-truncated approximation of an H
2 matrix to a vector is given

in Algorithm 3.4.3.

3.4.3.1 Asymptotic complexity

The asymptotic complexity of the H
2 algorithm is similar to that of

the H
1 algorithm. Since we are now using uniform basis matrices, the cost of

applying TA(l) is lower.

TA(l) ∼ Tflop ×
(
2dlk

N

2dl
+

l∑

j=0

(6d − 3d)k22dj

)

∼ Tflop ×
(
kN + (6d − 3d)k22dl

)
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Algorithm 3.4.2 Randomized compression of a uniform H
1 or H

2 matrix

for level l ∈ [2, ..., L] do

Compute randomized samples of A− A(l)

Construct structured random test matrices {Ωi} of size N × (k+ p) as in Section 3.4.2
or Section 3.4.2.1

for all Ωi do
Multiply Yi = AΩi − A(l)Ωi

Compute uniform orthonormal basis matrices Uα

for all boxes α in level l do
Identify Yi that contains a sample of A(Iα,∪β∈Lint

α
Iβ) in Yi(Iα, :)

if A has uniform H
1 structure then

Compute an SVD of the sample: [Uα,Σ
in

α ,∼] = svd(Yi(Iα, :), k)
else if A has H

2 structure then
Compute an SVD of the augmented sample: [Uα,Σ

in

α ,∼] = svd(Yi(Iα, :) +
UτΣ

in

τ Gk, k)

Compute randomized samples of A∗ − A(l)∗

Construct structured random test matrices {Ψi} of size N×(k+p) as in Section 3.4.1.2
or Section 3.4.1.4

for all Ψi do

Multiply Zi = A∗Ψi − A(l)∗Ψi

Compute uniform orthonormal basis matrices Vβ

for all boxes β in level l do
Identify Zi that contains A∗

α,βUα in Zi(Iβ , :) for α ∈ L
int

β

if A has uniform H
1 structure then

Compute an SVD of the sample: [Vβ ,Σ
out

β ,∼] = svd(
∑

α∈Lint

β
Zi, k)

else if A has H
2 structure then

Compute an SVD of the augmented sample:
[Vβ ,Σ

out

β ,∼] = svd(VτΣ
out

τ Gk +
∑

α∈Lint

β
Zα,β(Iβ , :), k)

Compute Bα,β

for all interacting pairs α, β in level l do
Identify Zi that contains A∗

α,βUα in Zi(Iβ , :) for α ∈ L
int

β

Bα,β = Z∗

i (Iβ , :)Vβ

Nest the basis matrices
if A has H

2 structure then
for all boxes α in level l do

Compute Uα,Vα using Eq. (3.6)
Discard Uα,Vα

Extract the inadmissible blocks of level L in the same way as in Algorithm 3.4.1
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Algorithm 3.4.3 Applying an H
2 level-truncated approximation A(l) to vector

q

Build outgoing expansions in level l.
for all boxes τ in level l do

q̂τ = V
∗
τq(Iτ )

Build outgoing expansions for levels coarser than l (upward pass).
for all levels i ∈ [l − 1, ...2] do

for all boxes τ in level i do
for all children α of τ do

q̂τ (Iα, :) = V∗
τ (Iα, :)q̂α

Build incoming expansions for boxes in level 2.
for all boxes α in level 2 do

ûα =
∑

β∈Lint
α
Bα,βq̂β

Build incoming expansions for levels finer than 2 (downward pass).
for all levels i ∈ [3, ..., l − 1] do

for all boxes α in level i do
Let τ be the parent of α
ûα =

∑
β∈Lint

α
Bα,βq̂β +Uτ (Iα, :)ûτ

Build incoming expansions for level l.
for all boxes α in level l do

u(Iα) = Uτ ûτ +
∑

β∈Lnei
α

A(Iα, Iβ)q(Iβ)
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The number of matrix-vector products to carry out sampling for uniform

basis matrices is also lower.

Tl ∼ (Tmult + TA(l))× (χunif + χnonunif)k + Tflop × (6d − 3d)2dlk2 N

2dl
,

Summing Tl over each level, we find that the number of floating point

operations is lower than that of Section 3.4.1.5 by a factor of O(logN). As in

Section 3.4.1.5, we omit the costs associated with graph coloring.

Tcompress ∼ Tmult × (χunif + χnonunif) k logN

+ Tflop × k2N
((
χunif + χnonunif + 6d − 3d

)
logN

+(6d − 3d)(χunif + χnonunif)
)

3.5 Numerical experiments

In this section, we present a selection of numerical results. The experi-

ment in Section 3.5.1 demonstrates the ability of the graph coloring approach

to exploit low-dimensional structure. In Sections 3.5.2 to 3.5.5, we report the

following quantities for a number of test problems and rank structure formats:

(1) the time to compress the operator, (2) the time to apply the compressed

representation to a vector, (3) the relative accuracy of the compressed repre-

sentation, and (4) the storage requirements of the compressed representation

measured as the number of values per degree of freedom. For compression time,

we report both the total time taken for compression as well as the “net time,”

which does not include the time spent by the black-box multiplication routine.
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The algorithms for compressing matrices and applying compressed represen-

tations are written in Python, and the black-box multiplication routines are

written in MATLAB. The experiments were carried out on a workstation with

two Intel Xeon Gold 6254 processors with 18 cores each and 754GB of memory.

The matrices are compressed with the H
1, uniform H

1, and H
2 formats.

For the uniform H
1 format, we take two approaches: the “H1 + unif.” approach

uses the H
1 sampling procedure followed by a uniformization step (based on

[64]), and the “unif. H1” approach uses the technique described in Section 3.4.2,

which uses a different sampling procedure to sample entire interaction lists and

avoids the uniformization step.

We measure the accuracy of the compressed matrices using the relative

error

‖Ã− A‖
‖A‖

computed via 20 iterations of the power method. We also report the maximum

leaf node size m and the number r of random vectors per test matrix, which

are inputs to the compression algorithm.

3.5.1 Exploiting low-dimensional structure

A major advantage of the graph coloring approach is that it tailors the

test matrices to the problem at hand, exploiting low-dimensional structure to

minimize the number of matrix-vector products. In Sections 3.4.1 to 3.4.3, we

establish upper bounds on the chromatic numbers of the graphs in terms of

the dimension d of the computational domain. However, if the geometry of the
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points exhibits lower-dimensional structure (e.g., a discretization of a surface in

three-dimensional space, a machine learning dataset consisting of observations

belonging to a high-dimensional feature space), the chromatic numbers may be

much lower.

To demonstrate this effect, we color the graphs that arise from sampling

one level of admissible blocks of an H
1 matrix based on a uniform grid along a

randomly oriented line through [0, 1]d over a range of dimensions d. We perturb

the data by adding Gaussian noise to the coordinates of the points in order to

simulate geometries that are not perfectly one-dimensional. With zero noise,

the points lie exactly on a line. As more and more noise is added, the effective

dimensionality of the data increases from one to the full ambient dimension.

The results reported in Fig. 3.9 demonstrate that the number of colors increase

modestly in the presence of low-dimensional structure and exponentially in the

absence of low-dimensional structure.

3.5.2 Boundary integral equation

We consider a matrix arising from the discretization of the Boundary

Integral Equation (BIE)

1

2
q(x) +

∫

Γ

(x− y) · n(y)
4π|x− y|2 q(y) ds(y) = f(x), x ∈ Γ, (3.13)

where Γ is the simple closed contour in the plane shown in Figure 3.10, and

where n(y) is the outwards pointing unit normal of Γ at y. The BIE (3.13) is a

standard integral equation formulation of the Laplace equation with boundary
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condition f on the domain interior to Γ. The BIE (3.13) is discretized using

the Nyström method on N equispaced points on Γ, with the Trapezoidal rule

as the quadrature (since the kernel in (3.13) is smooth, the Trapezoidal rule

has exponential convergence).

The fast matrix-vector multiplication is in this case furnished by the

recursive skeletonization (RS) procedure of [84]. To avoid spurious effects due

to the rank structure inherent in RS, we compute the matrix-vector products

at close to double precision accuracy, and with an entirely uncorrelated tree

structure.

Results are given in Fig. 3.13.

Remark 9. The problem under consideration here is artificial in the sense

that there is no actual need to use more than a couple of hundred points to

resolve (3.13) numerically to double precision accuracy. It is included merely

to illustrate the asymptotic scaling of the proposed method.

3.5.3 Operator multiplication

We next investigate how the proposed technique performs on a matrix

matrix multiplication problem. Specifically, we determine the Neumann-to-

Dirichlet operator T for the contour shown in Figure 3.10 using the well known

formula

T = S

(
1

2
I +D∗

)−1

,

where S is the single layer operator [Sq](x) =
∫
Γ
− 1

2π
log |x−y| q(y) ds(y), and

where D∗ is the adjoint of the double-layer operator [D∗q](x) =
∫
Γ

n(x)·(x−y)
2π|x−y|2

q(y) ds(y).
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The operators S and D are again discretized using a Nyström method on equi-

spaced points (with sixth order Kapur-Rokhlin [53] corrections to handle the

singularity in S), resulting in matrices S and D. The S
(
0.5I+D∗

)−1
is again

applied using the recursive skeletonization procedure of [84].

Results are given in Fig. 3.12.

3.5.4 Fast multipole method

We consider a kernel matrix representing N -body Laplace interactions

in three dimensions, where the interaction kernel is defined by

K(x, y) =
∑

i 6=j

cj
‖xi − xj‖

for a sets of N points {xi} and charges {ci}. To simulate a problem with

low-dimensional structure, we distribute the points uniformly at random on

the surface of the unit sphere. We use an implementation of the fast multipole

method included in the Flatiron Institute Fast Multipole Libraries [6] to

efficiently apply the matrix to vectors. Results are given in Fig. 3.14.

3.5.5 Frontal matrices in nested dissection

Our next example is a simple model problem that illustrates the behavior

of the proposed method in the context of sparse direct solvers. The idea here

is to use rank structure to compress the increasingly large Schur complements

that arise in the LU factorization of a sparse matrix arising from the finite

element or finite difference discretization of an elliptic PDE, cf. [80, Ch. 21].
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As a model problem, we consider an N ×N matrix C that encodes the stiffness

matrix for the standard five-point stencil finite difference approximation to

the Poisson equation on a rectangle. We use a grid with N × 51 nodes. We

partition the grid into three sets {1, 2, 3}, as shown in Fig. 3.11, and then

tessellate C accordingly,

C =



C11 0 C13

0 C22 C23

C31 C32 C33


 .

The matrix we seek to compress is the Schur complement

A = C33 − C31C
−1
11 C31 − C32C

−1
22 C23.

In our example, we apply A to vector by calling standard sparse direct solvers

for the left and the right subdomains, respectively.

Results are given in Fig. 3.15.

3.5.6 Summary of observations

• The results demonstrate quasilinear scaling of computation time for com-

pressing the operators and for applying the compressed representations

to vectors.

• The unif. H1 compression scheme consistently outperforms the H
1 + unif.

scheme. The advantage appears not only in shorter compression times,

but also in higher accuracy and lower storage requirements.

• The approximations achieve high accuracy in every case, with the excep-

tion of the FMM, for which the accuracy is on par with the accuracy of
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the operator.

• The storage costs, reported as number of floating point numbers per

degree of freedom, remains roughly constant for the H
2 format, and

grows logarithmically for the other formats.

• In every case, the majority of the compression time is spent in the black-

box matrix-vector multiplication routines, highlighting the importance

of minimizing the number of matrix-vector products.

3.6 Conclusions

This paper presents algorithms for randomized compression of rank-

structured matrices. The algorithms only access the matrix via black-box

matrix-vector multiplication routines. We formulate a graph coloring problem

to design sets of test matrices that are tailored to the given matrix and to

minimize the number of matrix-vector multiplications required. Numerical

experiments demonstrate that the algorithms are accurate and much more

efficient than prior works, particularly when the underlying geometry exhibits

low-dimensional structure.

3.7 Appendix

3.7.1 Far-field sampling with tagged test matrices

In this section, we present an approach for efficiently sampling the entire

far field of a box. This method can potentially be used as a replacement for
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the first stage of sampling, described in Section 3.4.2, in compressing uniform

H
1 and H

2 matrices.

Suppose we are interested in sampling the far field of node 9, shown in

Fig. 3.3.

We define random matrices T ∈ R
8×4 and G ∈ R

N×r as

T =




t8,1 t8,2 t8,3 t8,4
t9,1 t9,2 t9,3 t9,4
...

...
...

...
t15,1 t15,2 t15,3 t15,4


 , G =




G8

G9
...

G15


 ,

and define

[
Ω1 Ω2 Ω3 Ω4

]
=




t8,1G8 t8,2G8 t8,3G8 t8,4G8

t9,1G9 t9,2G9 t9,3G9 t9,4G9
...

...
...

...
t15,1G15 t15,2G15 t15,3G15 t15,4G15


 .

To sample the far field of node 9, we must exclude contributions from

its near field, which consists of nodes 8, 9, 10. To that end, we find a unit

vector z belonging to the nullspace of the first three rows of T.

z =




z1
z2
z3
z4


 ∈ Null





t8,1 t8,2 t8,3 t8,4
t9,1 t9,2 t9,3 t9,4
t10,1 t10,2 t10,3 t10,4


 .




Then

z1Ω1 + z2Ω2 + z3Ω3 + z4Ω4 =




0

0

0

(z1t11,1 + z2t11,2 + z3t11,3 + z4t11,4)G11

(z1t12,1 + z2t12,2 + z3t12,3 + z4t12,4)G12
...

(z1t15,1 + z2t15,2 + z3t15,3 + z4t15,4)G15




,
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and the desired sample is contained in the rows indexed by I9 of

A(z1Ω1 + z2Ω2 + z3Ω3 + z4Ω4) = z1Y1 + z2Y2 + z3Y3 + z4Y4.

The test matrix above contains zeros in the appropriate positions to exclude the
near-field interactions, and it contains random values in the other positions to sample
the far-field interactions. Notably, the random values are not distributed according
to a standard normal distribution. One may view the blocks as being Gaussian with
variances of varying magnitudes, which effectively apply non-uniform weights to
blocks of far-field interactions. While this is a deviation from the standard practice of
using standard normal random values, we observe empirically that these deviations
are inconsequential, and the nonzero parts of the test matrices behave like standard
Gaussian test matrices.

The key observation is that in order to obtain a sample of the far field of
box τ of level 3, we only need to take an appropriately chosen linear combination of
{Yi(Iτ , :)}4i=1. Therefore, we only need to take four sets of samples of A, which we
can use to obtain samples of the far fields of all of the boxes on a given level.

More generally, for a problem in d dimensions, we must exclude near-field
contributions of up to 3d boxes. Then to ensure that the nullspace of any 3d rows of
T is nontrivial, we define T to have 3d+1 columns, and we have 3d+1 corresponding
test matrices Ωi.

These ideas are still in development, but they show promise. For example,
this method has the potential to reduce the worst-case cost of the first stage of
sampling from 5d test matrices (cf.Section 3.4.2.1) to 3d + 1. Moreover, the method
may be applicable in other contexts where one seeks to obtain samples of a matrix
that exclude contributions from some blocks.
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Ω(I8, :) = I

Ω(I9, :) = 0

A8,8

Ω(I8, :) = 0

Ω(I9, :) = I

A8,9

Ω(I8, :) = I

Ω(I9, :) = 0

Ω(I10, :) = 0

A9,8

Ω(I8, :) = 0

Ω(I9, :) = I

Ω(I10, :) = 0

A9,9

Ω(I8, :) = 0

Ω(I9, :) = 0

Ω(I10, :) = I

A9,10

Ω(I9, :) = I

Ω(I10, :) = 0

Ω(I11, :) = 0

A10,9

Ω(I9, :) = 0

Ω(I10, :) = I

Ω(I11, :) = 0

A10,10

Ω(I9, :) = 0
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Ω(I12, :) = 0

A11,10
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Ω(I11, :) = I

Ω(I12, :) = 0

A11,11

Ω(I10, :) = 0

Ω(I11, :) = 0

Ω(I12, :) = I

A11,12

Ω(I11, :) = I

Ω(I12, :) = 0

Ω(I13, :) = 0

A12,11

Ω(I11, :) = 0

Ω(I12, :) = I

Ω(I13, :) = 0

A12,12

Ω(I11, :) = 0

Ω(I12, :) = 0

Ω(I13, :) = I

A12,13

Ω(I12, :) = I

Ω(I13, :) = 0

Ω(I14, :) = 0

A13,12

Ω(I12, :) = 0
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Ω(I14, :) = 0

A13,13

Ω(I12, :) = 0

Ω(I13, :) = 0
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Ω(I15, :) = 0
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Ω(I13, :) = 0

Ω(I14, :) = I

Ω(I15, :) = 0

A14,14
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Figure 3.5 Incompatibility graph for inadmissible blocks belonging to level L.
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Figure 3.6 Patterns representing a test matrix for sampling admissible blocks
(left) and a test matrix for sampling inadmissible blocks (right) for a problem in 2
dimensions. Blocks of the test matrices corresponding to gray boxes are filled with
random values, and those corresponding to white boxes are filled with zeros. The
other test matrices are obtained by shifting these pattern horizontally and vertically.
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Ω(I8, :) = 0

Ω(I9, :) = 0

Ω(I10, :) = G10

Ω(I11, :) = G11

Box 8

Ω(I8, :) = 0

Ω(I9, :) = 0

Ω(I10, :) = 0

Ω(I11, :) = G11

Box 9

Ω(I8, :) = G8
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Ω(I14, :) = 0

Ω(I15, :) = G15

Box 13

Ω(I12, :) = G12

Ω(I13, :) = 0

Ω(I14, :) = 0

Ω(I15, :) = 0

Box 14

Ω(I12, :) = G12

Ω(I13, :) = G13

Ω(I14, :) = 0

Ω(I15, :) = 0

Box 15

Figure 3.7 The constraint incompatibility graph corresponding to the 8 boxes on
level 3 of the matrix shown in Figure 3.3 along with the constraints (3.12) associated
with uniform sampling.
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Figure 3.8 A pattern representing one test matrix for the first stage of uniform H
1

sampling for a problem in 2 dimensions. Blocks of the test matrix corresponding
to gray boxes are filled with random values, and those corresponding to white boxes
are filled with zeros. The other test matrices are obtained by shifting this pattern
horizontally and vertically.
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Figure 3.9 Number of colors for the incompatibility graphs that arise from sampling
one level of admissible blocks of an H

1 matrix based on a uniform grid along a ran-
domly oriented line through [0, 1]d with added perturbation over a range of dimensions
d.

Figure 3.10 Contour Γ on which the BIE (3.13) is defined.
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I1 I2

I3

Figure 3.11 An example of the grid in the sparse LU example described in Section
3.5.5. There are N × n points in the grid, shown for N = 10, n = 51.

Figure 3.12 Results from applying peeling algorithms to the Neumann-to-Dirichlet
operator. Here r = 20 and m = 200.
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Figure 3.13 Results from applying peeling algorithms to a double layer potential on
a simple contour in the plane. Here r = 20 and m = 200.
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Figure 3.14 Results from applying peeling algorithms to the 3D fast multipole method
operator. Here r = 20 and m = 50.
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Figure 3.15 Results from applying peeling algorithms to frontal matrices in the
nested dissection algorithm. Here r = 10 and m = 50.
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Part II

Permutation of
Rank-Structured Matrices
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Chapter 4

Geometry-Oblivious Fast Multipole Method1

1The content in this chapter was first presented in [107], a work in collaboration with
Chenhan Yu, Severin Reiz, and George Biros.
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We present GOFMM (geometry-oblivious FMM), a novel method that creates

a hierarchical low-rank approximation, or “compression,” of an arbitrary dense

symmetric positive definite (SPD) matrix. For many applications, GOFMM enables an

approximate matrix-vector multiplication in N logN or even N time, where N is the

matrix size. Compression requires N logN storage and work. In general, our scheme

belongs to the family of hierarchical matrix approximation methods. In particular,

it generalizes the fast multipole method (FMM) to a purely algebraic setting by only

requiring the ability to sample matrix entries. Neither geometric information (i.e.,

point coordinates) nor knowledge of how the matrix entries have been generated is

required, thus the term “geometry-oblivious.” Also, we introduce a shared-memory

parallel scheme for hierarchical matrix computations that reduces synchronization

barriers. We present results on the Intel Knights Landing and Haswell architectures,

and on the NVIDIA Pascal architecture for a variety of matrices.

4.1 Introduction

We present GOFMM, a novel algorithm for the approximation of dense sym-

metric positive definite (SPD) matrices. GOFMM can be used for compressing a dense

matrix and accelerating matrix-vector multiplication operations. As an example,

in Figure 4.1 we report timings for an SGEMM (single-precision matrix-matrix multi-

plication) operation using an optimized dense matrix library and compare with the

GOFMM-compressed version.

Problem statement: Let K ∈ R
N×N be a dense SPD matrix, with K = KT

and xTKx > 0, ∀x ∈ R
N , x 6= 0. Since K is dense, it requires O(N2) storage and
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Figure 4.1 Comparison of runtime in seconds (y-axis) versus problem size
N (x-axis) to multiply test matrix K02 (see §4.3 for details) of size N ×N with a
matrix of size N × r, where r = 512, 1024, 2048. Results are plotted against a linear
scale (left) and a logarithmic scale (right). The top three curves demonstrate O(N2)
scaling of Intel MKL SGEMM for each value of r. The middle curve shows the time for
GOFMM to compress K02, which scales as O(N logN) in these cases. The bottom three
curves show the O(N) scaling of the time for GOFMM to evaluate the matrix product
for each value of r after compression is completed. The GOFMM results reach accuracy
of 1E−2 to 4E−4 in single precision. In these experiments, the crossover problem
size (including compression time) is N = 16 384, and for N = 147 456, we observe
an 18× speedup over SGEMM.

O(N2) work for a matrix-vector multiplication (hereby “matvec”). Assuming the

evaluation of a single matrix entry Kij requires O(1) work, we wish to construct a

hierarchical matrix K̃ with the following properties: (1) constructing K̃ requires

O(N logN) work; (2) a matvec with K̃ also requires O(N logN) work; and (3)

‖K̃ −K‖ ≤ ǫ‖K‖, where 0 < ǫ < 1 is a user-defined error tolerance. In other words,

given any SPD matrix K, our task is to construct a hierarchically low-rank matrix

compression K̃ such that the relative error ‖K−K̃‖/‖K‖ is small. The only required

input to our algorithm is a routine that returns a submatrix KIJ , for arbitrary row

and column index sets I and J . For certain matrices, we can achieve these goals

with GOFMM. Our scheme belongs to the class of hierarchical matrix approximation

methods. The constant in the complexity estimate depends on the user-defined
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error tolerance, the structure of the underlying matrix, and the GOFMM variant. Let

us remark and emphasize that our approximation scheme cannot guarantee both

accuracy and work complexity simultaneously, since an arbitrary SPD matrix may

not admit a good hierarchical low-rank matrix approximation (see §4.2).

We say that a matrix K̃ has a hierarchically low-rank structure, i.e., K̃

is an H-matrix [8, 44], if

K̃ = D + S + UV, (4.1)

where D is block-diagonal with every block being an H-matrix, U and V are

low rank, and S is sparse. At the base case of this recursive definition, the blocks

of D are small dense matrices. An H-matrix matvec requires O(N logN) work, and

the constant in the complexity estimate depends on the rank of U and V . Depending

on the construction algorithm, this complexity can go down to O(N). Although such

matrices are rare in real-world applications, it is quite common to find matrices that

can be approximated arbitrarily well by an H-matrix.

One important observation is that this hierarchical low-rank structure is not

invariant to row and column permutations. Therefore any algorithm for constructing

K̃ must first appropriately permute K before constructing the matrices U, V,D, and

S. Existing algorithms rely on the matrix entries Kij being “interactions” (pairwise

functions) between points {xi}Ni=1 in R
d and permute K either by clustering the

points (typically using some tree data-structure) or by using graph partitioning

techniques (if K is sparse). GOFMM requires neither geometric information nor

sparsity.
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Background and significance Dense SPD matrices appear in scientific com-

puting, statistical inference, and data analytics. They appear in Cholesky and LU

factorization [36], in Schur complement matrices for saddle point problems [10], in Hes-

sian operators in optimization [87], in kernel methods for statistical learning [37,50],

and in N-body methods and integral equations [41,44]. In many applications, the

entries of the input matrix K are given by Kij = K(xi, xj) : R
d × R

d → R, where

K is a kernel function. Examples of kernel functions are radial basis functions,

Green’s functions, and angle similarity functions. For such kernel matrices, the input

is not a matrix, but only the points {xi}Ni=1. The points are used to appropriately

permute the matrix using spatial data structures. Furthermore, the construction

of the sparse correction S uses nearest-neighbor structure of the input points. The

low-rank matrices U, V can be either analytically computed using expansions of the

kernel function, or semi-algebraically computed using fictitious points (or equivalent

points), or using algebraic sampling-based methods that use geometric information.

In a nutshell, geometric information is used in all aspects of an H-matrix method.

In many cases however, such points and kernel functions are not available. For

example, in dense graphs in data analysis (e.g., social networks, protein interactions).

Related matrices include graph Laplacian operators and their inverses. Additional

examples include frontal matrices and Schur complements in factorization of sparse

matrices; Hessian operators in optimization; and kernel methods in machine learning

without points (e.g., word sequences and diffusion on graphs [14,55]).

Contributions GOFMM is inspired by the rich literature of algorithms for matrix
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sketching, hierarchical matrices, and fast multipole methods. Its unique feature

is that by using only matrix evaluations it generalizes FMM ideas to compressing

arbitrary SPD matrices. In more detail, our contributions are summarized below.

• A result from reproducing kernel Hilbert space theory is that any SPD matrix

corresponds to a Gram matrix of vectors in some, unknown Gram (or feature)

space [50]. Based on this result, the matrix entries are inner products, which we

use to define distances. These distances allow us to design an efficient, purely

algebraic FMM method.

• The key algorithmic components of GOFMM (and other hierarchical matrix and

FMM codes) are tree traversals. We test parallel level-by-level traversals, out-of-

order traversals using OpenMP’s advanced task scheduling and an in-house tree-task

scheduler. We found that scheduling significantly improves the performance when

compared to level-by-level tree traversals. We also use this scheduling to support

heterogeneous architectures.

• We conduct extensive experiments to demonstrate the feasibility of the proposed

approach. We test our code on 22 different matrices related to machine learning,

stencil PDEs, spectral PDEs, inverse problems, and graph Laplacian operators.

We perform numerical experiments on Intel Haswell and KNL, Qualcomm ARM,

and NVIDIA Pascal architectures. Finally, we compare with three state-of-the-art

codes: HODLR, STRUMPACK, and ASKIT.

GOFMM also has several additional capabilities. If points and kernel functions (or

Green’s) function are available, they can be utilized in a similar way to the algebraic
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FMM code ASKIT we previously developed [69,71]. GOFMM currently supports three

different measures of distance: geometric point-based (if available), Gram-space

ℓ2 distance, and Gram-space angle distance. GOFMM has support for matvecs with

multiple right hand sides, which is useful for Monte-Carlo sampling, optimization,

and blocked Krylov methods.

Limitations GOFMM is restricted to SPD matrices. (However, if we are given points,

the method becomes similar to existing methods). GOFMM guarantees symmetry of K̃,

but if ‖K−K̃‖/‖K‖ is large, positive definiteness may be compromised. To reiterate,

GOFMM cannot simultaneously guarantee both accuracy and work complexity. This

initial implementation of GOFMM supports shared-memory parallelism and accelerators,

but not distributed memory architectures. The current version of GOFMM also has

several parameters that require manual tuning. Often, the main goal of building

H-matrix approximations is to construct a factorization of K, a topic we do not

discuss in this paper. Our method requires the ability to evaluate matrix entries

and the complexity estimates require that these entries can be computed in O(1)

time. If K is only available through matrix-free interfaces, these assumptions may

not be satisfied. Other algorithms, like STRUMPACK, have inherent support for such

matrix-free compression.

Related work. The literature on hierarchical matrix methods and fast multipole

methods is vast. Our discussion is brief and limited to the most related work.
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Low-rank approximations. The most popular approach for compressing

arbitrary matrices is a global low-rank approximation using randomized linear algebra.

In (4.1), this is equivalent to setting D and S to zero and constructing only U and V .

Examples include the CUR [66] factorization, the Nystrom approximation [100], the

adaptive cross approximation [9], and randomized rank-revealing factorizations [45,74].

These techniques can also be used for H-matrix approximations when D is not zero.

Instead of applying them to K, we can apply them to the off-diagonal blocks

of K. FMM-specific techniques that are a mix between analytic and algebraic

methods include kernel-independent methods [81, 104] and the black-box FMM [32].

Constructing both U and V accurately and with optimal complexity is hard. The

most robust algorithms require O(N2) complexity or higher (randomized methods

and leverage-score sampling) since they require one to “touch” all the entries of the

matrix (or block) to be approximated.

Permuting the matrix. When K is sparse, the method of choice uses

graph-partitioning. This doesn’t scale to dense matrices because practical graph

partitioning algorithms scale at least linearly with the number of edges and thus the

construction cost would be at least O(N2) [1, 54].

H-matrix methods and software. Treecodes and fast multipole methods

originally were developed for N-body problems and integral equations. Algebraic

variants led the way to the abstraction of H-matrix methods and the application

to the factorization of sparse systems arising from the discretization of elliptic

PDEs [2, 8, 39,44,49,101].

Let us briefly summarize the H-matrix classification. Recall the decomposition
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K = D + S + UV , (4.1). If S is zero the approximation is called a hierarchically

off-diagonal low rank (HODLR) scheme. In addition to S being zero, if the H-

matrix decomposition of D is used to construct U , V we have a hierarchically

semi-separable (HSS) scheme. If S is not zero we have a generic H-matrix; but if

the U, V terms are constructed in a nested way then we have an H
2-matrix or an

FMM depending on more technical details. HSS and HODLR matrices lead to very

efficient approximation algorithms for K−1. However, H2 and FMM compression

schemes better control the maximum rank of the U and V matrices than HODLR

and HSS schemes. For the latter, the rank of U and V can grow with N [15] and

the complexity bounds are no longer valid. Recently, here have been algorithms

to effectively compress FMM and H
2-matrices [25, 105]. One of the most scalable

methods is STRUMPACK [33,78,90], which constructs an HSS approximation of a

square matrix (not necessarily SPD) and then uses it to construct an approximate

factorization. For dense matrices STRUMPACK uses the lexicographic ordering. If

no fast matrix-vector multiplication is available, STRUMPACK requires O(N2) work

for compressing a dense SPD matrix, and O(N) work for the matvec.

4.2 Methods

Given K ∈ R
N×N , GOFMM aims to construct an H-matrix K̃ in the form of

(4.1) such that we can approximate

u = Kw ≈ K̃w, for w ∈ R
N . (4.2)

When points {xi}Ni=1 are available such that Kij = K(xi, xj), the recursive partition-

ing on D and the low-rank structure UV use distances between xi and xj . Existing
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METHOD MATRIX LOW-RANK PERM S
FMM [21] K(xi, xj) EXP OCTREE Y
KIFMM [104] K(xi, xj) EQU OCTREE Y
BBFMM [32] K(xi, xj) EQU OCTREE Y
HODLR [4] Kij ALG NONE N
STRUMPACK [90] Kij ALG NONE N
ASKIT [73] K(xi, xj) ALG TREE Y
MLPACK [26] K(xi, xj) EQU TREE Y
GOFMM Kij ALG TREE Y

Table 4.1 We summarize the main features of different H-matrix methods/codes for
dense matrices. “MATRIX” indicates whether the method requires a kernel function
and points—indicated by K(xi, xj)—or it just requires kernel entries—indicated by
Kij. “LOW-RANK” indicates the method used for the off-diagonal low-rank
approximations: “EXP” indicates kernel function-dependent analytic expansions;
“EQU” indicates the use of equivalent points (restricted to low d problems); “ALG”
indicates an algebraic method. “PERM” indicates the permutation scheme used
for dense matrices: “OCTREE” indicates that the scheme doesn’t generalize to high
dimensions; “NONE” indicates that the input lexicographic order is used; and “TREE”
indicates geometric partitioning that scales to high dimensions. S indicates whether
a sparse correction (FMM or H

2) is supported. In §4.4, we present comparisons with
ASKIT, STRUMPACK, and HODLR.
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FMM methods approximate Kij when xi and xj are sufficiently far from each other.

Otherwise, Kij is not approximated and it is placed either in D or in S. We call this

distance-based criterion near-far pruning.

To define such a pruning scheme without {xi}Ni=1, we need a notion of distance

between two matrix indices i and j. We define such a distance in the next section.

With it, we can permute K and define neighbors for each index i. In §4.2.2, we

describe a task-based algebraic FMM that only relies on the distance we define.

Finally in §4.2.3, we discuss task parallelism and scheduling.

4.2.1 Geometry-oblivious techniques

In this section, we introduce the machinery for using GOFMM in a geometry-

oblivious manner. Throughout the following discussion, we refer to a set of indices

I = {1, . . . , N}, where index i corresponds to the ith row (or column) of the matrix

K in the original ordering. Our objective is to find a permutation of I so that K

can be approximated by an H-matrix. The key is to define a distance between a

pair of indices i, j ∈ I, denoted as dij . Using the distances, we then perform a

hierarchical clustering of I, which is used to define the permutation and determine

which interactions go into the sparse correction S (using nearest neighbors).

We define three measures of distance including the point-based Euclidean

distance (if data points are available), a Gram-space Euclidean distance, and a

Gram-space angle distance.

Geometric-ℓ2. If we are given points {xi}Ni=1, then dij = ‖xi − xj‖2 is the

geometric ℓ2 distance. This will be the geometry-aware reference implementation for
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cases where points are given.

Gram-ℓ2 (or “kernel” distance). Since K is SPD, it is the Gram matrix

of some set of unknown Gram vectors, {φi}Ni=1 ⊂ R
N ( [92], proposition 2.16,

page 44). That is, Kij = (φi, φj), where (·, ·) denotes the ℓ2 inner product in R
N .

We define the Gram ℓ2 distance as dij = ‖φi − φj‖2. Computing the kernel distance

only requires three entries of K:

d2ij = ‖φi‖2 + ‖φj‖2 − 2(φi, φj) = Kii +Kjj − 2Kij . (4.3)

Gram angles (or “angle” distance). Our third measure of distance

considers angles between Gram vectors, which is based on the standard sine distance

(cosine similarity) in inner product spaces. We define the Gram angle distance

as dij = sin2 (∠(φi, φj)) ∈ [0, 1]. This expression is chosen so that dij is small for

nearly collinear Gram vectors, large for nearly orthogonal Gram vectors, and dij is

inexpensive to compute. Although the value dij may seem arbitrary, we only compare

values for the purpose of ordering, so any equivalent metric will do. Computing an

angle distance only requires three entries of K:

dij = 1− cos2 (∠(φi, φj)) = 1−K2
ij/(KiiKjj). (4.4)

To reiterate for emphasis, dij define proper distances (metrics) because K is SPD.

And with distances, we can apply FMM.

Tree partitioning and nearest neighbor searches. K is permuted using

a balanced binary tree. The root node is assigned with the full set of points, and

the tree is constructed recursively by splitting a node’s points evenly between two
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Algorithm 4.2.1 [l, r] = metricSplit(α)

p = argmax ({dic|i ∈ α}); q = argmax({dip|i ∈ α});
[l, r] = medianSplit({dip − diq|i ∈ α});

child nodes according to the pairwise distance metric dij . The splitting terminates at

nodes with some pre-determined leaf size m. The leaf nodes then define a partial

ordering of the indices: if leaf α is anywhere to the left of leaf β, then the indices of

α precede those of β. We use this ordering to permute rows and columns of K. In

the remainder of this paper, we use the notation α, β to refer interchangeably to a

node or the set of indices belonging to the node.

In our implementation, we use a metric ball tree [73], which splits data points

according to their pairwise distances. For geometric distances, the tree construction

costs O(N logN). But Gram distances (kernel and angle) require sampling to

avoid O(N2) costs. Suppose we use one of the Gram distances to split an interior

node α between its left child l and right child r. We define c = 1
nc

∑
φi to be an

approximate centroid2 taken over a small sample of nc Gram vectors belonging to

α. nc is O(1). Next, we find the point p that is farthest away in distance from c,

and the point q that is farthest away from p. Then we split the indices i ∈ α on the

values dip − diq, which measures the degree to which i is closer to p than to q. This

approach is outlined in Algorithm 4.2.1.

We perform all nearest neighbors (ANN) search using randomized trees that

are constructed in exactly the same way as the metric partitioning tree, except that

2Computing the true centroid over all data points would result in O(N2) work.
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p and q are chosen randomly. The search algorithm is described in [103] and (briefly)

in the next section.

4.2.2 Algebraic Fast Multipole Method

H-matrix methods (including algebraic FMM) have two phases: compres-

sion and evaluation. As we discussed in the introduction, K is compressed

recursively using a binary tree such that

K̃αα =

[
K̃ll 0

0 K̃rr

]
+

[
0 Slr

Srl 0

]
+

[
0 UVlr

UVrl 0

]
, (4.5)

where l and r are left and right child of the treenode α. Each node α contains a

set of matrix indices and the two children evenly split the indices such that α = l∪r.

(We overload the notation α, β, l and r to denote the matrix indices that those

treenode own.) In Fig. 4.2, the blue blocks depict S (at all levels) and D (in the leaf

level), and the pink blocks depict the UV matrices.

We use four tree traversals to describe the algorithms in GOFMM: postorder

(POST), preorder (PRE), any order (ANY), and any order-leaves only (LEAF).

By “task” we refer to a computation that occurs when we visit a tree node during

a traversal. We list all tasks required by the compression phase (Algorithm 4.2.2)

and evaluation phase (Algorithm 4.2.7) in Table 4.2.

GOFMM compression starts by creating the binary metric ball tree in Al-

gorithm 4.2.2 that represents the binary partitioning (and encodes a symmetric

permutation of matrix K). This requires the distance metric dij and a preorder

traversal (PRE) of the first task SPLI(α) in Table 4.2.
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Task Operations FLOPS

SPLI(α) split α into l and r Algorithm 4.2.1 |α|
ANN(α) update Nα with KNN(Kαα) m2

SKEL(α) α̃ in Algorithm 4.2.6 2s3 + 2m3

COEF(α) Pα̃α or Pα̃[l̃r̃] in Algorithm 4.2.6 s3

N2S(α) if α is leaf then w̃α = Pα̃αwα 2msr
else w̃α = Pα̃[l̃r̃][w̃l; w̃r] 2s2r

SKba(β) ∀α ∈ Far(β), Kβ̃α̃ = K(β̃, α̃) ds2|Far(β)|
S2S(β) ũβ =

∑
α∈Far(β) Kβ̃α̃w̃α 2s2r|Far(β)|

S2N(β) if α is leaf then uβ = P T
β̃β
ũβ 2msr

else [ũl; ũr]+ = P T
β̃[l̃r̃]

ũβ 2s2r

Kba(β) ∀α ∈ Near(β), Kβα = K(β, α) m2|Near(β)|
L2L(β) uβ+ =

∑
α∈Near(β) Kβαwα 2m2r|Near(β)|

Table 4.2 Tasks and their costs in FLOPS. SPLI (tree splitting), ANN (all nearest-
neighbors), SKEL (skeletonization), COEF (interpolation) SKba and Kba (caching
submatrices) occur in the compression phase. Interactions N2S (nodes to skeletons),
S2S (skeletons to skeletons), S2N (skeletons to nodes), and L2L (leaves to leaves)
occur in the evaluation phase.

Algorithm 4.2.2 Compress(K)

1: for each randomized tree do # iterative neighbor search
2: (PRE) SPLI(α) # create a random projection tree
3: (LEAF) ANN(α) # search κ neighbors in leaf nodes
4: (PRE) SPLI(α) # create a metric ball tree
5: (LEAF) LeafNear(β) # build Near(β) using N(β)
6: (LEAF) FindFar(β,root) # find Far(β) using MortonID

7: (POST) MergeFar(α) # merge Far(l), Far(r) to Far(α)
8: (POST) SKEL(α) # compute skeletons α̃
9: (ANY) COEF(α) # compute the coefficient matrix P

10: (ANY) Kba(β) # optionally evaluate and cache Kβα

11: (ANY) SKba(β) # optionally evaluate and cache Kβ̃α̃

Node lists and near-far pruning. GOFMM tasks require that every tree

node maintains three lists. For a node α, these lists are the neighbor list N(α),
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Figure 4.2 A partitioning tree (left) and corresponding hierarchically low-rank plus
sparse matrix (right). The off-diagonal blocks are combinations of low-rank matrices
(pink) and sparse matrices (blue). The ⋆ symbol denotes an entry that cannot
be approximated (because the corresponding interaction is between neighbors). The
solid edges in the tree mark the path traversed by FindFar(β,0). Since Kβα does
not contain any neighbor interactions (⋆), this traversal adds α to Far(β). In this
example, FindFar(l,0) computes Far(l) = {r, 4, 2}, and FindFar(r,0) computes
Far(r) = {l, 4, 2}. Algorithm 4.2.5 (MergeFar) then moves Far(l) ∩ Far(r) into
Far(α) so that Far(α) = {4, 2}, Far(l) = {r} and Far(r) = {l}.

Algorithm 4.2.3 LeafNear(β)

Near(β) = {MortonID(i) : ∀i ∈ N(β)}

Algorithm 4.2.4 FindFar(β = leaf, α)

if α ∩Near(β) 6= φ using MortonID then
FindFar(β,l); FindFar(β,r);

else Far(β) = Far(β) ∪ α;

Algorithm 4.2.5 MergeFar(α)

MergeFar(l); MergeFar(r);
Far(α) = Far(l) ∩ Far(r);
Far(l) = Far(l)\Far(α); Far(r) = Far(r)\Far(α);

near interaction list Near(α), and far interaction list Far(α). Computing these lists

requires defining neighbors for indices based on the distance dij and the Morton ID.

A pair of nodes α and β is said to be far if submatrix Kβα is low-rank
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and near otherwise. We use neighbor-based pruning [73] to determine the near-far

relation. Neighbors are defined based on the specified distance dij . Recall that we

have already defined three different distance metrics in Section 4.2.1. For each i, we

search for the κ indices j that result in the smallest dij . The Morton ID is a bit

array that codes the path from the root to a tree node or index i. The Morton ID of

an index i is the Morton ID of the leaf node (in GOFMM ball metric tree) that contains

it. We use MortonID() to denote this.

Node neighbor list N(α): As we discussed, GOFMM requires a preprocessing

step in which we compute the nearest neighbors for each tree node α. We first

construct a list of κ nearest-neighbor for each index i ∈ α iteratively using a

greedy search (steps 1–3 in Algorithm 4.2.2). Then we construct the neighbor list

N(α) by merging all neighbors of i ∈ α. For non-leaf nodes the list is constructed

recursively [69].

In each iteration, we create a randomized projection tree [27,62, 73], and we

search for neighbors of i only in the leaf node α that contains i using an exhaustive

search [106]. That is, for each i ∈ α, we only search for small dij where j ∈ α as

well. Due to the randomness, in each iteration leaf node α may be assigned with a

different partition, which gradually cover all neighbors during the local exhaustive

search. To get a set of approximate neighbors, the iteration stops after reaching 80%

accuracy or 10 iterations.

80% and 10 iterations are chosen empirically. In our experiments, we found

that more accurate nearest neighbors do not improve the GOFMM approximation. More

specifically, nearest-neighbors provide a guess of important matrix entries, which
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are used in importance sampling and selecting near interactions. In our previous

work [73], we show that whether neighbors can improve the accuracy depends on

the data (points or Gram vectors) in different scales. Typically, neighbor-pruning

works better if the intrinsic dimensionality of the data is low. Consequently, random

projection based ANN methods also converge faster [103]. Otherwise, it is likely that

neighbors will not improve the accuracy too much. Typically even smaller values are

sufficient. We use 80% to be conservative.

Near list of a node Near(α): Leaf nodes α, β are considered near if α∩N(β)

is nonempty (i.e., Kαβ contains at least one neighbor (⋆) in Fig. 4.2). The Near

interaction list is defined only for leaf nodes and contains only leaf nodes. For each

leaf node β, Near(β) is constructed using LeafNear (Algorithm 4.2.3). For each

neighbor i ∈ N(β), LeafNear(β) adds MortonID(i) to Near(β). Notice that the size

of Near(β) determines the number of direct evaluations (blue blocks in Fig. 4.2) in

the off-diagonal blocks. To prevent the cost from growing too fast, we introduce a

user-defined parameter budget such that

|Near(β)| < budget× (N/m). (4.6)

While looping over neighbor i ∈ N(β), instead of directly adding MortonID(i) to

Near(β), we only mark it with a ballot. Then we insert candidates to Near(β)

according to their votes until (4.6) is reached. To enforce symmetry of K̃, we loop

over all Near lists and enforce the following: if α ∈ Near(β) then β ∈ Near(α).

Far list of a node Far(α): Far(α) is constructed in two steps in Algo-

rithm 4.2.2, representing submatrices in the off-diagonal blocks that can be approxi-
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mated. First for each leaf node β, we invoke FindFar(β, root) (Algorithm 4.2.4).

Upon visiting α, we check whether α is a parent of any leaf node in Near(β) us-

ing MortonID. If so, we recur to the two children of α; otherwise, we add α to

Far(β) (i.e. Kβα can be approximated). The second step is a postorder traversal

on MergeFar(root) (Algorithm 4.2.5). This process merges the common nodes

from two children lists Far(l) and Far(r) to create larger off-diagonal blocks for

approximation. These common nodes are removed from the children and added to

their parent list Far(α). In Fig. 4.2, FindFar can be identified by the smallest square

pink blocks, and MergeFar merges small pink blocks into larger blocks.

Low-rank approximation. We approximate off-diagonal matrix blocks

with a nested interpolative decomposition (ID) [45]. Let β be the indices in a leaf

node and I = {1, ..., N}\β be the set complement. The skeletonization of β is a

rank-s approximation of its off-diagonal blocks KIβ using the ID, which we write as

KIβ ≈ K
Iβ̃
P
β̃β
, (4.7)

where β̃ ⊂ β is the skeleton of β. K
Iβ̃
∈ R

(N−|β|)×s is a column submatrix of KIβ , and

P
β̃β
∈ R

s×|β| is a matrix of interpolation coefficients, where s is the approximation

rank.

To efficiently compute this approximation, we select a sample subset I ′ ⊂ I

using neighbor-based importance sampling [73]. We then perform a rank-revealing

QR factorization (GEQP3) on KI′β. The skeletons β̃ are selected to be the first

s pivots, and the matrix P
β̃β

is computed by a triangular solve (TRSM) using the

triangular factor R. The rank s is chosen adaptively such that σs+1(KI′β) < τ , where
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Algorithm 4.2.6 [α̃, Pα̃α]=Skeleton(α)

if α is leaf then return [α̃, Pα̃α] = ID(α);
[l̃, ] = Skeleton(l); [r̃, ] = Skeleton(r);
return [α̃, Pα̃[l̃r̃]] = ID([l̃r̃]);

σs+1(KI′β) is the estimated s+ 1 singular value and τ is related to a user-specified

error tolerance.

For an internal node α, we form the skeletonization in the same way, except

that the columns are also sampled using the skeletons of the children of α. That

is, the ID is computed for KI′[l̃r̃], where [l̃r̃] = l̃ ∪ r̃ contains the skeletons of the

children of α:

KI[l̃r̃] ≈ KIα̃Pα̃[l̃r̃]. (4.8)

This way, the skeletons are nested: α̃ ⊂ l̃ ∪ r̃.

As a consequence of the nesting property, we can use P
l̃l

and Pr̃r to construct

an approximation of the full block KIα:

KIα ≈ KI[l̃r̃]

[
P
l̃l

Pr̃r

]
≈ KIα̃Pα̃[l̃r̃]

[
P
l̃l

Pr̃r

]
. (4.9)

Then we have a telescoping expression for the full coefficient matrix:

Pα̃α = Pα̃[l̃r̃]

[
P
l̃l

Pr̃r

]
. (4.10)

We never explicitly form Pα̃α, but instead use the telescoping expression during

evaluation.

Algorithm 4.2.6 computes the skeletonization for all tree nodes with a pos-

torder traversal. There are two tasks for each tree node α listed in Table 4.2: (1)
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SKEL(α) selects α̃ (in the critical path) and (2) COEF(α) computes Pα̃[l̃r̃]. Notice

that in Algorithm 4.2.2 only SKEL(α) needs to be executed in postorder (POST),

but COEF(α) can be in any order (ANY) as long as SKEL(α) is finished. Such

parallelism can only be specified at the task level, which later inspires our task-based

parallelism in Section 4.2.3. At the end of the compression, we can optionally

evaluate and cache all Kβα in Near(β) and all K
β̃α̃

in Far(β) by executing Kba(β)

and SKba(β) in any order. Given enough memory (at least O(N) for all Kβα and

K
β̃α̃

), caching can reduce the time spent on evaluating and gathering submatrices.

Evaluation. Following [69], we present Algorithm 4.2.7 a four-step process

for computing (4.2). The idea is to approximate each matvec uβ+ = Kβαwα in

Far(β) using a two-sided ID to accumulate P T
β̃β
K

β̃α̃
Pα̃αwα, where Pα̃α, Pβ̃β

are given

by the telescoping expression (4.10). For more details, see [69].

Algorithm 4.2.7 Evaluate(u,w)

1: (POST) N2S(α) # compute skeleton weights w̃
2: (ANY) S2S(β) # apply skeleton basis Kβ̃α̃

3: (PRE) S2N(β) # accumulate skeleton potentials ũ
4: (ANY) L2L(β) # accumulate direct matvec to u

The first step is to perform a postorder traversal (POST) on N2S(α) (Nodes

To Skeletons). This computes the skeleton weights w̃α = Pα̃αwα for each leaf

node, and w̃α = Pα̃[l̃r̃][w̃l; w̃r] for each inner node. Recall that in COEF(α), we have

computed Pα̃α for each leaf node and Pα̃[l̃r̃] for each internal node. S2S(β) (Skeletons

to Skeletons) applies the skeleton basis K
β̃α̃

and accumulates skeleton potentials ũ

for each node: ũβ =
∑

α∈Far(β)Kβ̃α̃
w̃α. As soon as w̃α are computed in N2S, S2S

can be executed in any order. S2N(β) (Skeletons To Nodes) performs interpolation
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on the left and accumulates ũ with a preorder traversal. This uses the transpose

of (4.10). For each node β, we accumulate [ũl; ũr]+ = P T
β̃[l̃r̃]

ũβ to its children. In

the leaf node, uβ = P T
β̃β
ũβ directly accumulates to the output. These three tasks

compute all matvec for the far nodes (pink blocks in Fig. 4.2). All matvec on Kβα

in Near(β) (blue blocks) are computed by L2L(β) (Leaves To Leaves) and directly

accumulated to uβ .

Complexity. The worst case compression cost in Algorithm 4.2.7 is O(N2),

when |Near(α)| = (N/m) for all α. The best case occurs when each Near(α) only

contains α itself. We fix the rank s and leaf size m. The tree has O(N/m) leaf nodes

and O(N/m) interior nodes, so in the best case, overall N2S has O(2ms(N/m) +

2s2(N/m)) work, S2S has O(2s2(N/m)) work, S2N has O(2ms(N/m) + 2s2(N/m))

work, and L2 has O(2m2(N/m)). When s and m are held constant, the total work

is O(N) per right hand side. In GOFMM, this is controlled by the budget.

4.2.3 Shared memory parallelism

In H-matrix methods and FMM, the main algorithmic pattern is a tree

traversal. A traversal may exhibit high parallelism at the leaf level, but the parallelism

typically diminishes near the root level due to the dependencies. In addition, if

the workload per tree node varies, load balancing becomes an issue. Most static

scheduling codes employ level-by-level traversals, which introduces unnecessary

synchronizations. In GOFMM, we observe significant workload variations during the

compression (Algorithm 4.2.6) and during the evaluation (tasks N2S and S2N).

One solution is to exploit parallelism in finer granularity. For example, when
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Figure 4.3 Dependency graph for steps 1–3 of Algorithm 4.2.7 (step 4 is completely
independent of steps 1–3). Each tree node denotes a task, and the arrows between
nodes imply a dependency. Here Near(α) only contains itself (HSS). For example,
yellow node β has a RAW dependency following blue α, because S2S(β) computes
ũβ =

∑
α∈Near(β)Kβ̃α̃

w̃α. When Near(β) contains more than just itself. The depen-
dencies are unknown at compile time and thus, omp task depend fails to describe
the dependencies between N2S and S2S.

the number of tree nodes in the single tree level is less than the number of cores,

we can use multi-threaded BLAS/LAPACK on a single tree node. However, this is

insufficient if the workload does not increase significantly (e.g. growing with |α|)

while approaching the root. (That is, the workload must be within the strong scaling

range of BLAS/LAPACK to be efficient).

To partially address these challenges, we abandon the convenient level-by-

level traversal and explore an out-of-order approach using dynamic scheduling. To

this end, we test two approaches and compare them with a level-by-level traversal.

In the first approach, we introduce a self-contained runtime system. In the second

approach we test the same ideas with OpenMP’s omp task depend feature.

Dependency analysis. Recursive preorder and postorder traversals in-
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herently encode Read/Write dependencies between tree nodes. Following Algo-

rithm 4.2.2 and Algorithm 4.2.7, we can describe dependencies between different tasks.

However, due to dynamic granularity of tasks we need a data flow analysis at runtime.

For example, dependencies between N2S and S2S cannot be discovered at compile

time, because the RAW (read after write) dependencies on w̃α are computed by

neighbors N(α). In order to build dependencies at runtime as a direct acyclic graph

(DAG), we perform a symbolic execution on Algorithm 4.2.2 and Algorithm 4.2.7.

For simplicity, below we just discuss the evaluation phase for the HSS case (the

FMM case is more involved).

Figure 4.3 depicts task dependencies (by tasks we mean algorithmic tasks

defined in Table 4.2) during the evaluation phase Algorithm 4.2.7 for N2S, S2S

and S2N where the off-diagonal blocks are low-rank (HSS) with S = 0. This task

dependency graph is generated by our runtime using symbolic traversals. The N2S,

S2S, and S2N execution order is performed on a binary tree3.

We use three symbolic tree traversals in Algorithm 4.2.7. In the first traversal

(postorder) we find that w̃l is written by l. Going from w̃l to w̃β , we annotate that

w̃l is read by β, i.e. w̃β = P
β̃[l̃r̃]

[w̃l; w̃r]. This RAW dependency is an edge from l

to β in the DAG.

Inter-task dependencies are discovered by the symbolic execution of the yellow

tree. At node β (in yellow), the relation ũα = K
α̃β̃w̃β

will read w̃β. Again this is

a RAW dependency, hence the edge from the blue β to the yellow α. The whole

3Execution order from left to right: dependencies are easier to follow if one rotates the page by 90◦

counter-clockwise
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dependency graph for steps 1–3 is built after the green postorder tree traversal. Step

4 in Algorithm 4.2.7 is independent of steps 1–3. Although this runtime data flow

analysis has some overhead, the amount is almost negligible (< 1%) compared to

the total execution time.

Runtime system. With a dependency graph, scheduling can be done in

static or dynamic fashion. Due to unknown adaptive rank s at compile time, we

implement a light-weight dynamic Heterogeneous Earliest Finish Time (HEFT) [97]

using OpenMP threads. Each worker (thread) in the runtime system can use more

than one physical core with either a nested OpenMP construct or by employing a

device (accelerator) as a slave. Tasks that satisfy all dependencies in the dependency

graph will be dispatched to a “ready” queue. Each worker keeps consuming tasks in

its own ready queue until no tasks are left.

Although we can estimate a cost for each task4 in Table 4.2, the execution

time of a task on a normal worker (or one with an accelerator) depends on the

problem and can only be determined at runtime. The HEFT schedule is implemented

using an estimated finish time of all pending tasks in a specific worker’s ready queue.

Each task dispatched from the dependency graph is assigned to a ready queue such

that the maximum estimated finish time of each queue is minimized. For the case

where the estimation is inaccurate, we also implement a job stealing mechanism.

Other parallel implementation. We briefly introduce other possible

parallel implementations and conduct a strong scaling experiment in §4.4. Here we

4We divide costs for tasks by the theoretical peak FLOPS of the target architecture and a discount factor.
For memory-bound tasks we use the theoretical MOPS instead.
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implemented parallel level-by-level traversals for all tasks that require preorder and

postorder traversals and do not exploit out-of-order parallelism. For tasks that can

be executed in any order, we simply use omp parallel for with dynamic scheduling.

If there are not enough tree nodes in a tree level, we use nested parallelism with

inner OpenMP constructs and multi-threaded BLAS/LAPACK.

The omp task version is implemented using recursive preorder or postorder

traversals. Due to the overhead of the deep call stack, this implementation can be

much slower than others. Although we tested it, we do not report results because it

is not competitive.

We also implemented (and report results for) omp task depend, since OpenMP-

4.5 supports task parallelism with dependencies. However there are two issues. First,

omp task depend requires all dependencies to be known at compile time, which

is not the case for the FMM (tasks N2S and S2S). Second, without knowledge of

the estimated finish time, the OpenMP scheduler will be suboptimal. Finally for

CPU-GPU hybrid architectures, scheduling GPU tasks purely with omp task can

be very challenging.

CPU-GPU hybrid. GPUs usually offer high computing capacity, but

performance can easily be bounded by the PCI-E bandwidth. Because most compu-

tations in Algorithm 4.2.2 are complex and memory bound5, we do not use GPUs for

the compression. Instead we only pre-fetch submatrices Kβα and K
β̃α̃

to the device

memory to overlap with computations on the host (CPUs). During the evaluation,

5Although GEQP3 and TRSM can be performed on GPUs with MAGMA (http://icl.cs.utk.edu/magma/)
and cublas, we find this inefficient for our methods.

138

http://icl.cs.utk.edu/magma/


our runtime will decide–depending on the number of FLOPS– whether to issue a batch

of tasks (up to 8) to the GPU in concurrent (using stream). This usually occurs in

N2S and S2N where the size of cublasXgemm is bounded by s and m. Furthermore,

to hide communication time between CPU and GPU, all arguments of the next task

in queue are pre-fetched using asynchronous communication for pipelining. Finally,

because a worker with a GPU is usually 50× to 100× more capable than others,

we disable job stealing balancing for GPU workers. This optimization prevents the

GPU from idling.

Distributed parallelism. In this work, we do not discuss how to parallelize

GOFMM in a distributed environment. The MPI extension requires new algorithms,

which will be discussed in the future work of GOFMM. The basic philosophy of MPI

parallelism follows [23,71,109], which include distributed tree traversal, distributed

nearest-neighbor search, local essential trees for reducing communication, and dis-

tributed linear algebra operations. New challenges include parallelizing matrix access,

integrating the task-scheduling with MPI, accounting for off-diagonal dependencies

from other ranks, and load-balancing. Inter-process job stealing may also result in

extra communication.

4.3 Experimental Setup

We perform experiments on Haswell, KNL, ARM, and NVIDIA GPU architec-

tures with four different setups to examine the accuracy and efficiency of our methods.

We demonstrate (1) the robustness and effectiveness of our geometry-oblivious FMM,

(2) the scalability of our runtime system against other parallel schemes, (3) the
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accuracy and cost comparison with other software, and (4) the absolute efficiency

(in percentage of peak performance).

Implementation and hardware. GOFMM is implemented in C++ and CUDA,

employing OpenMP for shared memory parallelism. The source code of GOFMM can

be found in the Github repository (https://github.com/ChenhanYu/hmlp). Our

tests were conducted on TACC’s Lonestar 5, (two 12-core, 2.6GHz, Xeon E5-2690

v3 “Haswell”), TACC’s Stampede 2 (68-core, 1.4GHz, Xeon Phi 7250 “KNL”) and

CSCS’s Piz Daint (12-core, 2.3GHz, Xeon E5-2650 v3 and NVIDIA Tesla P100).

Matrices We generated 22 matrices emulating different problems. K02 is a

2D regularized inverse Laplacian squared, resembling the Hessian operator of a

PDE-constrained optimization problem. The Laplacian is discretized using a 5-

stencil finite-difference scheme with Dirichlet boundary conditions on a regular grid.

K03 has the same setup with the oscillatory Helmholtz operator and 10 points

per wave length. K04–K10 are kernel matrices in six dimensions (Gaussians with

different bandwidths, narrow and wide; Laplacian Green’s function, polynomial

and cosine-similarity). K12–K14 are 2D advection-diffusion operators on a regular

grid with highly variable coefficients. K15,K16 are 2D pseudo-spectral advection-

diffusion-reaction operators with variable coefficients. K17 is a 3D pseudo-spectral

operator with variable coefficients. K18 is the inverse squared Laplacian in 3D

with variable coefficients. G01–G05 are the inverse Laplacian of the powersim,

poli_large, rgg_n_2_16_s0, denormal, and conf6_0-8x8-30 graphs from

UFL (http://yifanhu.net/GALLERY/GRAPHS/search.html).
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K02–K03, K12–K14, and K18 resemble inverse covariance matrices and

Hessian operators from optimization and uncertainty quantification problems. K04–K10

resemble classical kernel/Green function matrices but in high dimensions. K15–K17

resemble pseudo-spectral operators. G01–G05 (N = 15838, 15575, 65536, 89400,

49152) are graphs for which we do not have geometric information. For K02–K18,

we use N = 65536 if not specified.

Also, we use kernel matrices from machine learning: COVTYPE (100K,

54D, cartographic variables); and HIGGS (500K, 28D, physics) [63]; MNIST (60K,

780D, digit recognition) [18]. For these datasets, we use a Gaussian kernel with

bandwidth h.

GOFMM supports both double and single precision. All experiments with matri-

ces K02–K18 and G01–G05 are in single precision. The results for COVTYPE,

HIGGS, MNIST are in double precision. In the Github repository, we provide

a MATLAB script to generate K02–K18. For real world datasets and graphs, we

provide the link to their original sources.

Parameter selection and accuracy metrics. We control m (leaf node

size), s (maximum rank), τ (adaptive tolerance), κ (number of neighbors), budget (a

key parameter for amount of direct evaluations and for switching between HSS and

FMM) and partitioning (Kernel, Angle, Lexicographic, geometric, random).

We use m =256–512; on average this gives good overall time. The adaptive tolerance

τ , reflects the error of the subsampled block and may not correspond to the output

error ǫ2. Depending on the problem, τ may underestimate the rank. Similarly, this

may occur in HODLR, STRUMPACK and ASKIT. We use τ between 1E-2 and 1E-7, s = m,
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k = 32 and 3% budget. To enforce a HSS approximation, we use 0% budget. The

Gaussian bandwidth values are taken from [70] and produce optimal learning rates.

Throughout we use relative error ǫ2 defined as the following

ǫ2 = ‖K̃w −Kw‖F /‖Kw‖F , where w ∈ R
N×r. (4.11)

This metric requires O(rN2) work; to reduce the computational effort we instead

sample 100 rows of K. In all tables, we use “Comp” and “Eval” to refer the the

compression and evaluation time in seconds, and “GFs” to GFLOPS per node.

4.4 Empirical Results

We label all experiments from #1 to #46 in tables and figures. We perform

strong scaling results on a single Haswell and KNL node in Fig. 4.4, comparing

different scheduling schemes. In Fig. 4.5, we examine the accuracy of GOFMM for the

different matrices; notice that not all 22 matrices admit good hierarchical low-rank

structures in the original order (lexicographic). In Fig. 4.6, we compare FMM

(S 6= 0 in (4.1)) to HSS (S = 0) and show an example in which increasing direct

evaluations in FMM results in higher accuracy and shorter wall-clock time. In Fig. 4.7,

we present a comparison between five permutation schemes; matrix-defined Gram

distances work quite well.

For reference, we compare GOFMM to three other codes: HODLR and STRUMPACK

(S = 0 in these codes) in Table 4.3 and ASKIT (high-d FMM) in Table 4.4. The

two first codes do not permute K. ASKIT is similar to GOFMM but uses level-by-level

traversals, does not produce a symmetric K̃, and requires points. Finally, we test
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Figure 4.4 Strong scaling on a single Haswell and KNL node (y-axis, time in
seconds on the right, absolute efficiency to the peak GFLOPS on the left). We use s512,
τ1E − 5 and r512. #1 and 2 use COVTYPE to create a Gaussian kernel matrix
with m800 and 12% budget (h = 0.1), achieving ǫ2 = 2E−3 with average rank 487.
#3 and #4 use K02 with m512 and 3% budget, achieving ǫ2 = 5E−5 but only with
average rank 35. We increase the number of cores up to 24 Haswell cores and 68
KNL cores. Each set of experiments contains compression time and evaluation time
on three different parallel schemes: wall-clock time, level-by-level and omp tasks. We
cannot perform scaling experiments for the hybrid CPU-GPU platform (see Table 4.5
for GPU performance).

GOFMM on four different architectures in Table 4.5; the performance of GOFMM

correlates with the performance of BLAS/LAPACK.

Strong scaling (Fig. 4.4). In #1, #2, #3, #4, we use a 24-core Haswell

and a 68-core KNL to perform strong scaling experiments. Each set of experiments

contains 6 bars including 3 different parallel schemes on both Algorithm 4.2.2 and

Algorithm 4.2.7. The blue dot indicates the absolute efficiency (ratio to the peak)

of our evaluation using dynamic scheduling. #1 and #2 require 12% budget with

average rank 487 to achieve 2E−3. This compute-bound problem can reach 65%
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peak performance on Haswell and 33% on KNL. However, #3 and #4 only require

3% budget with average rank 35 to achieve 5E−5. As a result, this memory-bound

problem does not scale (46% and 8%6) very well. In #4, we can even observe slow

down from 34-core to 68-core. This is because the wall-clock time is bounded by the

task in the critical path; thus, increasing the number of cores does not help.

Throughout, we can observe that the wall-clock time for compression is less

than the level-by-level and omp task traversals. While the work of SKEL is bounded

by 2s3, parallel GEQP3 in the level-by-level traversal does not scale (especially on

KNL). On the other hand, task based implementations can execute COEF and Kba

out-of-order to maintain the parallelism. Our wall-clock time is better than omp

task since we use the cost-estimate model for scheduling.

Accuracy (Fig. 4.5). We conduct #5 to examine the accuracy of GOFMM

(up to single precision). Given m512, s512 and r512, we report relative error ǫ2 on

K02-18 and G01-G05 using the Angle distance with two tolerances: 1E−2 (in

blue) and 1E−5 (in green). Throughout, except for K06, K15–K17 (high rank),

K13, K14 (underestimating the rank), and G01–G03 (requiring smaller leaf size

m), other matrices can usually achieve high accuracy with tolerance 1E−5 (0.9s

in compression and 0.2s in evaluation). Our adaptive ID underestimates the rank

of K13 and K14 such that ǫ2 is high. By imposing a smaller tolerance 1E−10

(yellow plots), both matrices reach 1E−5 (1s in compression and 0.2s in evaluation).

6The average rank of #4 is too small. Except for L2L tasks, other tasks can only reach about 5% of
the peak during the evaluation. We suspect that MKL’ SGEMM uses a 30 × 16 micro-kernel to perform a
30×256×16 rank-k update each time. For an m×k×n SGEMM to be efficient, m and n usually need to be at
least four times of the micro-kernel size in each way. In #4, many SGEMMs have m < 30. Still the micro-kernel
must compute 2× 30× 256× 16 FLOPS. These sparse FLOPS are not counted in our experiments.
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Figure 4.5 #5, relative error ǫ2 (y-axis, the smaller the better) on all matrices
(x-axis) using angle distance. Blue bars use τ1E−2 and 1% budget (except for
K6, K15, K16, K17, other matrices take 0.8s to compress and 0.1 to evaluate in
average). Green bars use τ1E−5 and 3% budget (in average, compression takes 1s
and evaluation takes 0.2s). Red labels denotes matrices that do not compress. K13
and K14 have hierarchical low-rank structure, but the adaptive ID underestimates
the rank. K13 and K14 can reach high accuracy (yellow plots) with τ1E−10 and
3% budget (1.0s in compression and 0.2s in evaluation).

K6, K15–K17 have high ranks in the off-diagonal blocks; thus they cannot be

compressed with s512 and 3% budget. G01–G03 requires direct evaluation in the

off-diagonal blocks to reach high accuracy. When we reduce the leaf node size from

512 to 64, we can can still reach 1E−5 (orange plots). However, decreasing leaf

size to 64 results in a longer wall-clock time (0.8s in evaluation), because small m

hurts performance. Overall, we can observe that GOFMM can quite robustly discover

low-rank plus sparse structure from different SPD matrices. We now investigate how

increasing the cost (either with higher rank or more direct evaluations) can improve

accuracy.

Comparison between FMM and HSS (Fig. 4.6). We use #6, #7, and

#8 to show that even with more evaluations, FMM can be faster than HSS for the

same accuracy. For HSS the relative error in #6 (blue plots) plateaus at 5E−4.

Further increasing rank from 256 to 512 (or even 1,024) results in O(s3) work (green
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Figure 4.6 Comparison between HSS and FMM in wall-clock time (seconds, green
bars, right y-axis) and accuracy (ǫ2, blue plots, left y-axis). In #6, #7 and #8,
we use K02, K15 (m512) and COVTYPE (m800) datasets. The fixed rank and
budget are labeled on x-axis. The green bar is the total wall-clock time including
compression and evaluation on 512 right hand sides. For some experiments, we also
provide wall-clock time for evaluation to contrast the trade-off of using high rank and
high budget.

Figure 4.7 Accuracy (left y-axis) and rank (right, x-axis) comparison: Lexico-
graphic, Random, Kernel 2-norm, Angle and Geometric. We use τ1E−7,
s512, m64. For methods that define distance, we use k32 and 3% budget. G03 is a
graph Laplacian; thus, using Geometric distance is impossible.

bars). Using a combination of low-rank (s64) and 3% direct evaluation, FMM can

achieve higher accuracy with little increment in the evaluation time (compression

time remains the same). Similarly, in #8 we can observe that by using s512 and 3%

budget we achieve better accuracy than the HSS approximation (s2048) in less time.
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Permutations (Fig. 4.7). Here we test different permutations (#9, #10,

#11, and #12) to discuss the different distances in GOFMM. In each set of experiments,

we present relative error (blue plots) and average rank (green bars) for five different

schemes. The first two schemes use lexicographic or random order to recursively

permute K. Since there is no distance defined, these two schemes can only use

HSS approximation. The Angle and Kernel distance use the corresponding Gram

distances Section 4.2.1. Finally, we also use standard geometric distance from points.

For the last three schemes, we use κ32 and 3% budget. Overall, we can observe that

the distance metric is important in discovering low-rank structure and improving

accuracy. For example, in #9, Kernel and Geometric show much lower average

rank than others. In #10 and #11, although the average ranks are not significantly

different, distance-based methods usually have higher accuracy. Finally, we observe for

matrix G03 in #12 where no coordinate information exists, our geometry-oblivious

methods can still compress the matrix. Although the lexicographic permutation has

very low rank, the error is large. This is because the uniform samples for the low-rank

approximation are poor. Angle and Kernel distance use neighbors for importance

sampling, which greatly improves the quality of the low-rank approximation.

Comparison to existing software (Table 4.3, Table 4.4). We compare

our methods to HODLR [4], STRUMPACK [90], and ASKIT [73]. Let us summarize some

key differences. HODLR uses the Adaptive Cross Approximation (ACA, partial pivoted

LU) for constructing the low-rank blocks (using the Eigen library). Its evaluation

requires O(N logN) work since the U , V matrices are not nested. STRUMPACK

constructs an HSS representation in O(N logN) work. This is done by using a
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HODLR STRUMPACK GOFMM

# case ǫ2 Comp Eval ǫ2 Comp Eval ǫ2 Comp Eval

13 K02 6E−5 0.6 2.7 1E−4 9.2 0.6 2E−5 1.0 0.3
14 K04 6E−5 0.7 2.7 1E−4 507.8 7.8 2E−5 1.0 0.5
15 K07 7E−5 0.9 3.1 2E−4 528.4 8.2 4E−5 0.6 0.2
16 K12 6E−5 0.7 2.7 2E−4 18.8 0.8 1E−4 0.6 0.2
17 K17 1E−1 862.2 37.6 2E−1 663.4 8.2 9E−2 48.8 3.1
18 G03 3E−4 12.9 9.7 3E−2 29.8 1.3 8E−5 0.5 0.8

Table 4.3 Wall-clock time comparison (in seconds) between HODLR, STRUMPACK, and
GOFMM. For K02–K12, we use N = 36K. K17 uses N = 32K, and G03 uses
N = 65K. For all software, we use leaf node size m512 and 1024 right hand sides.
We control other parameters (τ and s) for each software to target the same relative
error (1E−4).

Parameters ASKIT GOFMM

# case N τ ǫ2 Comp Eval ǫ2 Comp Eval

19 K04 36 864 1E−3 2E−4 0.3 2E−2 2E−4 0.6 2E−2
20 K04 36 864 1E−6 8E−7 1.4 4E−2 7E−7 1.0 3E−2
21 K04 65 536 1E−3 2E−4 1.0 4E−2 2E−4 1.2 4E−2
22 K04 65 536 1E−6 7E−7 2.2 8E−2 6E−7 1.7 4E−2
23 K06 36 864 1E−3 4E−2 6.6 6E−2 3E−2 3.3 4E−2
24 K06 36 864 1E−6 2E−2 7.4 6E−2 3E−2 4.8 5E−2
25 K06 65 536 1E−3 4E−2 11.1 1E−1 4E−2 5.7 8E−2
26 K06 65 536 1E−6 5E−2 12.0 1E−1 4E−2 7.7 9E−2

Table 4.4 Wall-clock time (in seconds) and accuracy ǫ2 comparison with ASKIT.
For both methods, we use κ = 32, m = s = 512 and r1. ASKIT use the τ reported
in the table, and we adjust the tolerance of GOFMM to match the accuracy. For all
experiments, GOFMM uses 7% budget. The amount of direct evaluation performed by
ASKIT is decided by κ.
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randomized ID according to [62]. We used their black-box compression routine with

a uniform random distribution and a Householder rank-revealing QR. Once the

matrix is compressed, the evaluation time is O(N) per right hand side. STRUMPACK

supports multiple right hand sides. ASKIT’s FMM evaluation has similar complexity

as GOFMM, but the amount of direct evaluation is only decided by κ. For GOFMM, we

further introduce the budget to restrict the cost. For all comparisons, we try to

match the accuracy by controlling different parameters (τ , s, and κ). Notice that

ASKIT and STRUMPACK support MPI, whereas GOFMM does not. We have not used

MPI for distributed environment in our experiments.

In Table 4.3, we target final accuracy ǫ2 = 1E−4. GOFMM uses Angle distance

for neighbor search and tree partitioning. HODLR and STRUMPACK do not have built-in

partitioning schemes for dense matrices. STRUMPACK fails to compress K04 (Gaussian

kernel in 6D) and K07 (Laplace kernel in 6D). This is because the lexicographic

order does not admit a good H-matrix approximation. The matrix needs to be

permuted. K17 is difficult to compress with a pure hierarchical low-rank matrix.

Finally, G03 performs better when S 6= 0. HODLR and STRUMPACK must increase the

off-diagonal ranks to match the accuracy and thus the cost increases. With a sparse

correction S, GOFMM is about 25× faster in compression and about 1.5× faster in

evaluation.

In Table 4.4, we compare GOFMM (with geometric distances) to ASKIT. ASKIT

uses level-by-level traversals in both compression and evaluation. Since ASKIT only

evaluates a single right hand side, we use r = 1. The compression time is inconclusive

for #19–#22; the average ranks used in two methods are quite different. The
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benefit of out-of-order traversal appears in #23–#26 where both methods reach the

maximum rank s. The speedup in evaluation is not significant, but GOFMM can get

up to 2× speedup in compression.

Different architectures. In Table 4.5, we present wall-clock time and

GFLOPS of GOFMM on four architectures for different problems. We want to show that

the efficiency of GOFMM is portable and only relies on BLAS/LAPACK libraries.

In #27 and #28, we show that a quad-core ARM processor can handle up

to 100K fast matrix-multiplication. Because we only have limited memory (2GB)

and storage (8GB), in GOFMM we compute Kij on the fly (in detail, we compute Kβα

with a GEMM using the 2-norm expansion). #27 takes much longer than #28 because

the cost of evaluating Kij is proportional to the point dimensions of the dataset

(MNIST in 780D and COVTYPE in 54D). Because there is no active cooling on the

board, the ARM processor gets overheated and is forced to reduce its clockrate.

That is why we can only reach 30% of peak during the evaluation.

Experiments #29 to #34 are computed in double precision. With 12%

budget, our evaluation can reach 68% peak performance on Haswell, 37% on KNL

and 38% on a hybrid Haswell-P100 system. The performance degrades in #32–34

because the rank is limited to 256, and 0.3% direct evaluation is not enough to create

large GEMM calls. For kernel matrices, the GFLOPS for compression are usually higher

because computing Kij requires floating point operations. For example, compression

of COVTYPE (in 54D) has higher GFLOPS than HIGGS (in 28D). This is not

only because COVTYPE is a dataset with high dimensionality, but we also use a

higher rank s512 such that GEQP3 and TRSM can be more efficient.
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# Arch Budget ǫ2 Comp GFs Eval GFs
MNIST60K, h1, κ32, m512, s128, r256

27 ARM 5% 5E-3 285 3 520 12
COVTYPE100K, h1, κ32, m512, s128, r256

28 ARM 5% 8E-4 71 2 61 10
COVTYPE100K, h0.1, κ32, m800, s512, r512

29 CPU 12% 2E-3 30 30 4.1 679
30 CPU+GPU 12% 3E-3 33 29 1.7 1952
31 KNL 12% 2E-3 48 25 3.2 1125

HIGGS500K, h0.9, κ64, m1024, s256, r512
32 CPU 0.3% 2E-1 102 18 3.3 592
33 CPU+GPU 0.3% 2E-1 180 12 1.7 1147
34 KNL 0.3% 2E-1 121 17 2.2 872

K02, N65536, κ32, m512, s512, r512
35 CPU 3% 9E-5 1 25 0.2 889
36 CPU+GPU 3% 1E-4 2 12 0.1 2175
37 KNL 3% 1E-4 3 11 0.3 530

K15, N65536, κ32, m512, s512, r1024
38 CPU 10% 2E-1 6.0 81 1.1 1495
39 CPU+GPU 10% 2E-1 7.8 62 0.66 2514
40 KNL 10% 2E-1 9.2 53 1.3 1549

G03, N65536, κ32, m128, s512, r512
41 CPU 3% 4E-5 4.8 37 0.5 1122
42 CPU+GPU 3% 3E-5 7.9 19 0.53 962
43 KNL 3% 5E-5 11.8 9.1 0.6 741

G04, N89400, κ32, m512, s512, r512
44 CPU 3% 4E-6 1.8 21 0.3 787
45 CPU+GPU 3% 4E-6 4.0 10 0.13 2277
46 KNL 3% 4E-6 4.2 9 1.5 215

Table 4.5 Accuracy ǫ2, wall-clock time (in seconds) and efficiency (in GFLOPS) on
four architectures. Because our ARM platform only has a 8GB SD card and 2GB
DRAM, we only perform kernel matrices (Kij computed on the fly) with small r and
s. Note that in the CPU+GPU experiment, the compression is run on the CPU (see
Section 4.2.3).
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Finally, we present performance results on several matrices (#35–46) in single

precision. With 10% budget in K15, our evaluation can reach 75% peak on Haswell,

25% on KNL and 25% on a hybrid Haswell-P100 system. This performance requires

large leaf node size m and sufficient direct evaluations (e.g. #35–#46). Since G03

requires small m, our GFLOPS efficiency degrades due to the dependency on the

BLAS/LAPACK routines. Notice that m128 is not large enough for GEMM to reach

high performance on KNL and GPUs. For G04, we use m512 but KNL (#46) does

not perform very well. The same problem occurs in Fig. 4.4: the average rank in

G04 is too small. Additionally, we do not observe huge performance degradation

on GPUs (#45). This is because we enforce our scheduler to schedule L2L tasks to

the GPU; thus, tasks with small ranks (N2S and S2N) are mostly consumed by the

host CPU. The comparison between #45 and #46 is a good example that highlights

the goal of heterogeneous parallel architectures. CPUs with short vector lengths are

suitable for tasks with very low ranks (N2S and S2N). On the contrary, GPUs are the

method of choice for FLOPS intensive tasks (L2L). Due to very different kinds of tasks,

GOFMM may require both high throughput (GPU and KNL) and low latency (CPU)

units to be efficient. We cannot solve such problems with only one architecture

efficiently.

4.5 Conclusions

By using the Gramian vector space for SPD matrices, we defined distances

between rows and columns of K using only matrix values. Using the distances, we

introduced GOFMM and H-matrix scheme that can be used to compress arbitrary SPD
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matrices (but without accuracy guarantees). These algorithms are applied black-box

for various problems in computational science and we observe that the approach can

be very attractive. In GOFMM we use a shared-memory runtime system that performs

out-of-order scheduling in parallel to resolve the dynamic workload due to adaptive

ranks and the parallelism-diminishing issue during tree traversals. Our future work

will focus on the distributed algorithms and the hierarchical matrix factorization

based on our method. We also plan to improve the sampling and pruning quality

and to reduce the number of parameters that users need to provide.
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Chapter 5

Leverage Score Clustering1

1The content in this chapter is based on work done in collaboration with George Biros.
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We propose RECUR, a novel method for compressing dense matrices. Our

method is based on a hierarchical-matrix (H-matrix) approximation. H-matrix

approximations have been popular in science and engineering applications. They

combine the notion of singular value decomposition (SVD) with appropriate block

permutations and recursion. H-matrices are applicable to problems in which the

matrix entries correspond to pairwise interactions between sets of points, as for

example in kernel matrices. Here we generalize this approximation to arbitrary

dense matrices. Our method comprises of a randomized low-rank approximation of

permuted blocks along with approximate leverage scores computations that are used

to find such permutations. We introduce theoretical analysis, complexity analysis,

and experimental results on kernel matrices, neural network Jacobian operators, and

other datasets.

5.1 Introduction

Low-rank approximations of matrices are prevalent in machine learning. They

can be used for dimensionality reduction, compression, acceleration of matrix op-

erations, and as fundamental blocks in other machine learning tasks. Examples of

matrices that require compression include kernel matrices, adjacency matrices of

dense graphs, correlation matrices, and Hessians and Jacobian matrices related to

optimization problems, to name a few. Here we are interested in hierarchical approx-

imations for matrices that do not necessarily admit a global low rank approximation.

Once the matrix is compressed, fast methods for linear algebra operations like linear

system and eigenvalue solvers can be applied [44,46].
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In particular, we consider the following problem. Given a dense matrix

A ∈ R
m×n, the cost of matrix vector multiplication operation (matvec) requires

O(nm) work. We wish to construct an approximation to A so that the matvec with

the approximate A becomes O(n+m) up to logarithmic prefactors and a constant

that depends on the desired error tolerance. Towards this goal, we propose to

use a hierarchical matrix (H-matrix) approximation [44]. H-matrix approximation

methods are popular on problems that have explicit geometric structure, that is

Aij = a(xi, xj), where xi, xj are points in a vector space, and a(, ) is a given pairwise

interaction, along with certain growth and decay properties of a(xi, xj) as a function

of ‖xi − xj‖2. The geometric structure combined with the properties of a(, ) is

used to appropriately permute the matrix so that the off-diagonal blocks are easily

compressible.

Contributions. Our contributions are summarized as follows

• We present RECUR, a new algorithm for matrix approximation.

• We analyze and prove its accuracy and work complexity.

• We present numerical results that demonstrate its efficiency and shortcomings.

The defining feature of rank-structured matrices is the presence of large low-rank

off-diagonal blocks that can be efficiently represented with a low-rank approximation.

Such structure depends on an appropriate ordering of the rows and columns of the

matrix. Therefore, the first step of constructing a rank-structured representation

of a matrix is to find an ordering of its rows and columns that produces the
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desired structure. RECUR introduces a scheme to find such permutations using

block leverage scores and combines it with randomized low-rank approximations of

different blocks of the matrix. H-matrices have two main variants: weak admissibility

and strong admissibility methods. Roughly speaking, weak admissibility use low-rank

approximations for all off-diagonal blocks; strong admissibility compression allows for

dense off-diagonal blocks to improve accuracy. RECUR supports both variants. The

main advantage of RECUR over existing H-matrix or other kernel approximation

methods is that it is black-box, that is it only requires matrix entries and thus

can be applied to any matrix. RECUR has three main parameters: the recursion

depth, the error tolerance, and a target compression factor in terms of maximum

rank for off-diagonal blocks. RECUR will not successfully compress all matrices:

if the matrix is not H-matrix compressible then RECUR will fail. For globally

low-rank matrices (for the target tolerance), RECUR behaves like a randomized

global low-rank approximation.

Related work. RECUR is closely connected to N-body and H-matrix methods

for kernel matrices [51, 58, 73, 82, 96, 99]. As we mentioned, all these methods require

point coordinates and a(, ) that computes matrix entries. When such information is

present, these methods should be used instead of RECUR. RECUR is also related to

randomized linear algebra methods [82], including row/column sampling methods

using leverage scores [24, 29] or randomized projection methods [46]. There are

also black box methods for H-matrix approximation, that is, methods that only

use matrix entries. For example, peeling algorithms [64] compute an H-matrix
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Figure 5.1 A basic tessellation of a rank-structured matrix. Gray blocks are numer-
ically low-rank, and pink blocks are not low-rank, but are small.

approximation—but they assume that the matrix has already been appropriately

permuted. An exception is GOFMM [108], which implicitly defines point distances

based on the matrix entries [108]. GOFMM is the most closely related to RECUR

as it both permutes and compresses a matrix and has been applied to many types

of problems, including deep neural network Hessians [19]. GOFMM however, is

only applicable to symmetric positive definite matrices. RECUR can be applied to

arbitrary square or rectangular matrices.

5.2 Preliminaries

ǫ-rank. The ǫ-rank of matrix A, denoted by rank(A, ǫ), is the smallest integer

k for which there exists a rank-k matrix Ak that satisfies ‖Ak − A‖ ≤ ǫ. For the

spectral norm, the ǫ-rank of A equals the number of singular values of A that are

greater than ǫ.

Singular value decomposition (SVD). The rank-k truncated SVD of A ∈

R
m×n is given by matrices U ∈ R

m×k, Σ ∈ R
k×k, V ∈ R

n×k, where U, V have
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orthonormal columns, and Σ is diagonal with σ1 ≥ · · · ≥ σk ≥ 0.

Leverage scores. For matrix A ∈ R
m×n with rank-k truncated SVD A ≈

UkΣkV
T
k , the rank-k leverage score of the ith row A(i, :) is given by

li,: = ‖UT
k ei‖22,

and the rank-k leverage score of the jth column A(:, j) is given by

l:,j = ‖V T
k ei‖22.

Notation. We refer to a sequence of integers starting from 1 with the shorthand

[n] = 1, ..., n. A matrix A ∈ R
m×n has rows indexed by [m] and columns indexed

by [n]. We use A(Ir, Ic) to refer to a submatrix of A consisting of entries aij , where

i ∈ Ir ⊂ [m] and j ∈ Ic ⊂ [n]. A colon in place of an index set represents the full set

of row or column indices (e.g., A(:, Ic) is the submatrix consisting of columns of A

indexed by Ic). Unless specified otherwise, ‖A‖ refers to the spectral norm of A.

5.3 Algorithms

5.3.1 Selecting a low-rank row submatrix

We propose a technique for selecting within A ∈ R
m×n,m > n, a row

submatrix A(Ir, :), Ir ⊂ [m] of size m̂× n with low numerical rank, assuming such a

submatrix exists. As we will show, forming the submatrix by excluding rows from A

with large leverage scores results in a reduction in the product of singular values by

a multiplicative factor. This technique serves as a building block for the algorithms

in the following sections.
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The technique is based on the principle that rows with high leverage scores

are extreme, and therefore, removing those rows leads to a reduction in numerical

rank. This idea is formalized in Theorem 1, which asserts that removing a single

row with leverage score li reduces the product of the singular values by a factor

√
1− li. In particular, removing a row with the maximum possible leverage score of

1 guarantees that the remaining submatrix is rank-deficient.

Theorem 1. Given a rank-k matrix A ∈ R
m×n,m ≥ n, with singular value decompo-

sition A = UΣV T , where U ∈ R
m×k,Σ ∈ R

k×k, V ∈ R
n×k, let Â = A(Jc, :) be the

matrix obtained by removing the rows of A indexed by J ⊂ [m]. Then

k∏

i=1

σi(Â) =

|J |∏

j=1

√
1− σ2

j (U(J, :))

k∏

i=1

σi(A),

where σi(A) denotes the singular values of A, σi(Â) denotes the singular values of Â,

and σ2
j (U(J, :)) denotes the singular values of the row submatrix of U indexed by J .

In particular, if J = {i} so that Â is obtained by removing only the ith row

from A, then
k∏

i=1

σi(Â) =
√

1− li

k∏

i=1

σi(A),

where li is the leverage score of the ith row of A.
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Algorithm 5.3.1 Select a low-rank row submatrix

1: function LRSubmatrix(A, ǫ, nr, nc)
2: Randomly initialize Ic with nc elements of [n]
3: loop
4: Ir ← LRRowSubmatrix(A(:, Ic), ǫ, nr)
5: Ic ← LRRowSubmatrix(A(Ir, :)

T , ǫ, nc)

6: return Ir, Ic

7: function LRRowSubmatrix(A, ǫ, nr)
8: {li} ← RowLScores(A, ǫ)
9: Ir ← indices of the nr rows with smallest leverage scores

10: return Ir

11: function RowLScores(A, ǫ)
12: U,Σ, V ← SVD(A)
13: k ← #{σi : σi > ǫ}
14: for i ∈ [m] do
15: li ← ‖U(i, [k])‖22
16: return {li}

A practical algorithm based on these ideas is outlined in function LRRow-

Submatrix of Algorithm 5.3.1. Notably, rather than specifying the rank k, we

specify some tolerance ǫ > 0, and compute leverage scores with respect to the ǫ-rank

of A. Also, rather than recomputing after each selection of a row to remove, we

make all of the selections based on the row leverage scores of A computed only once.

5.3.2 Selecting a low-rank submatrix

We incorporate the method for selecting a low-rank row submatrix A(Ir, :)

into an algorithm for the more general problem of selecting a low-rank submatrix

A(Ir, Ic) indexed over both rows and columns. For a given subset of column indices
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Ic, applying LRRowSubmatrix of Algorithm 5.3.1 to the column submatrix A(:, Ic)

searches for a set of row indices Ir such that A(Ir, Ic) is a low-rank row submatrix

of A(:, Ic). Likewise, for a given set of row indices Ir, applying LRRowSubmatrix

to the transposed row submatrix A(Ir, :)
T searches for a set of column indices Ic

such that A(Ir, Ic) is a low-rank column submatrix of A(Ir, :). These observations

suggest an iterative approach of alternating between a step of fixing Ic and updating

Ir and a step of fixing Ir and updating Ic. The procedure for selecting a low-rank

submatrix is summarized in LRSubmatrix of Algorithm 5.3.1.

The problem of selecting row and column indices corresponding a low-rank

submatrix can be expressed as the following optimization problem.

argmin
|Ir|=nr,|Ic|=nc

rank(A(Ir, Ic), ǫ)

Similarly, the approach of alternating between row and column selections can be

expressed as a pair of constrained optimization problems:

argmin
|Ir|=nr

rank(A(Ir, Ic), ǫ) and argmin
|Ic|=nc

rank(A(Ir, Ic), ǫ).

5.3.3 Permuting a matrix to form low-rank off-diagonal blocks

In this section, we address the main problem of interest, which is that of

permuting a matrix to form low-rank off-diagonal blocks. That is, given a matrix

A, we seek permutation matrices Πr,Πc such that the top-right off-diagonal block

(ΠrAΠc)(It, Ir) and the bottom-left off-diagonal block (ΠrAΠc)(Ib, Il) are of low

numerical rank, where It = [1, . . . , rmid], Ib = [rmid + 1, . . .m] represent a split of the
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Algorithm 5.3.2 Permute A to produce low-rank off-diagonal blocks

1: function Permute(A, ǫ)
2: Initialize Il, Ir with a random partition of [n]
3: loop
4: It, Ib ← PermuteRows(A, Il, Ir, ǫ)
5: Il, Ir ← PermuteColumns(A, It, Ib, ǫ)

6: return It, Ib, It, Ib

7: function PermuteRows(A, Il, Ir, ǫ)
8: {li,Il} ← RowLScores(A(:, Il, ǫ))
9: {li,Ir} ← RowLScores(A(:, Ir, ǫ))

10: for i ∈ [m] do
11: si ← li,Ir/

∑
i li,Ir − li,Il/

∑
i li,Il

12: It ← {j : sj < 0}
13: Ib ← {j : sj ≥ 0}
14: return It, Ib

15: function PermuteColumns(A, It, Ib, ǫ)
16: return PermuteRows(AT , It, Ib, ǫ)

row indices into top and bottom parts, and Il = [1, . . . , cmid], Ir = [cmid + 1, . . .m]

represent a split of the column indices into left and right parts.

As in §5.3.2, we adopt an iterative approach in which we alternate between a

step of fixing the column permutation as we update the row permutation and a step

of fixing the row permutation as we update the column permutation.

Consider one step of updating the row permutation for a given column

permutation. We have two potentially conflicting goals. Considering only the left

part of the matrix A(:, Il), the updated row permutation should move rows of A(:, Il)

with high leverage scores out of the bottom-left off-diagonal block A(Ib, Il), and
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replace them with rows with lower leverage scores. Similarly, for the right part of

the matrix, the updated row permutation should move rows of A(:, Ir) with high

leverage scores out of the top-right off-diagonal block A(Ib, Il). and replace them

with rows with lower leverage scores.

We balance these two objectives by assigning a single score to each row that

indicates whether we prefer to include the in the top or bottom block with the

updated row permutation. For each row index i, we compute the leverage score of

the ith row of the left block, denoted by li,Il , the leverage score of the ith row of the

right block, denoted by li,Ir . Then we define the score si as the difference of the

normalized leverage scores as follows.

si =
li,Ir∑
i
li,Ir
− li,Il∑

i
li,Il

A large positive value of si indicates that the ith row of the right block is much more

extreme than the ith row of the left block, so the updated row permutation should

place the row in the bottom part of ΠrAΠc. A large negative value of si indicates

that the row should be placed in the top part. A value near zero indicates no strong

preference.

Once we have computed si we define the updated permutation Πr to be the

permutation matrix that sorts the scores si in increasing order. Also we update

rmid ← #{i : si < 0} so that the top part of the permuted matrix (ΠrAΠc)(It, :)

consists of the rows with score si < 0.
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Algorithm 5.3.3 Hierarchical low-rank approximation of A

1: function Compress(A, ǫ)
2: U,Σ, V ← SVD(A)
3: if the truncated SVD approximates A with sufficiently high accuracy

and low rank then
4: Store the truncated SVD of A
5: else
6: It, Ib, Il, Ir ← Permute(A, ǫ)
7: for Asub ∈ {A(It, Il), A(It, Ir), A(Ib, Il), A(Ib, Ir)} do
8: ǫsub ← error tolerance for Asub

9: Compress(A, ǫsub)

5.3.4 Hierarchical rank-structured approximation

We incorporate the methods of §5.3.3 into an algorithm for constructing a

hierarchical rank-structured approximation of a matrix. To compress a matrix, we

first check whether it can be approximated with a truncated SVD with sufficiently

high accuracy and low rank. If so, we use the truncated SVD to represent the

matrix. Otherwise, we permute the matrix with Algorithm 5.3.2, partition the

matrix into four blocks, and recursively compress each of the four blocks. The

process is summarized in Algorithm 5.3.3.

5.3.5 Error control and rank adaptivity

The relative error tolerance for the approximation of A is specified as an input

parameter ǫ. The approximation Ã must satisfy ‖Ã − A‖/‖A‖ < ǫ. Equivalently,

we can view the quantity ǫabs = ǫ‖A‖ as an absolute error tolerance, and we can

compute it by multiplying ǫ with an estimate of ‖A‖, which can be obtained, for

example, by power iteration. Once we have a global absolute error tolerance ǫabs,
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we assign a local absolute error tolerance to each block based on its size. For block

Ab ∈ R
mb×nb of matrix A ∈ R

m×n, we define the local absolute error tolerance for

the approximation Ãb

‖Ãb −Ab‖ < ǫabs

√
mbnb

mn
. (5.1)

The above condition is local to block Ab in the sense that it is independent of the

other blocks. If each of the block approximations Ãb satisfies its local error tolerance

condition (5.1), then the approximation of A satisfies the global error bound

‖Ã−A‖2F =
∑

b

‖Ãb −Ab‖2F <
∑

b

mbnb

mn
ǫabs = ǫabs.

When computing a low-rank approximation for some block, we select the rank of the

approximation adaptively, choosing the smallest rank that satisfies the block’s local

error tolerance.

5.3.6 Admissibility

We must decide for each block whether it is admissible, meaning that it will

be represented with a low-rank approximation. Instead of being approximated, a

large inadmissible block is recursively subdivided into four smaller blocks, and a

small inadmissible block is represented as a dense matrix. We use two admissibility

conditions: a strong admissibility condition, which prioritizes accuracy, and a weak

admissibility condition, which prioritizes compression rate.

For strong admissibility, we use an algebraic condition that designates a

block as admissible if the error bound (5.1) is satisfied with Ãb of rank at most

r, where r is an input parameter that specifies the maximum allowable rank of a
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low-rank approximation. The strong admissibility guarantees satisfaction of the error

tolerance, but cannot guarantee the presence of low-rank blocks.

The weak admissibility condition designates every off-diagonal block as

admissible and applies the strong admissibility condition to on-diagonal blocks. As a

result, every off-diagonal block is approximated with a rank-r approximation, even if

such an approximation fails to satisfy (5.1) This forces a simple structure and a high

degree of compression at the risk of compromising accuracy.

5.3.7 Complexity

In this section, we state asymptotic bounds on the costs of constructing and

storing the compressed representation, and of computing an approximate matrix-

vector product. Full derivations are provided in the Appendix. We assume that

A ∈ R
n×n, where n is a power of 2, that admissible blocks are approximated to rank

r, that large inadmissible blocks are split into four sub-blocks of equal dimensions,

and that the recursive splitting proceeds up to a recursion depth of L = log(n/m),

so that the smallest blocks of A are of size m-by-m. Finally, we assume a weak

admissibility condition so when an inadmissible block is split into four sub-blocks, at

most two of the four sub-blocks is inadmissible.

The total cost of storing the compressed representation consists of O(nm)

entries to store the values of the small inadmissible blocks and O(rn log(n/m)) to

store the low-rank approximations for the admissible blocks.

The cost for constructing the compressed representation is O(rn log(n/m))

or O(rn), depending on the method of randomized low-rank approximation.
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Leverage Random SVD
Error Storage Error Storage Error Storage

K1 1E−14 0.2 1E−17 0.3 8E−1 0.2
K2 2E−3 0.2 9E−4 1.0 3E−3 0.2
K3 6E−7 0.0 6E−7 0.1 1 0.0
K4 2E−6 0.3 5E−17 1.0 4E−5 0.3
K5 2E−3 0.4 2E−17 1.0 7E−3 0.4
GNH 3E−3 0.1 3E−3 0.3 7E−3 0.1

Table 5.1 Comparison of compression schemes applied to several test matrices.

The cost for applying the compressed representation to a vector is O(rn log(n)).

5.4 Experimental Results

In Table 5.1, we compare rank-structured approximations using permuta-

tions based on leverage scores with rank-structured approximations using random

permutations and with low-rank SVD approximations. The methods are applied

to several test matrices, of size 4096-by-4096: K1–K3 and K5 correspond to dense

graphs, and K4 and K6 correspond optimization matrices. K6 of size 15680-by-15680.

The error tolerance is set to 1E−2 with the exception of K5, for which the error

tolerance is 1E−5. The rank of the truncated SVD approximation is chosen to match

the storage cost used by the rank-structured approximation based on leverage scores.

Error is reported as the relative error of the approximation in the spectral norm.

Storage cost is reported as the ratio of the storage cost of the approximation to that

of storing the entire dense matrix. The results demonstrate that rank-structured

approximations are able to achieve low error and storage cost, even for matrices that

are poorly approximated with a low-rank SVD. Furthermore, permutations based on
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Figure 5.2 Left: Image of Romanesco broccoli [59]. Center: Logarithm of the recon-
struction error of a rank-structured approximation with leverage score permutation.
Right: Logarithm of the reconstruction error of an SVD approximation. Darker
regions represent relatively lower error.

leverage scores outperform random permutations, which in some cases fail to achieve

any compression at all, and simply fall back to storing the entire matrix.

Figure 5.2 visualizes the error in approximating an image of Romanesco

broccoli, represented as a matrix of grayscale pixel intensities. The reconstruction

error of the rank-structured approximation is very low in intricate regions that are

difficult to compress. The permutation based on leverage scores identifies those

regions, arranging them in small blocks that are represented exactly while the

compressible regions are arranged into larger low-rank blocks. In contrast, the

reconstruction error of the SVD is evenly distributed, with highest errors in the

region occupied by the broccoli.

Figure 5.3 visualizes several steps in the iterative permutation of a Gaussian

kernel matrix. The (i, j) entry of the matrix is defined by ai,j = exp
(
−‖xi − xj‖2/2σ2

)
,

where points {xi} ⊂ R
2 are drawn from a standard normal distribution in two di-

mensions, and the bandwidth is σ = 0.5. The permutation routine only operates

on entries of the matrix, not on the coordinates of the points, but the partition
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Figure 5.3 Geometric clustering induced by iterative permutations of a Gaussian
kernel matrix.

of the row indices into top and bottom subsets (or column indices into left and

right subsets) induces a clustering of the points. This image demonstrates that the

induced clustering overcomes a poor initial cluster assignment and converges to a

high-quality clustering within a few iterations. This example is only a demonstration

as it is more practical to apply a permutation method based on geometric clustering

in cases where such information is available.

5.5 Conclusions

We presented a novel method for approximating dense matrices. The method

requires either the ability to sample matrix entries or the ability to perform matrix

vector products. Its main features is the automatic permutation of the matrix to

expose low-rank structure and its combination with state of the art methods for

randomized linear algebra. The next step is to use this H-matrix approximation to
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construct solvers for linear systems and spectral/singular value decomposition.

Limitations. One limitation is that the algorithm does not detect early the

matrix is not compressible. This could be done by using coherence estimates or by

comparing the approximations between the two levels. This is something that we

will also pursue, and we believe is not hard to fix. A second limitation is that there is

a large class of matrices that admit compression but are not handled by our scheme.

For example a dense discrete Fourier matrix admits a telescoping fast factorization

that is unrelated to an H-matrix structure. A third limitation is that our focus has

been on the theoretical analysis of the algorithm. More effort is needed for a scalable

implementation so that we can apply it to larger problem sizes.

5.6 Appendix

5.6.1 Kernel matrices with the covtype dataset

Here we present an analysis of the performance of RECUR for the covtype

dataset [11]. The purpose of this experiment is to showcase an example of the

sensitivity of RECUR in terms of a familiar parameter, the kernel bandwidth h that

appears in Gaussian kernel matrices. The matrices we compress in this example are

nonsymmetric, rectangular, and of size 10000× 5000. In particular, the matrices are

defined as Aij = a(xi, yj), where a is a Gaussian kernel parameterized by bandwidth

h, and points {xi} and {yj} are mutually exclusive subsets drawn from the covtype

dataset. The covtype dataset was preprocessed by normalizing each feature to have

unit variance. All matrices were compressed using permutations based on leverage

scores, maximum approximation rank of 20, maximum depth of 4, and using strong
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Parameters Storage RECUR Error SVD Error

ǫ = 0.1, h = 0.005 0.1 2E−2 2E−1
ǫ = 0.1, h = 0.01 0.1 4E−2 3E−1
ǫ = 0.1, h = 0.02 0.2 3E−2 1E−1
ǫ = 0.1, h = 0.05 0.1 3E−2 3E−2
ǫ = 0.1, h = 0.1 0.0 5E−2 4E−2
ǫ = 0.1, h = 0.15 0.0 9E−2 9E−2
ǫ = 0.01, h = 0.005 0.1 4E−3 2E−1
ǫ = 0.01, h = 0.01 0.1 3E−3 2E−1
ǫ = 0.01, h = 0.02 0.3 1E−3 8E−2
ǫ = 0.01, h = 0.05 0.4 2E−3 4E−3
ǫ = 0.01, h = 0.1 0.1 3E−3 3E−3
ǫ = 0.01, h = 0.15 0.0 5E−3 2E−3
ǫ = 0.001, h = 0.005 0.1 5E−4 2E−1
ǫ = 0.001, h = 0.01 0.2 2E−4 2E−1
ǫ = 0.001, h = 0.02 0.4 1E−4 6E−2
ǫ = 0.001, h = 0.05 0.6 1E−4 1E−3
ǫ = 0.001, h = 0.1 0.2 2E−4 3E−4
ǫ = 0.001, h = 0.15 0.1 2E−4 5E−5

Table 5.2 Relative error and storage costs for RECUR and truncated SVD approxi-
mations applied to nonsymmetric, rectangular Gaussian kernel matrices defined on
data drawn from the covtype dataset for a range values for error tolerance ǫ and
kernel bandwidth h. The rank of the truncated SVD approximation is chosen so
that the resulting approximation has equivalent storage cost to the corresponding
RECUR approximation. Storage cost is reported as the ratio of the storage cost of
the approximation to that of storing the entire dense matrix.
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admissibility. In Table 5.2, we compare RECUR and with RSVD (randomized SVD),

for different target accuracy in terms of the error tolerance ǫ for different values of h.

As a reference, the median distance between points in the set is 0.37. We observe

that with the exception of large widths RECUR is on par or better with RSVD. In

Figure 5.4, we show tessellations of these matrices compressed by RECUR.

The tessellations show that the algorithm produces coarser tessellations for

greater values of the error tolerance ǫ, which is expected since numerical ranks decrease

as ǫ increases, leading to a more lenient admissibility condition. For the case with

ǫ = 1, h = 0.15, the entire matrix is represented with a global low-rank approximation.

The ability to adaptively determine the structure of the approximation is a feature

that enables efficient compression of matrices with a range of different structures.

For smaller values of the bandwidth h, the Gaussian kernel function is

narrower, and, under a suitable ordering of the matrix, the entries in the off-diagonal

blocks are small, so the off-diagonal blocks are low-rank. For sufficiently large values

of h, all matrix entries approach the same value, leading to a many large, low-rank

blocks, or even a single global low-rank approximation. The cases with intermediate

values of h are more difficult to compress. The tessellations in Figure 5.4 demonstrate

the dependence of the rank structure on the bandwidth.

5.6.2 Omitted theorems and proofs

Theorem 1. Given a rank-k matrix A ∈ R
m×n,m ≥ n, with singular value decompo-

sition A = UΣV T , where U ∈ R
m×k,Σ ∈ R

k×k, V ∈ R
n×k, let Â = A(Jc, :) be the
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matrix obtained by removing the rows of A indexed by J ⊂ [m]. Then

k∏

i=1

σi(Â) =

|J |∏

j=1

√
1− σ2

j (U(J, :))
k∏

i=1

σi(A),

where σi(A) denotes the singular values of A, σi(Â) denotes the singular values of Â,

and σ2
j (U(J, :)) denotes the singular values of the row submatrix of U indexed by J .

In particular, if J = {i} so that Â is obtained by removing only the ith row

from A, then
k∏

i=1

σi(Â) =
√

1− li

k∏

i=1

σi(A),

where li is the leverage score of the ith row of A.

Proof. Observe that ATA = ÂT Â+A(J, :)TA(J, :) and A(J, :) = U(J, :)ΣV T . Then

k∏

i=1

σi(Â) = det
(
V T ÂT ÂV

) 1
2

= det
(
V T
(
ATA−A(J, :)TA(J, :)

)
V
) 1

2

= det
(
Σ
(
I − U(J, :)U(J, :)T

)
Σ
) 1

2

= det
(
I − U(J, :)U(J, :)T

) 1
2 det(Σ)

=
∏

j∈J

√
1− σ2

j (U(J, :))
n∏

i=1

σi(A)

For the case J = {i}, we have σ2
j (U(J, :)) = ‖U(i, :)‖2 = li.

Theorem 2. Let A ∈ R
m×n,m > n and A = USV T be the ǫ-truncated SVD of

A. Let A−i ∈ R
(m−1)×n denote the matrix A with its ith row removed, and define

α = (1 −
√
1− li)/li. Then the singular values of A−i and (I − αu(i)u

T
(i))S are

identical.
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Proof. The singular values of A−i are the square roots of the eigenvalues of AT
−iA−i,

and the singular values of (I − αu(i)u
T
(i))S are the square roots of the eigenvalues of

S(I − αu(i)u
T
(i))

2S. Equivalence of the singular values of A−i and (I − αu(i)u
T
(i))S

then follows from similarity of AT
−iA−i and S(I − αu(i)u

T
(i))

2S:

AT
−iA−i =

∑

j 6=i

A(j)A
T
(j)

= AT (I − eie
T
i )A

= V SUT (I − eie
T
i )USV T

= V S(I − u(i)u
T
(i))SV

T

= V S(I − αu(i)u
T
(i))

2SV T .

Theorem 2 equates the singular values of Â to the singular values of the

product (I − αu(i)u
T
(i))S. It is not essential in our analysis, but it is useful for

conceptualizing the effect of removing a row with leverage score li. The image of

the unit ball in R
n under A, {Ax : x ∈ R

n, ‖x‖ = 1}, is an ellipsoid in R
m, and

the lengths of its principal semi-axes are equal to the singular values. Theorem 2

implies a relationship between the ellipsoid representing the action of A and that

representing the action of Â. Specifically, removing a row with leverage score li has

the effect of contracting the ellipse by a factor 1−
√
1− li along some direction. With

a sufficiently large contraction, the ellipsoid representing Â is nearly degenerate, and

the Â is numerically low-rank.
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5.6.3 Asymptotic complexity

In this section, we derive asymptotic bounds on the costs of constructing and

storing the compressed representation, and of computing an approximate matrix-

vector product. We assume that A ∈ R
n×n, where n is a power of 2, that large

inadmissible blocks are split into four sub-blocks of equal dimensions, and that the

recursive splitting proceeds up to a depth of L = log(n/m), so that the smallest

blocks of A are of size m×m. We define a tree structure on the blocks of A, Let

bl,a denote the number of admissible blocks at level l, bl,i denote the number of

inadmissible blocks at level l, and bl = bl,a + bl,i denote the total number of blocks

at level l. Finally, let 0 ≤ c ≤ 1 denote an upper bound on the ratio of inadmissible

blocks at any level below the root so that

bl,i
bl
≤ c, 1 ≤ l ≤ L. (5.2)

At level l < L, each inadmissible block is partitioned into four sub-blocks so

that

bl+1 = 4bl,i. (5.3)

We apply (5.2), (5.3), and the observation that b1 ≤ 4 to establish the

following bounds.

bl ≤ 4cbl−1 ≤ · · · ≤ (4c)l−1 b1 ≤ 4lcl−1

bl,a ≤ bl ≤ 4lcl−1

bl,i ≤ cbl ≤ 4lcl
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5.6.4 Storage

We first address the storage cost of the matrix approximation associated with

admissible blocks. A block at level l has size n
2l

-by- n
2l

, and its rank-r approximation

can be stored as a product of two matrices each with rn/2l entries. Therefore, the

total storage cost of all admissible blocks Sa is bounded by

Sa =

L∑

l=1

bl,a
2rn

2l

≤ 2rn
L∑

l=1

2lcl−1

≤





2rn
∑∞

l=1 2
lcl−1 c < 1

2

2rn
∑L

l=1 2
lcl−1 c = 1

2

2rn
∑L

l=−∞ 2lcl−1 c > 1
2

=





4rn
1−2c c < 1

2

4rnL c = 1
2

4rn(2c)L

2c−1 c > 1
2

=





4rn
1−2c c < 1

2

4rn log(n/m) c = 1
2

4rn1+log(2c)

(2c−1)mlog(2c) c > 1
2

The remaining storage cost consists of inadmissible blocks at level L, whose

m-by-m matrix blocks are stored exactly at a total cost Si bounded by

Si = bL,im
2 ≤ (4c)Lm2 =

( n

m

)1+log(2c)
m2.

The total storage cost of the approximation is given by Sa + Si. Assuming c

and m are constants independent of the problem size n, the bound on total storage

cost is linear in n for c < 1
2 , quasilinear in n for c = 1

2 , and superlinear in n for c > 1
2 .
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5.6.5 Work to Construct the Approximation

The analysis for work complexity is very similar to the analysis for storage.

The only difference is that instead of counting 2rn/2l units of storage per block at

level l, we count Tl,a time to compress the block. The value of the time cost depends

on the method for randomized low-rank approximation low-rank approximation.

With projection-based randomized approximation using structured test matrices [46],

Tl,a is O(r(n/2l) log(n/2l)), and with sampling-based randomized approximation [28],

Tl,a is O(rn/2l). A similar analysis as in §5.6.4 shows that the cost for constructing

the compressed representation is O(rn log(n/m)) or O(rn), depending on the method

of randomized low-rank approximation.

5.6.6 Work for an Approximate Matrix-Vector Product

Application of the matrix approximation to a vector is essentially a blocked

matrix-vector product with admissible blocks represented by low-rank approximations.

In the matrix-vector product, each entry stored in the approximation is involved in

two floating-point operations, so the total number of operations is twice the number

of stored entries (see §5.6.4).
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Figure 5.4 Tessellations of nonsymmetric, rectangular Gaussian kernel matrices
defined on data drawn from the covtype dataset for a range values for error tolerance
ǫ and kernel bandwidth h. Each column corresponds to a fixed bandwidth. Each row
corresponds to a fixed error tolerance. Blocks shown in dark gray are stored as dense
blocks since they cannot be represented with low-rank approximations that are of
sufficiently low rank and high accuracy. Low-rank blocks are filled in with light gray
tiles whose size indicates the size of the factors in the low-rank approximation (blocks
that appear to be completely empty in fact have approximations with very low rank).179



Chapter 6

Nonsymmetric Algebraic FMM with

Application to Combined Field Integral

Equations1

1The content in this chapter was first presented in Levitt, J. L., Boman, E. G., Rajaman-
ickam, S., & Biros, G. (2018). Nonsymmetric algebraic FMM with application to combined
field integral equations. In Center for Computing Research Summer Proceedings 2018, 2018.
Technical Report SAND2019-5093R., a work in collaboration with Erik Boman, Sivasankaran
Rajamanickam, and George Biros.
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Boundary integral equation methods are well-established tools for simulating

electromagnetic scattering. One of their shortcomings is that, upon discretization,

they result in a linear system with a dense matrix K. This problem is well understood

and has been addressed with Fast Multipole Methods (FMM), which date back to

the early 90s. By introducing a controllable approximation error, such methods

turn an O(N2) matrix-vector product with K to an O(N) matrix-vector product

under suitable conditions. Classical FMM schemes are based on analytic expansion

of the underlying Green’s function and they essentially sparsify or compress K.

From a software implementation point of view, they are rather intrusive and require

careful integration with the discretization code. This makes their use a bit difficult,

especially if one wants to experiment with different discretization schemes for the

boundary integral equation. An alternative is to use algebraic methods to compress

K, the so-called H-matrix methods.

Here we test one such method, the geometry-aware variant of GOFMM, on

a low-frequency scattering problem discretized using the combined field integral

formulation and the method of moments (essentially a Petrov-Galerkin collocation

scheme). This scheme gives rise to a non-Hermitian matrix. Current H-matrix

methods, including GOFMM, require row and column permutations of the matrix in

order to compress K and importance sampling to construct low-rank approximations.

To construct these permutations and sample rows and columns we need to know

the coordinates of the collocation points. If K were SPD, we could apply the

geometry-oblivious variant of GOFMM, which does not require such coordinates.

But unfortunately K is not symmetric. In this work we extend the geometry-aware
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variant of GOFMM to support nonsymmetric complex matrices and test it on a test

matrix generated by the Eiger library developed at Sandia National Laboratories.

Since geometric information was unavailable, we use the natural ordering of the matrix

(no permutations) and uniform random sampling. Under these conditions, the Eiger

matrix K compresses well up to a relative error of 3E-4, which is insufficient for some

right-hand sides since the matrix has condition number of 7E-8. Further compression

of K may be possible with a better permutation and higher quality sampling that

leverage geometric information. To demonstrate the possibility of attaining arbitrary

accuracies when the coordinates of the collocation points are available, we also test

GOFMM on a synthetic problem that results in a non-symmetric complex matrix

related to low-frequency scattering from point scatterers in three dimensions.

6.1 Introduction

Given a perfect electric conductor and an incident electric field, we seek the

induced current on the surface of the conductor due to the incident field, which can

then be used to find the scattered electric field. The induced current is governed

by the combined field integral equation (CFIE) [85], which is a weighted sum of the

electric field integral equation (EFIE) and magnetic field integral equation (MFIE).

The problem can be solved with either the EFIE or MFIE separately, and while

they produce symmetric moment matrices, such approaches encounter problems with

homogeneous solutions corresponding to interior resonance entering into the solution.

Use of the CFIE avoids such issues at the cost of losing symmetry of the discretized

integral equation operator K.
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The problem is discretized with the method of moments using Rao-Wilton-

Glisson (RWG) basis functions [89] to yield a linear system Kx = b, where K ∈ C
n×n

and x, b ∈ C
n. The discretized problem is generated using Eiger [52,57], a parallel

code for simulating frequency-domain electromagnetic scattering. There are a

number of concerns in formulating the problem relating to the discretization, efficient

computation of moment matrix entries, and avoiding singularities, all of which are

handled in Eiger and not discussed in this paper.

The matrix K is dense and the system is typically solved using a Krylov

method such as GMRES [91], in which the main computational cost is in applying

K to a vector. In order to accelerate the algorithm, we construct a hierarchical

low-rank approximation (a compression) K̃ of K such that ‖K̃ −K‖ < ‖K‖. The

matrix compression algorithm is an algebraic variant of the Fast Multipole Method

(FMM) which takes advantage of hierarchical low-rank structure in the matrix to

construct a compressed representation of the matrix with O(n log n) work that can

be applied to a vector with O(n) work under suitable conditions on the problem. For

certain problems, the compressed matrix-vector product delivers significant speedup

over the O(n2) uncompressed dense matrix-vector product, leading to a faster overall

runtime, even accounting for compression time.

There are a number of related works that use FMM-like algorithms for the fast

solution of electromagnetic scattering problems in the engineering literature. Many

methods [42,93–95] have appeared that aim at accelerating matrix-vector products.

For a review of nearly optimal and highly accurate methods for frequency-domain

FMM methods, see [22]. For a state of the art discretization of integral equations for
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electromagnetics, see [5].

As discussed, there are many efficient techniques for accelerating matrix-

vector products with K. However, the majority of existing methods require tight

integration of the discretization and kernel evaluation codes with the acceleration

scheme. Few schemes can be used in black-box fashion and, to our knowledge, no

existing software scales to distributed memory architectures. In this project, we aim

at exploring black-box schemes that scale on distributed memory architectures. There

are numerous works in the literature relating to hierarchical low-rank approximation

of rank-structured matrices, and so we only mention those that are most closely

related. We implement our scheme using the Geometry-Oblivious Fast Multipole

Method (GOFMM) library [107,110]. One of the main contributions of GOFMM is the

generalization of the ASKIT FMM [68] to general symmetric positive-definite matrices

that do not necessarily represent interactions between pairs of points. However, we do

not attempt to generalize the geometry-oblivious features of GOFMM for two reasons:

the problem setting of this work is geometry-aware, and there is no guarantee of

symmetry and positive-definiteness of K, a requirement for the geometry-oblivious

features. Instead, we extend the geometry-aware FMM, as implemented in the

GOFMM library, to nonsymmetric matrices.

6.2 Hierarchical Iterative Solver

For matrix K ∈ C
n×n and right hand side b ∈ C

n, in order to solve the linear

system Kx = b, our first goal is to construct a hierarchical matrix approximation

K̃ that satisfies ‖K̃ −K‖ < ǫc, where ǫc is a user-defined absolute error tolerance
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for the compressed operator. This compressed operator is then used to efficiently

compute matrix-vector products inside an iterative solver.

Depending on the matrix and error tolerance, such an approximation may

not exist Applicability of this approach requires a matrix that can be permuted to

reveal hierarchical low-rank structure and an appropriate choice of error tolerance.

Depending on the matrix, an error tolerance that is too small results in very little

compression, leading to poor performance.

We begin this section with the hierarchical clustering of points, which defines

a reordering of the matrix that seeks to reveal low-rank structure in the off-diagonal

blocks. Next, we review the Interpolative Decomposition (ID), the low-rank matrix

factorization that we use to approximate off-diagonal blocks. We then describe the

two main phases of the algorithm, compression and evaluation, and follow with a

comparison with the symmetric algorithm of [107]. Finally, we discuss the use of the

compressed operator in accelerating GMRES.

6.2.1 Clustering/reordering

The compressibility of matrix K depends on a proper ordering of points {xi}.

Therefore, we begin by reindexing the points (reordering the matrix) such that points

that are nearby in space have nearby indices. This is done by creating a hierarchical

clustering of the points represented by a balanced binary tree. The root node of the

tree is assigned the full set of points. The set of points assigned to a node is split

into two balanced clusters, and each cluster is assigned to a child node. This process

is continued at each level of the tree until the number of points assigned to the leaf
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nodes fall within some prescribed maximum leaf size. We split sets of points by

their projections along an axis which heuristically estimates the axis along which the

points have maximal variation. This method scales well with the dimensionality d of

the data [72]. The hierarchical clustering algorithm is outlined in Algorithm 6.2.1.

Algorithm 6.2.1 Construct a cluster tree for points {xi}
procedure Cluster_tree({xi})

α =New_node({xi})
if |{xi}| > max_leaf_size then

x̄ = 1
|{xi}|

∑
xi ⊲ Compute the centroid

xp = argmaxi ‖xi − x̄‖ ⊲ Find the point farthest from x̄
xq = argmaxi ‖xi − xp‖ ⊲ Find the point farthest from xp

med = Median({(xi, xp − xq)}i) ⊲ Split points by projections along
xp − xq

α.left_child = Cluster_tree(xi : (xi, xp − xq) ≤ med)
α.right_child = Cluster_tree(xi : (xi, xp − xq) > med)

return α

6.2.2 Interpolative Decomposition

Consider the task of constructing a low rank approximation of Kαβ ∈ C
nα×nβ ,

the block of K corresponding to interactions between tree nodes α and β.

A rank-r column ID of a matrix Kαβ takes the form

Kαβ ≈ KαβS
c
αβP

c
αβ , (6.1)

where Sc
αβ ∈ R

nβ×r is a column submatrix of a permutation matrix and P c
αβ ∈ C

r×nβ .

The product KαβS
c
αβ is a column submatrix of Kαβ , and matrix Sc

αβ may be viewed

as selecting a subset of the columns of Kαβ to use as a basis. The selected columns

are referred to as skeleton columns. Then the entire decomposition may be viewed as
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an expansion of each column of Kαβ in the column basis KαβS
c
αβ , where matrix P c

αβ

encodes the expansion coefficients. Definitions of the ID in other works often use two

terms rather than three, combining the product KαβS
c
αβ into a single term. Writing

the decomposition with three terms is equivalent and leads to clearer exposition in

following sections.

Similarly, a rank-r row ID of Kαβ takes the form

Kαβ ≈ P r
αβS

r
αβKαβ , (6.2)

where Sr
αβ ∈ R

r×nα is a row submatrix of a permutation matrix and P r
αβ ∈ C

nα×r.

A column ID and row ID of Kαβ may be combined to form a two-sided ID

by a simple substitution:

Kαβ ≈ KαβS
c
αβP

c
αβ ≈ P r

αβS
r
αβKαβS

c
αβP

c
αβ (6.3)

Storage of this decomposition only requires 2rn values for P c
αβ and P r

αβ, and 2r

indices to encode the columns/rows selected by Sc
αβ and Sr

αβ.

The algorithm for constructing an ID is given in Algorithm 6.2.2. Given

some overall error tolerance ǫc, the goal is to construct an ID for submatrix Kαβ

with an adaptively-chosen rank r that is less than or equal to the maximum allowed

rank s such that the approximation satisfies some accuracy requirement. If such an

approximation cannot be found, the matrix block is deemed incompressible. Entries

belonging to an incompressible block may still be approximated if they also belong

to a different block that is compressible. Otherwise, they are computed exactly. The

majority of the computational cost comes from a rank-revealing QR factorization
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(RRQR) and a triangular solve. In order to reduce the computational cost, we

use a sampled ID, in which only a small subset of the columns or rows are used

in computing the results S, P [72]. The sample submatrix is selected using using

neighbor-based importance sampling [67].

Algorithm 6.2.2 Construct a sampled Interpolative Decomposition of matrix
Kαβ

procedure Column_id(Kαβ)
γ =Importance_sample(α)
Q,R,Π =RRQR(Kαγ)

r = min
(
{i : ‖R[i :, i :]‖ <

√
|α||γ|

n
ǫc}
)

if r > s then
return fail

S = Π[:, : r]
R11 = R[: r, : r]
R12 = R[: r, r :]
P =

[
I R−1

11 R12

]
Π−1

return S, P

procedure Row_id(Kαβ)
S, P = Column_id(KT

αβ)
return ST , P T

6.2.3 Compression

Constructing interpolative decompositions independently for each block Kαβ

would be inefficient and would lead to inefficiency in the evaluation phase. Instead,

we construct these approximations using a recursive approach based on the cluster

tree. For each tree node β, we define the column off-diagonal block of β to be

submatrix Kβ̄β, and the row off-diagonal block of β to be submatrix Kββ̄, where

β̄ = {1, . . . , n} \ β denotes the set of points not in β. During compression, we
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construct approximations for these column and row off-diagonal blocks. These

approximations are later used during evaluation to approximate a compressible block

Kαβ with a two-sided ID using the row ID of Kαᾱ and the column ID of Kβ̄β .

For a leaf node β, we define the column skeletonization of β to be a low-rank

approximation of β̄ using the ID

Kβ̄β ≈ Kβ̄βSβ̄βPβ̄β . (6.4)

We define the row skeletonization of β similarly:

Kββ̄ ≈ Pββ̄Sββ̄Kββ̄ . (6.5)

For an internal node α, we only compute a column ID using columns that are

skeletons of the children of α, That is, a column ID is computed for the submatrix

Kᾱα′ , where α′ ⊂ α denotes the set of skeleton columns of the child nodes l, r of α:

Kᾱα′ ≈ Kᾱα′Sᾱα′Pᾱα′ , where Kᾱα′ = Kᾱα

[
Sl̄l

Sr̄r

]
. (6.6)

This will be combined with the IDs of the children of α to implicitly define an ID

for the entire off-diagonal block of α. The skeletons satisfy the nesting property:

the skeleton columns of α are a subset of the skeleton columns of its children. The

nesting property is important for achieving O(n) work complexity in the evaluation

stage.

Due to the nesting property, we can use (6.6) together with the column IDs
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of the child nodes to implicitly define a column ID of the full block Kᾱα:

Kᾱα ≈ Kᾱα

[
Sl̄l

Sr̄r

] [
Pl̄l

Pr̄r

]

≈ Kᾱα′

[
Pl̄l

Pr̄r

]

≈ Kᾱα′Sᾱα′Pᾱα′

[
Pl̄l

Pr̄r

]

≈ Kᾱα

[
Sl̄l

Sr̄r

]
Sᾱα′Pᾱα′

[
Pl̄l

Pr̄r

]

This defines a column ID of the full off-diagonal block Kᾱα = SᾱαPᾱα with telescoping

expressions for Sᾱα and Pᾱα:

Sᾱα =

[
Sl̄l

Sr̄r

]
Sᾱα′ , Pᾱα = Pᾱα′

[
Pl̄l

Pr̄r

]
(6.7)

We never explicitly form Pᾱα, but instead use the telescoping expression to apply

Pᾱα to a vector during evaluation. The row skeletonization of interior node α is

carried out analogously, using the row skeletons of the children of α.

Compression consists of skeletonizing each node in the cluster tree. The tree

nodes are skeletonized following a post-order tree traversal in order to satisfy data

dependencies. The compression algorithm is outlined in Algorithm 6.2.3.

6.2.4 Evaluation

Once the compressed representation has been constructed, we seek to apply

the compressed matrix to weight vector w to compute the product vector u ≈ Kw.

We refer to this step as evaluation. Suppose the block Kαβ may be approximated

with a two-sided ID as in (6.3) using the skeletonizations constructed in §6.2.3. We

seek to apply it to the appropriate subvector wβ and add the contribution Kαβwβ to
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Algorithm 6.2.3 Compress the matrix by skeletonizing each tree node

procedure Compress()
Skeletonize(root)

procedure Skeletonize(α)
if Is_leaf_node(α) then

Sᾱα, Pᾱα = Column_id(Kᾱα)
Sαᾱ, Pαᾱ = Row_id(Kαᾱ)

else
Skeletonize(α.left_child)
Skeletonize(α.right_child)
α′ = α.left_child.skeleton ∪ α.right_child.skeleton

Sᾱα′ , Pᾱα′ = Column_id(Kᾱα′)
Sα′ᾱ, Pα′ᾱ = Row_id(Kα′ᾱ)

uα. This is done in three steps: we first compute the skeleton weights w̃β = Pβ̄βwβ ,

then the skeleton products ũα = SαᾱKαβSβ̄βw̃β, and finally add to the products

uα += Pαᾱũα. Computing the skeleton products consists of a single matrix-vector

product using the submatrix of Kαβ selected by Sαᾱ and Sβ̄β , rather than separately

applying the three matrices.

We make a few observations that lead to an efficient implementation. First,

the matrix blocks whose columns are indexed by β all belong to the column off-

diagonal block of β, so they share the same skeleton weights Pβ̄βwβ. Similarly, the

matrix blocks whose rows are indexed by α all apply the same matrix Pαᾱ to their

skeleton products, so we may sum their skeleton products before applying Pαᾱ and

apply Pαᾱ a single time to the summed skeleton products. With this perspective, we

define the skeleton weights of node β to be the skeleton weights associated with all

sub-blocks of its column off-diagonal blocks, and the skeleton products of α to be

the skeleton products summed over the sub-blocks of its row off-diagonal block.
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We also observe that as a consequence of the nesting property and telescoping

expression (6.7), there is significant overlap in the computation of an interior node’s

skeleton products and the computation of its children’s skeleton products. That is,

once the skeleton products of the children are known, the skeleton products of the

parent may be computed with a single additional matrix-vector product. Similarly,

in computing products, rather than applying the full telescoping expression to its

skeleton products, a parent node α may apply a single matrix-vector product and

“pass down” the partial result Pα′ᾱũα to its children, which add the appropriate

parts to their skeleton products.

The evaluation algorithm is outlined in Algorithm 6.2.4. In order to satisfy

data dependencies, the computation of skeleton weights is structured as a post-order

tree traversal, the computation of skeleton products is structured as a visitation of

tree nodes in any order, and the computation of products is structured as a pre-order

tree traversal. Under suitable assumptions on the low-rank structure of K, the

computational complexity of evaluation is O(n). Detailed cost breakdown along with

some other discussion can be found in [107].

6.2.5 Accelerated GMRES

6.2.5.1 Analysis

To accelerate GMRES, we construct a compressed operator K̃ and substitute

it for the uncompressed operator K throughout GMRES. This leads to two different

kinds of residual: we define the relative residual of x in the compressed operator

to be ‖K̃x− b‖/‖b‖ and the relative residual of x in the uncompressed operator or
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Algorithm 6.2.4 Apply the compressed matrix to a vector w.

procedure Evaluate(w)
Compute_skeleton_weights(root)
Compute_skeleton_products()
Compute_products(root)

procedure Compute_skeleton_weights(α)
if is_leaf_node(α) then

w̃α = Pᾱαwα

else
l = α.left_child

r = α.right_child

Compute_skeleton_weights(l)
Compute_skeleton_weights(r)

w̃α = Pᾱα′

[
w̃l

w̃r

]

procedure Compute_skeleton_products()
for α ∈ tree do

ũα =
∑

β∈α.interaction_list SαᾱKαβSβ̄βw̃β

procedure Compute_products(α)
if is_leaf_node(α) then

uα = Pαᾱũα

else
l = α.left_child

r = α.right_child[
w̃l

w̃r

]
+= Pα′ᾱũα

Compute_products(l)
Compute_products(r)
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true residual to be ‖Kx− b‖/‖b‖. These two residuals may be different, and in the

accelerated algorithm, only the residual in the compressed operator is available. The

following theorem gives upper bounds for the solution error and the true residual in

terms of the residual in the compressed operator, the error in the compression, and

the condition number of K.

Theorem 3. For matrix K and right hand side b, let x be the solution of Kx = b,

and x̃ be an approximate solution of K̃x̃ ≈ b with residual r = K̃x̃− b. Assume K

is nonsingular, ‖K̃ −K‖ < ǫc‖K‖, ‖r‖ < ǫr‖b‖, and ǫccond(K) < 1. Then

‖x̃− x‖
‖x‖ <

(ǫr + ǫc) cond(K)

1− ǫccond(K)

and

‖Kx̃− b‖
‖b‖ < ǫr + ǫccond(K)

1 + ǫrcond(K)

1− ǫccond(K)
.

Proof. First, we bound ‖x̃‖/‖x‖. Define δK = K̃−K. It follows from the definitions

that

(K + δK) x̃ = b+ δb

(
I +K−1δK

)
x̃ = x+K−1r

x̃ =
(
I +K−1δK

)−1 (
x+K−1r

)

Matrix I +K−1δK is invertible since ‖K−1δK‖ < ǫccond(K) < 1. Taking norms

and using the Neumann series bound of
(
I +K−1δK

)−1
,

‖x̃‖ ≤ ‖x‖+ ‖K
−1r‖

1− ‖K−1δK‖
‖x̃‖
‖x‖ ≤

1 + ǫrcond(K)

1− ǫccond(K)
(6.8)
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To bound ‖x̃−x‖/‖x‖, we observe from the definitions that x̃−x = K−1r−

K−1δKx̃. Taking norms,

‖x̃− x‖
‖x‖ ≤ ‖K

−1r‖
‖x‖ +

‖K−1δKx̃‖
‖x‖

≤ ǫrcond(K) + ǫccond(K)
‖x̃‖
‖x‖

Combining this with 6.8 yields the first inequality.

To bound ‖Kx̃− b‖/‖b‖, we observe from the definitions that Kx̃ = r− δKx̃.

Taking norms,

‖Kx̃− b‖
‖b‖ ≤ ‖r‖‖b‖ +

‖δKx̃‖
‖b‖

≤ ǫr + ǫc
‖K‖‖x‖
‖b‖

‖x̃‖
‖x‖

< ǫr + ǫccond(K)
‖x̃‖
‖x‖ .

Combining this with 6.8 yields the second inequality.

6.2.5.2 Trilinos Implementation

Trilinos [47] is a large open-source software project consisting of a collection

of packages for solving large-scale numerical problems arising in computational

science and engineering. The Belos package [7] provides a number of iterative solvers,

including an implementation of GMRES, which we combine with the hierarchical

compression algorithm to create an accelerated linear solver. Trilinos is designed to

support modularity of components via the use of abstract interfaces. In particular, the

GMRES implementation operates on abstract classes for operator and multivector
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types. Swapping out different implementations of the abstract classes does not

require any changes to the solver, and the user is free to implement any operator

and multivector types that satisfy the abstract interfaces. The operator interface is

defined in the Belos source file BelosOperator.hpp and the multivector interface in

BelosMultiVec.hpp. Simple unoptimized example implementations are located in

MVOPTester/ in the Belos test directory.

We implement a new operator to support hierarchical approximation of

operator K. The new operator type creates a compressed representation of a given

matrix when its constructor is called. Subsequent calls to apply the operator execute

the compressed matrix-vector product of Algorithm 6.2.4.

Compared to the reference algorithm that uses an uncompressed matrix-

vector product, the accelerated algorithm has an additional startup cost associated

with compression. In order to achieve speedup in total runtime, the savings due to

the compressed matrix-vector product must overcome the cost of compression. For

suitable problems, the compressed matrix-vector product is asymptotically faster,

even accounting for compression, and therefore will be faster given a large enough

problem. We empirically compare the accuracy and convergence of the accelerated

algorithm against the reference algorithm in §6.3.

6.3 Experiments

The compression and evaluation algorithms of §6.2 were implemented in the

GOFMM codebase and integrated with the GMRES solver of Trilinos. Experiments

were conducted on a server equipped with dual Intel Xeon Platinum 8160 CPUs for
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Figure 6.1 Geometry of the thin-slot EM scattering problem [56].

a total of 48 physical cores and 192 GB of memory. Though the GOFMM library

includes support for distributed-memory parallelism, we run these experiments only

on a single compute node, using OpenMP for shared-memory parallelism.

6.3.1 Performance Impact of Nonsymmetry

We first examine the performance overhead incurred by the additional work

for nonsymmetric compression. The nonsymmetric algorithm computes two approxi-

mations for each node β: a column ID of column off-diagonal block Kβ̄β and a row

ID of row off-diagonal block Kββ̄. The symmetric algorithm only has to compute

one of these and takes the transpose to get the other. We compare the results for

the symmetric and nonsymmetric algorithms both applied to a symmetric problem.

In these experiments, the operator is a kernel matrix K ∈ R
n×n, n = 50000, with

entries defined by Kij = K(xi, xj), where K is a Gaussian kernel function with

bandwidth h = 0.05 and points {xi} are randomly drawn from a uniform distribution

over the unit hypercube in four dimensions. Matrices such as this one appear in

kernel methods in machine learning and their hierarchical rank structure has been
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demonstrated, for example in citemarch2017far. The distribution of points and kernel

bandwidth parameter are chosen so that the matrix is compressible, but not trivially

so.

Table 6.1 shows performance results of the symmetric and nonsymmetric

algorithms for various settings of the maximum approximation rank and leaf size.

When the approximation rank and leaf size are large, the cost of compression

is dominated by the low-rank approximation of off-diagonal blocks, and the non-

symmetric compression takes roughly twice as long as the symmetric compression.

As the approximation rank and leaf size are decreased, the low-rank approximation

represents a smaller portion of the total compression time, and the penalty for non-

symmetric compression is much less than a factor of two. Setting these parameters

too small results in poor performance due to increased costs of other steps. For

the following experiments we use an approximation rank and leaf size of 256 unless

otherwise noted.

While the nonsymmetric algorithm requires additional work for compression,

it does not require any additional work for evaluation of the matrix-vector product.

As expected, we observe no significant difference in evaluation times between the

two algorithms.

6.3.2 Electromagnetic scattering on thin-slot geometry

Next, we consider a linear system generated by Eiger from an electromagnetic

scattering problem on the thin-slot geometry shown in Figure 6.1 with n = 15565

unknowns. We compute approximate solutions to the system using GMRES with a
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Table 6.1 Timings of symmetric and nonsymmetric algorithms for compressed
matrix-vector product of a (symmetric) Gaussian kernel matrix with a random
vector (n = 50000, ǫc = 1e−3, budget = 0.05). The compressed algorithms use the
same value for both the maximum rank and maximum leaf-size parameters. The
time for an uncompressed matrix-vector product is given for reference. Timings
in seconds are reported separately for compression(Algorithm 6.2.3) and evaluation
(Algorithm 6.2.4).

Rank/leaf size Compress time Evaluate time Rel. error
Symmetric 128 7.51 2.54 1.1e-3
Nonsymmetric 128 7.70 2.50 1.7e-3
Symmetric 256 1.42 0.62 1.5e-2
Nonsymmetric 256 1.62 0.58 1.4e-2
Symmetric 512 2.54 0.42 3.2e-2
Nonsymmetric 512 3.64 0.40 3.8e-2
Symmetric 1024 9.84 0.41 7.1e-2
Nonsymmetric 1024 19.80 0.44 6.0e-2
Uncompressed 2.15

compressed operator and with an uncompressed operator. The two algorithms were

run until the relative residual was less than 1e−5. In the algorithm that uses the

compressed operator, the convergence test uses the relative residual in the compressed

operator ‖K̃x̃− b‖/‖b‖. After the algorithm terminates, either due to satisfaction of

the convergence condition or reaching the maximum number of iterations, the true

relative residual is computed using the uncompressed operator ‖Kx̃− b‖/‖b‖.

Table 6.2 shows results for a right-hand side that was generated by applying

the operator to a random vector drawn from a uniform distribution over [−1, 1]n.

For this problem, the algorithm using the compressed operator took 0.35 seconds

for compression and 0.72 seconds for 102 iterations of GMRES to reach a relative

residual of 1e−5 in the compressed operator, corresponding to a relative residual
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Table 6.2 GMRES applied to the linear system Kx = b, where K is the matrix from
the thin-slot scattering problem and b is set to be product of K applied to a random
vector drawn from a uniform distribution over [0, 1]n. The table reports compression
time in seconds, GMRES time in seconds (excluding compression), the number of
GMRES iterations, and relative residual in the uncompressed operator.

Compress time GMRES time # iter True residual
Compressed 0.35 0.72 102 3e-4
Uncompressed 0 6.28 101 1e-5

of 3e−4 in the uncompressed operator. GMRES using the uncompressed operator

completed after 101 iterations in 6.28 seconds, taking 8.8× longer per GMRES

iteration and 5.9× longer in total runtime than the compressed algorithm. The two

algorithms took nearly the same number of iterations to converge, but the GMRES

iterations of the compressed algorithm were much faster.

Table 6.3 shows results for a given right-hand side of practical interest. In

this case, both algorithms reached the limit of 200 iterations before convergence of

the residual. For the compressed algorithm, the relative residual in the compressed

operator reached 1e−2, but the true residual was 1.5. This discrepancy is caused

by a large condition number (cond(K) = 6.7e8) compared to the relative error of

the approximation
(
‖K − K̃‖/‖K‖ = 2.7e−4

)
, and by the particular choice of b.

The analysis in §6.2.5.1 shows that the discrepancy can be controlled by ensuring

ǫccond(K) is much less than 1, which is not satisfied.

A possible remedy would be to compress the matrix to higher accuracy,

but attempts to tighten the error tolerance parameter failed to produce a more

accurate compression. The cause of this failure is likely to be poor quality of the
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Table 6.3 GMRES applied to the linear system Kx = b, where K is the matrix
from the thin-slot scattering problem and b is a given right-hand side of practical
interest. The table reports compression time in seconds, GMRES time in seconds
(excluding compression), the number of GMRES iterations, and relative residual in
the uncompressed operator.

Compress time GMRES time # iter True residual
Compressed 0.36 2.1 200 1.5
Uncompressed 0 12.3 200 6e-3

samples used in the sampled ID, which were selected at random due to the absence

of geometric information. Geometric information can be easily incorporated into

the compression algorithm, but it must first be extracted during construction of the

discretized problem, and such information was not available at the time of writing.

To demonstrate this, we run the algorithm with sampling and without sampling

over a range of values for the error tolerance parameter as shown in Table 6.4. The

error decreases along with the error tolerance for the unsampled algorithm but

not for the sampled algorithm. The unsampled algorithm gives better convergence

for this problem, but it is not practical due to its expensive compression phase,

which requires O(n2) operations. For example, with ǫc/‖K‖ = 1e−9 ≈ cond(K),

the compression time without sampling is 70.5 seconds, which is enough time to

run thousands of GMRES iterations using the uncompressed operator. Though we

cannot know the extent to which geometric information would improve sampling, it

has been observed that the sampling scheme we use generally works well on a range

of practical problems, and uniform random sampling generally performs poorly [67].
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Table 6.4 Comparison of compression accuracy using a sampled ID versus an
unsampled ID for the scattering problem. The first column reports the relative error
tolerance, and the second and third columns report the relative error of the compressed
operator constructed using either sampled IDs or unsampled IDs.

Rel. error tolerance Sampled ID rel. error Unsampled ID rel. error
1e-4 3e-4 3e-4
1e-5 3e-4 1e-4
1e-6 1e-3 3e-5
1e-7 1e-3 6e-7
1e-8 2e-3 2e-8
1e-9 4e-3 9e-10
1e-10 4e-3 7e-11

6.3.3 Helmholtz kernel

We consider another problem for which geometric information is available. In

these experiments, we use a kernel matrix defined by the three-dimensional Helmholtz

kernel

K(xi, xj) =
e−ik‖xi−xj‖2

‖xi − xj‖2
, (6.9)

where the points {xi}ni=1 are drawn from a uniform distribution on [0, 1]3. A large

wave number k in the kernel function produces a highly oscillatory kernel function,

resulting in a matrix that is difficult to compress. We solve the regularized linear least

squares problem (DK+λI)x = b, where D is a diagonal matrix with diagonal entries

drawn randomly from a uniform distribution on [0, 1] and λ ∈ R is a regularization

term. The purpose of applying D is to make the matrix DK + λI nonsymmetric,

and the regularization term is chosen to control the rate of convergence of GMRES.

In these experiments, n = 32768, λ = 300.
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Table 6.5 Matrix-vector product (DK + λI)x, where K is the Helmholtz kernel
matrix and x is drawn from a uniform distribution over [0, 1]n. The first column
reports the relative error tolerance, the second and third columns report timings in
seconds for compression and evaluation, and the fourth column reports the relative
error of the compressed operator.

Rel. error tolerance Compress time Evaluate time Rel. error
1e-1 1.51 0.024 4e-1
1e-2 1.53 0.025 6e-2
1e-3 1.76 0.028 2e-2
1e-4 1.84 0.031 1e-3
1e-5 1.92 0.048 9e-5
1e-6 2.05 0.073 6e-6
1e-7 2.23 0.116 1e-6
1e-8 2.33 0.253 2e-7
1e-9 2.69 0.369 4e-8
1e-10 3.10 0.577 1e-8
Uncompressed 0.252

Table 6.5 shows performance and accuracy of the matrix-vector product for

a range of error tolerances. As the error tolerance is decreased, the approximation

error of the compressed operator decreases accordingly, and costs increase for both

compression and evaluation. Nearly every case demonstrates speedup over the

uncompressed matrix-vector product.

Table 6.6 shows performance and accuracy of GMRES applied to the linear

system (DK + λI)x = b, where b is defined to be the product of DK + λI applied

to a random vector drawn from a uniform distribution over [0, 1]n. The problem is

solved using an compressed operator for a range of error tolerances and with the

uncompressed operator. We report the final relative residual both in the compressed

operator and in the uncompressed operator. In cases with larger error tolerance, the
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Table 6.6 GMRES applied to the linear system (DK + λI)x = b, where K is the
Helmholtz kernel matrix and b is set to be product of DK + λI applied to a random
vector drawn from a uniform distribution over [0, 1]n. The table reports the relative
error tolerance, compression time in seconds, GMRES time in seconds (excluding
compression), relative residual in the compressed operator, and the true residual (the
relative residual in the uncompressed operator).

Rel. err. tol. Compress time GMRES time Comp. resid. True resid.
1e-1 1.5 3.0 6e-4 2e-1
1e-2 1.5 3.3 3e-5 4e-2
1e-3 1.8 3.8 2e-5 2e-2
1e-4 1.8 4.7 2e-5 3e-3
1e-5 1.9 5.7 2e-5 4e-4
1e-6 2.0 11.5 2e-5 7e-5
1e-7 2.2 16.8 1e-5 2e-5
1e-8 2.3 30.0 2e-5 2e-5
1e-9 2.7 36.8 2e-5 2e-5
1e-10 3.1 45.4 2e-5 2e-5
Uncompressed 25.6 2e-5 2e-5

residual in the uncompressed operator remains large even after convergence in the

compressed operator due to error in the compression. For more accurate compressed

operators, this discrepancy diminishes, and the two residuals reach agreement.

6.4 Conclusions and Future Work

We present an algorithm for compressing and applying rank-structured

nonsymmetric matrices such as those arising from applying the method of moments

to the combined field integral equation. We integrate the compression scheme with an

iterative solver and apply it to an electromagnetic scattering problem, demonstrating

significant speedup over an iterative solver that uses direct matrix-vector products.
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We also explore cases for which the algorithm performs poorly, for example, in the

absence of geometric information and for a system with a right-hand side that is

difficult to solve. Directions for further development include tighter integration

between the GOFMM and Eiger (or the new Gemma) codes so that the problem can

be solved in a matrix-free manner, applying a preconditioner or scaling rows and

columns to solve the problem faster and more robustly, the use of inexact Krylov

methods for further speedup, and using the distributed-memory algorithm [110] to

solve much larger problems.
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Chapter 7

Conclusion
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This thesis describes a set of efficient algorithms to address two problems

that arise in working with large, dense, rank-structured matrices. Part I addresses

the problem of black-box randomized compression of rank-structured matrices. Like

the randomized singular value decomposition, these algorithms compute approxima-

tions to rank-structured matrices by accessing the matrix only through black-box

matrix-vector multiplication routines. Chapter 2 presents a linear-complexity algo-

rithm for compressing HBS matrices, and Chapter 3 presents peeling algorithms

accelerated with graph coloring for compressing H
1, uniform H

1, and H
2 matrices.

Part II addresses the problem of finding permutations of matrices that reveal rank

structure. Chapter 4 describes the Geometry-Oblivious Fast Multipole Method for

permuting symmetric positive-definite matrices, and Chapter 5 describes the leverage

score clustering scheme for general dense matrices. Finally, Chapter 6 presents an

application of the geometry-aware variant of the GOFMM compression algorithm to

matrices arising from problems in electromagnetic scattering.

7.1 Future work

The contributions in Part I open up a number of opportunities for futher

research. The techniques developed for sampling off-diagonal blocks of interest

may be applicable in algorithms for compressing additional classes of data-sparse

matrices. While we demonstrate empirically that the black-box compression schemes

achieve high accuracy, rigorous theoretical error analysis (e.g., how approximation

error for individual blocks relates to approximation of the entire matrix, and how

error accumulates across levels of the tree) would be useful to users. We expect
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that the algorithm of Chapter 2 can be generalized to the H
2 format, which is

subject to a strong admissibility condition. Moreover, given that most of the work

in that algorithm is performed for nodes in the finest levels of the tree, and that the

data dependencies have a tree-like structure, we expect that the algorithm can be

parallelized efficiently and cleanly. The algorithm of Chapter 3 requires many fewer

samples than prior works, but it may be possible to achieve even further acceleration.

The contributions in Part II open up techniques for working with rank-

structured matrices to broader classes of matrices. A stronger theoretical understand-

ing of which problems are amenable to permutation to reveal rank structure and

which problems are not would be of practical value. For the algorithms in Chapter 5,

there may be opportunity to improve the efficiency of the algorithms by exploring

recent techniques for computing approximations to the leverage scores at less expense

than for computing them exactly.
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