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1. Intr oduction

PDE-constrained optimizationis a frontier problemin
computationalscience and engineering. All PDE-
constrainedproblemssharethedifficulty thatPDEsolu-
tion is just a subproblemassociatedwith optimization.
Thus, the optimization problem is often significantly
moredifficult to solve thanthesimulationproblem.We
areparticularlyinterestedin large-scaleproblemsthatre-
quireparallelcomputingto make themtractable.

To illustratethe main issues,let’s considera model
problemof optimaldistributedcontrolof aNavier-Stokes
flow: �������
	�������������� ��� 	���� �!����"#�%$&	��'� �(�)��"#�+*-,.�0/ � ��� �213�4*5,
subjectto:687 �91:	����;�!�)� " �<�=	��'�%�+� �(�>�?�@�?�BA in ,�C1D�@�BA in ,�E�=A on F
Here, � is thefluid velocity field, � thepressurefield, �
thebodyforcecontrolfunction, / aweightingparameter,
and 7 theinverseof theReynoldsnumber. Theobjective
is to minimize the rateof dissipationof viscousenergy
anda costassociatedwith a bodyforcecontrolfunction.
TheconstraintsarethestationaryincompressibleNavier-
Stokesequationswith Dirichlet boundaryconditions.

Wecanform aLagrangianfunctional,andrequireits
stationaritywith respectto thestate( � ,� ) andoptimiza-
tion ( � ) variablesandthe Lagrangemultipliers. Taking
variationsandinvoking theappropriateGreenidentities,
we arrive at the following first-ordernecessarycondi-
tions:
Adjoint Equations:6G7 �C1:	��.HJI8�!�'H "I �K�=	����%� " HJI 6 	��.HJI5�+��2�'L:M 6 �C15	���� �!��� " �N�OA in ,�C1PHJIQ�OA in ,H I �BA on F
StateEquations:6G7 �R15	���� �!����"#�K�=	����%�+�)�@�S�T�E�U�=A in ,�913�V�=A in ,�V�=A on F
Control Equations:W �G�@HJIQ�=A in ,
The stateequationsare just the original Navier-Stokes
PDEs.Theadjoint equations, which resultfrom station-
aritywith respecttostatevariables,arethemselvesPDEs,
andarelinearin theLagrangemultipliers HJI and L:M . Fi-
nally, thecontrol equationsare(in thiscase)algebraic.

Thuswe endup with a large, coupled,unstructured
systemof optimality conditions(or at leastbigger, more
coupled,andlessstructuredthanseenby aNavier-Stokes
solvers).How to goaboutsolvingit? Theusualwayis to
eliminatestatevariablesand Lagrangemultipliers and,
correspondingly, the stateequationsand adjoint equa-
tions; to reducethe systemto a manageableonein just
thecontrol(i.e. decision)variables� . Here’s oneway to
dothis: given � atsomeiteration,wesolvethestateequa-
tionsfor thestatevariables�X�� . Knowing thestatevari-
ablesthenpermitsus to solve the adjoint equationsfor
theLagrangemultipliers HJIYZL:M . Finally, with thestates
andmultipliersknown, we canupdate� by iteratingon
thecontrolequation.Thewholeprocessis repeateduntil
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convergence.This eliminationprocedureis termeda re-
ducedspacemethod,in contrastto a full spacemethod,
in whichonesolvesfor thestates,controls,andmultipli-
erssimultaneously.

Reducedspacemethodsareattractive for severalrea-
sons. Solving the subsetsof equationsin sequenceim-
parts some structureto the problem. State equation
solversbuild onyearsof developmentof large-scalepar-
allel PDE solvers. Adjoint PDE solvers don’t exactly
grow on trees—but the strongsimilarities betweenthe
stateandadjointoperatorssuggestthatanexisting PDE
solver for the stateequationscanbe modifiedeasily to
handlethe adjoint system(at leaston a goodday). Fi-
nally, thecontrolequationsareusuallyreasonablytame,
at leastto evaluate. Anotheradvantageof reductionis
that the full spacesystemis often very ill-conditioned,
whereasthe threesubsystemsaretypically bettercondi-
tioned.

On the otherhand,the big disadvantageof reduced
methodsis the needto solve thestateandadjointequa-
tions at each iteration of the reducedsystem—adirect
consequenceof the reductiononto the decisionvariable
space.Soit’snaturalto gobackto thefull space,andask
if it’spossibletosolvetheentireoptimalitysystemsimul-
taneously, but retain the structure-inducing,condition-
improving advantagesof reducedspacemethods—while
avoiding their disadvantages.

In this article, we presentsuch a method. The
key idea is to solve in the full spaceusing a Newton
method,but preconditionwith a quasi-Newton reduced
spacemethod.TheKarush-Kuhn-Tucker systemarising
at eachNewton iterationis solved usinga Krylov itera-
tive method,andit is this systemto which theprecondi-
tioner is applied.We have foundthat the reducedspace
preconditionerisveryeffectivein reducingthenumberof
Krylov iterations,andapplyingit capturesthe favorable
structureof reducedmethods.On the otherhand,since
the reductionis usedjust as a preconditioner, we can
cheatonthestateandadjointsolves,replacingthemwith
approximationswhich could be their own precondition-
ers. So we arrive at a methodthat combinesrapid con-
vergencein the outerNewton iteration(typically mesh-
independent),with fastconvergenceof the innerKrylov
iteration (which can be asgood as mesh-independent).
We don’t even needto computesecondderivatives—
sincea Krylov methodis usedto solve theKKT system,
we canapply the usualdirectionaldifferencingtrick to
approximatetheLagrangianHessian–vectorproduct.

Why thenameLagrange-Newton-Krylov-Schur? It is
commonin PDE-solvercirclesto usethephraseNewton-
Krylov-X to refer to Newton methodsfor solving PDEs
thatemploy Krylov linearsolvers,with X astheprecon-
ditionerfor theKrylov method.SinceLagrange-Newton
is sometimesusedto describeaNewtonmethodfor solv-
ing the optimality system(a.k.a.an SQPmethod),and
sincea reducedspacemethodcanbeviewedasa Schur
complementmethodfor the KKT system,we arrive at
theconcatenationLNKS. It’s amouthful,but it preserves
thetie to modernPDEsolvers,whoseuseof approximate
decompositionsaspreconditionersinspiredthisapproach
[6]. David Keyessuggested(a variationof) this namein
his plenarytalk at the 1999combinedSIAM Optimiza-
tion/Annualmeeting[5].

In the remainderof this article, we give a brief
overview of theLNKS methodandsomesampleresults
for anoptimalflow controlproblemonaCrayT3E.Fur-
therdetailscanbefound in [2], andmoreextensive dis-
cussionandresultsin forthcomingarticlesthat focuson
theinnerKrylov iteration[3] andtheouterNewton iter-
ation[4]. We notefinally thatBattermannandHeinken-
schlosshave presenteda somewhatdifferentmethodfor
preconditioningKKT matricesthat also makes use of
stateandcontrolspacedecompositions[1].

2. ReducedSpaceMethods

In this sectionwe discussreducedspaceSQPmethods,
concentratingon the discreteform of a typical PDE-
constrainedoptimizationproblem:�����[]\ 	 [ � subjectto ^ 	 [ �N�=A<
where [ are the stateand decisionvariables, \ is the
objective function and ^ are the discretizedstateequa-
tions. Using Lagrangemultipliers H , we candefinethe
Lagrangianfunctionby_ 	 [ �H`�a$b� \ 	 [ �<�@H " ^ 	 [ �Zc
Thefirst orderoptimality conditionsrequirethat theLa-
grangiangradientvanish:dfe�g _e`h _ji � dOk �@l " H^ i �=A<
where

k
is the gradientof the \ and l is the Jacobian

matrixof theconstraints.A Newtonstepon theoptimal-
ity conditions(which, in the absenceof inequalitycon-
straints,is SequentialQuadraticProgramming)is given
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by: m?n l "l A o dqp gHNr i � 6 d k ^ i 
where

n
is theHessianof theLagrangianfunctionwith

respectto the optimizationvariables,
p g

is the search
direction in [ , and HNr is the updatedLagrangemulti-
plier. This systemis known astheKarush-Kuhn-Tucker
(KKT) system,andits coefficientmatrixastheKKT ma-
trix. To exploit thestructureof thestateconstraints,we
partitiontheoptimizationvariablesintostatevariables[Ns
anddecisionvariables[�t . ThepartitionedKKT system
becomes:uvw n s+s n s t l " sn t s n txt l " tl s l t A y{z|f}~� ~�

p sp tHNr�� ~�~� � 6 }~� ~�
k sk t^ � ~�~� (0.1)

Thissystemis of dimension
��� ��� , where

�
is thenum-

berof statevariablesand � thenumberof decisionvari-
ables. State-of-the-artalgorithmsfor PDE-constrained
optimizationexploit two facts. First, nobodywantsto
computesecondderivatives—it’s hardenoughconvinc-
ing the PDE solver community of the need for first
derivatives.(No doubtthisdifficulty will bemitigatedby
continuingadvancesin automaticdifferentiationtools.)
And second,everybodywantsto useexisting software
for “inverting” thestateJacobian.Sincethis is thekernel
stepin aNewton-basedPDEsolver, thereis a largebody
of work to draw from. For example,for elliptic PDEs,
thereexist optimalor nearly-optimalparallelalgorithms
(e.g.domaindecompositionmethodsor multigrid) that
requirealgorithmicwork that is linear or weaklysuper-
linearin

�
, andscaleto thousandsof processorsandmil-

lionsof variables.
Oneway to exploit existing PDE-solversis to elim-

inate the stateandadjoint equationsandvariables,and
thensolve anunconstrainedoptimizationproblemin the
remainingdecisionspace(this is similar to theargument
of the previous section,except herewe are linearizing
first, theneliminating,asopposedto vice versa.)We re-
fer to this asNewton reducedSQP(or N-RSQP),andit
canbederivedby blockeliminationon theKKT system:
Given

p t , solve thelastblockof equations(thestatesys-
tem) for

p s ; thensolve the first (the adjoint system)to
find H r , andfinally solve the middle (the decisionsys-
tem)for

p t . It is easyto verify thatthisblockelimination
is equivalent to the following block factorizationof the
KKT matrix:

uvw n s+s l
�<�s A �n t s l �<�s � l " t l � "s� A A y z|
uvw l s l t AA n'� AA n���� l " s y z|

(0.2)
wherethereducedHessianmatrix is definedbyn.� $b�=l "t l � "s n s+s l �<�s l t6 l " t l � "s n s t 6!6 n t s l �<�s l t � n txt 
andthe“cross-Hessian”byn��Z� $b� n s t 6 n s+s l �<�s l t c
Note that thesefactorscanbe permutedto block trian-
gular form, so we can think of this asa block LU fac-
torizationof the KKT matrix. It is clear that the only
linearsystemsthatneedto besolvedhaveeitherthestate
Jacobianl s or its transposeastheircoefficientmatrix—
a “solved problem”—or elsethe reducedHessian

n'�
,

which is denseandof dimensionof the decisionspace.
Thus, reducedmethodsareparticularlyattractive when
thethedecisionvariablesaremuchfewer thanthestates.

But two problemsremain. First are the second
derivative terms. Second,andmoreproblematic,is the
needfor � solutionsof the (linearized)stateequations
for constructionof l
�<�s l t in

n'�
. This is particularly

troublesomefor large-scale3D problems,where (lin-
earized)PDEsystemsareusuallysolved iteratively, and
solution costscannotbe amortizedover multiple right
handsas effectively as with direct solvers. When the
simulationproblemis an overnight run on a large par-
allel machine,this requirementeffectively rulesout the
useof N-RSQP.

A populartechniquethataddressesthesetwodifficul-
ties is a quasi-Newton RSQP(QN-RSQP)methodthat
replacesthe reducedHessian

n'�
with a quasi-Newton

approximation� � , anddiscardsall otherHessianterms.
This correspondsto the following approximationof the
KKT block factors:uvw A A �A � l " t l � "s� A A y{z|

uvw l s l t AA � � AA A l " s y{z| (0.3)

It is easyto verify that just two statesolves per itera-
tion arerequired(actuallyonelinearizedstate,andone
adjoint), as opposedto the � of N-RSQP. And with
Hessiantermseitherapproximatedor dropped,no sec-
ond derivatives are needed. A measureof the success
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of QN-RSQPis its applicationto numerousoptimalcon-
trol, optimal design,andinverseproblemsgovernedby
PDEsfrom linear and nonlinearelasticity, incompress-
ible andcompressibleflow, heatconductionandconvec-
tion, phasechanges,flow throughporousmedia,etc. Of
course,somethinghastogive,andthatis theconvergence
rate: a reductionfrom quadraticin the Newton caseto
two-stepsuperlinear. Moreover, thenumberof iterations
taken by QN-RSQPdependson the conditioningof the
reducedHessian,and often increasesas the numberof
decisionvariablesgrows,renderinglarge-scaleproblems
intractable.In thenext section,weproposeamethodthat
combinesthefastconvergenceof Newton’s methodwith
thestructure-exploiting propertiesof reducedmethods.

3. LNKS: Krylo v solution of the KKT
systemwith approximate QN-RSQP
preconditioning

In thissection,wepresentamethodfor solvingtheKKT
system(0.1). For optimizationproblemsconstrainedby
3D PDEs,sparsefactorizationof theKKT matrix is not
anoption—suchmethodsarenotviablefor l s , let alone
the entire matrix. Instead,we use a Krylov iterative
method,specificallythequasi-minimumresidual(QMR)
method. However, the varying scalesbetweenHessian
andJacobiantermsin theKKT matrix,andits indefinite-
ness,demandaneffectivepreconditioner. Thisprecondi-
tionermustbecapableof exploiting thestructureof the
stateconstraints(specificallythat good preconditioners
exist for l s ), mustbe cheapto apply, andmustbe ef-
fective in reducingthenumberof Krylov iterations.The
QN-RSQPmethoddescribedin theprevioussectionfits
thebill. Applying thepreconditioneramountsto solving
with the QN-RSQPfactorization(0.3), exceptthat state
Jacobiansarereplacedby their approximations �l s :uvw A A �A � l " t �l s � "� A A y{z|

uvw �l s l t AA � � AA A �l s " y{z| (0.4)

Replacingl s with �l s is permissible,sinceQN-RSQP
is beingusedasa preconditioner. A goodchoicefor �l s
is, in turn,oneof theavailablepreconditionersfor l s —
for many PDE operators,there exist near-spectrally-
equivalentpreconditionersthat areboth cheapto apply
(typically linear or weakly superlinearin problemsize)

andeffective (resultingin iterationnumbersthat arein-
dependentof, or increaseveryslowly in, problemsize).

With (0.4) usedas a preconditioner, the precondi-
tionedKKT matrixendsuphaving thefollowing form:uvw � s � 	�� s � A�n "�Z� �l s �<� � 	�� s �<� n'� � �<�� � 	�� s �n s�s �l s �<� �n.�Z� � �<�� � s y{z|
where � s $b� l �<�s 6 �l s �<�� s $b� l s �l s �<��n��Z� $b� n s t 6 n s�s �l s �<� l t
For exactstateequationsolution, � s �qA and � s �q� ,
andweseethattheQN-RSQPpreconditionerclustersthe
spectrumof theKKT matrix, with all eigenvalueseither
unit or belongingto

n'� � �<�� . Therefore,when �l s is
a goodpreconditionerfor the stateJacobian,andwhen� � is a goodapproximationof the reducedHessian(as
it shouldbe asymptotically),we might expect the QN-
RSQPpreconditioner(0.4)to beeffective in reducingthe
numberof Krylov iterations(but notethat theprecondi-
tionedKKT matrix is non-normal,soa rigorousanalysis
requireswell-conditionedeigenvectors).

How scalableis themethod,with respectto increas-
ingproblemsizeandnumberof processors?Forscalabil-
ity, we requirethat thework increasenear-linearly with
problemsize (algorithmicscalability)and that it paral-
lelizeswell (parallelscalability).Let usexaminethema-
jor components:
Formation of the KKT matrix–vector product. For
PDE-constrainedoptimization, the Hessianof the La-
grangianfunctionandtheJacobianof theconstraintsare
usuallysparsewith structuredictatedby the mesh(par-
ticularly whenthe decisionvariablesaremesh-related).
Thus, formation of the matrix-vector product at each
QMR iterationis linear in both stateanddecisionvari-
ables,andparallelizeswell dueto ahighcomputation-to-
communicationratioandminimalsequentialbottlenecks.
Application of the QN-RSQP preconditioner. The
main work involved is applicationof the stateJacobian
preconditioner �l s andits transpose,and“inversion” of
thequasi-Newtonapproximationto thereducedHessian,� � . Wecanoftenmake useof scalable,parallelstateJa-
cobianpreconditionersthatrequires� 	 � � work to apply
(asin variousdomaindecompositionpreconditionersfor
elliptic problems).Furthermore,when � � is basedon a
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limited-memoryquasi-Newton update(asin our imple-
mentation),its work is also linear in the decisionvari-
ables,and the vector operationsare easily parallelized
(or aseasilyasvectorinnerproductscanbe).Therefore,
weconcludethatapplicationof theQN-RSQPprecondi-
tionerrequireslinearwork andparallelizeswell.
The Krylo v (inner) iteration. As arguedabove, with
an “optimal” statepreconditionerand a good � � ap-
proximation,we can anticipatethat the numberof in-
ner, Krylov iterationswill berelatively insensitive to the
problemsize.
The Lagrange-Newton(outer) iteration. The number
of outer, Newton iterationsis oftenindependentof prob-
lem size for PDE-typeproblems,and the problemswe
have solvedexhibit this typeof behavior aswell.

This combinationof linear work per Krylov itera-
tion, weakdependenceof Krylov iterationson problem
size, and independenceof Lagrange-Newton iterations
on problemsizesuggesta methodthat scaleswell with
increasingproblemsizeandnumberof processors.

How well doestheLNKS methodwork in practice?
Here,we quotea setof representative resultsfrom many
wehaveobtainedfor upto 1.5million statevariablesand
50,000control variableson up to 256 processors.The
problemis optimal Navier-Stokes flow control, similar
to that of Section1, exceptthat the controlsarebound-
aryvelocities.Thespecificproblemis controlof 3D flow

arounda cylinder at subcriticalconditions,with controls
on thedownstreamsideof thecylinder. Approximation
is by Galerkinfinite elements,bothfor stateandcontrol
variables.We have implementedthe LNKS methodon
top of the PETSclibrary for parallel solutionof PDEs
from Argonne. The tableshows resultsfor 64 and128
processorsof aCrayT3Efor aroughlydoublingof prob-
lem size. Resultsfor the QN-RSQPand LNKS algo-
rithms are presented.In the table LNKS-EX refersto
exact solutionof the linearizedNavier-Stokes equation
within the QN-RSQPpreconditioner, whereasLNKS-
PR refers to applicationof a block-Jacobi(with local
ILU(0)) approximationof the linearizedNavier-Stokes
operator. LNKS-PR-TRusesatruncatedNewtonmethod
andavoids fully converging theKKT systemfor iterates
thatarefar from asolution.

The resultsin the table reflect the independenceof
Newton iterationson problemsize,themild dependence
of KKT iterationsonproblemsize,andtheresultingrea-
sonablescalabilityof themethod.It is importantto point
out herethat theNavier-Stokesdiscreteoperatoris very
ill-conditioned,andthereis roomfor improvementof its
domain-decompositionpreconditioner. Theperformance
of the QN-RSQPKKT preconditionerwould improve
correspondingly. A dramaticaccelerationof the LNKS
algorithmis achievedby truncatingtheKrylov iterations.

states
controls

preconditioning Newton iter averageKKT iter time (hours)

389,440 QN-RSQP 189 — 46.3
6,549 LNKS-EX 6 19 27.4

(64procs) LNKS-PR 6 2,153 15.7
LNKS-PR-TR 13 238 3.8

615,981 QN-RSQP 204 — 53.1
8,901 LNKS-EX 7 20 33.8

(128procs) LNKS-PR 6 3,583 16.8
LNKS-PR-TR 12 379 4.1

More detailedresultsare given in [2, 3, 4]. These
referencesalso discussthe important topics of global-
ization andthe detailsof the inexactnessin solving the
KKT system,which were not mentionedherefor rea-
sonsof space. Another issueis additional inequality
constraints;wehave recentlyimplementedwith Andreas
WächterandLarry Biegler a parallelversionof their in-
terior point methodfor treatingsuchconstraints,within
the context of LNKS. Finally, this summerwe will be

releasinga publicly-availablesoftwarelibrary for paral-
lel solutionof PDE-constrainedoptimizationproblems,
built on top of the PETScsystem,andincluding LNKS
andothermethods.
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