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Abstract. We present an overview of the Lagrange-Newton-Krylov-Schur (LNKS) method
for solution of optimization problems that are governed by systems of partial differential
equations. We discuss how to improve LNKS’s work efficiency by carrying out certain com-
putations inexactly, without compromising convergence. LNKS solves the Karush-Kuhn-
Tucker optimality conditions using a Newton-Krylov algorithm. Its key component is a pre-
conditioner based on variants of quasi-Newton reduced space Sequential Quadratic Program-
ming (QN-RSQP) methods. LNKS combines the fast convergence properties of a Newton
method with the ability of preconditioned Krylov methods to solve very large linear systems.
Nevertheless, even with good preconditioners, solution of the optimization problem is several
times more expensive than solution of the underlying PDE problem. To accelerate LNKS, its
computational components are carried out inexactly: premature termination of iterative al-
gorithms, inexact evaluation of gradients and Jacobians, and approximate line searches. We
discuss several issues that arise with respect to these inexact computations, and the resulting
trade-offs between speed and robustness.

1 Introduction

We discuss algorithmic and implementation aspects of the Lagrange-Newton-Krylov-
Schur method for solution of large-scale nonlinearly-constrained optimization prob-
lems. The proposed techniques have applications to a broad category of optimiza-
tion problems, including optimal control, optimal design, and parameter identifica-
tion for systems governed by partial differential equations (PDEs). These are often
known asPDE-constrained optimizationproblems.

In this article we will refer to the unknown PDE field quantities as thestate vari-
ables; the PDE constraints as thestate equations; solution of the PDE constraints as
the forward problem; the inverse, design, or control variables as thedecision vari-
ables; and the problem of determining the optimal values of the inverse, design, or
control variables as theoptimization problem.

Perhaps the most popular technique for large-scale nonlinearly-constrained op-
timization is the reduced space Sequential Quadratic Programming (RSQP) method
[2], [17]. In its elaboration for PDE-constrained optimization, the linearized state
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equations and state variables are eliminated at each iteration, and a quadratic opti-
mization problem is solved in the reduced space of decision variables. LNKS, which
was introduced in [3,6,7], employs a family of methods that use Newton-Krylov al-
gorithms to solve the Karush-Kuhn-Tucker optimality conditions in the full space
of state and decision variables, and invokes a preconditioner motivated by reduced
space ideas. We refer to the (nonlinear) Newton iterations asouteriterations, and use
the terminner to denote the (linear) Krylov iterations for the Karush-Kuhn-Tucker
(KKT) system that arises at each Newton iteration.

The inner iterative solver and the preconditioner that accelerate the computations
of a Newton step for the KKT optimality conditions are essential ingredients of
LNKS. We introduced and analyzed several variants of the preconditioner in [4,6].
The parallelizability and scalability of the LNKS algorithm were also examined in
those papers. The basic form of the outer Newton solver is analyzed in [7].

Like adjoint-based quasi-Newton RSQP methods (see e.g. [13]), this approach
requires just two linearized forward solves per iteration, and in addition exhibits
the fast convergence associated with Newton methods. Moreover, the two forward
solves can be approximate (since they are used within the LNKS preconditioner); for
example we replace them by an appropriate PDE preconditioner. LNKS builds on
existing parallel PDE preconditioners and generally parallelizes and scales as well as
the forward solver itself. In this paper, we extend our earlier work with a discussion
of the inexact components of the LNKS method—in particular the inexact solves
within the QN-RSQP steps used for globalization.

The paper is organized as follows. In Section 2 we overview the LNKS method.
In Section 3 we discuss globalization approaches for the outer iteration and briefly
present line-search based QN-RSQP methods. Section 4 discusses several inexact
computations within LNKS. We conclude in Section 5 with numerical results from
the application of the method to the optimal boundary control of the steady incom-
pressible Navier-Stokes equations.

Some notational conventions follow. We use boldface characters to denote vector-
valued functions and vector-valued function spaces. We use Roman characters to
denote discretized quantities and italics for their continuous counterparts. For ex-
ampleu will be the continuous velocity field andu will be its discretization. Greek
letters are overloaded and whether we refer to the discretization or the continuous
fields should be clear from context. We also use(+) as a subscript or superscript to
denote variable updates within an iterative algorithm. Finally, quantities with a tilde
on the top indicate that they are results of inexact computations.

2 LNKS Method

Let us consider the constrained optimization problem,

min
x2RN

f(x) subject to c(x) = 0; (1)
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wherex 2 R
N are the optimization variables,f : RN ! R is the objective func-

tion andc : RN ! R
n are the constraints, which we assume consist of only the

discretized state equations.
In order to exploit the structure of the problem we partitionx (which lies in

the full space of optimization variables) into state variablesxs 2 R
n , and decision

variablesxd 2 Rm ,

x =

�
xs
xd

�
; (2)

wherem+ n = N . The Lagrangian,

L(x;�) := f(x) + �
T c(x); (3)

is used to convert the constrained optimization problem into a system of nonlinear
equations. For convenience we introduce the following notation:

A(x) := @xc(x) 2 Rn�N Jacobian matrix of the constraints;

W(x;�) := @xxf(x) +
P

i �i@xxci(x) 2 R
N�N Hessian matrix of the Lagrangian;

g(x) := @xf(x) 2 RN gradient vector of the objective:

The first order optimality conditions state that at a local minimum the gradient
of the Lagrangian must vanish:

�
@xL

@�L

�
(x;�) =

�
g(x) +A(x)T�

c(x)

�
= 0 (orh(q) = 0): (4)

Customarily, these equations are called the Karush-Kuhn-Tucker or KKT optimality
conditions, and points at which the gradient of the Lagrangian vanishes are called
KKT points.

A Newton step on the optimality conditions is given by
�
WAT

A 0

��
px
p�

�
= �

�
g+AT

�

c

�
( orKp = �h); (5)

wherepx andp� are used to updatex and� from current to next iterations. The
KKT optimality conditions (4) define a system of nonlinear equations. The Jacobian
K of this system is termed theKKT matrix. Assuming sufficient smoothness, and
that the initial guess is sufficiently close to a solution, updates obtained by (5) will
converge quadratically to the solution [11]. Thus, the forward solves required for
reduced methods can be avoided by remaining in the full space of state and deci-
sion variables, since it is the reduction onto the decision space that necessitates the
forward solves [13]. Nevertheless, the full space approach also presents difficulties:
a descent direction is not guaranteed, second derivatives are required, and the KKT
system itself is very difficult to solve. The size of the KKT matrix is more than twice
that of the forward problem, and it is typically very ill-conditioned. Ill-conditioning
results not only from the forward problem but also from the different scales between
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first and second derivative submatrices. Moreover, the system is indefinite; mixing
negative and positive eigenvalues is known to slow down Krylov solvers. Therefore,
a good preconditioner is essential for making the method efficient.

In LNKS we use a Newton method to solve the KKT optimality conditions.
To compute the Newton step we solve the KKT system using an appropriate Krylov
method. At the core of the algorithm lies the preconditionerP for the Krylov method,
which is an inexact version of the QN-RSQP algorithm. An outline of the basic
LNKS method is given by Algorithm 1.

Algorithm 1
1: Choose x;�

2: loop
3: Check for convergence
4: Compute c; g;A;W

5: Solve P�1Kp = P�1h (Newton Step)
6: Update x = x+ px
7: Update � = �+ p�
8: end loop

To derive the preconditioner we rewrite the KKT system (5) in a block-partitioned
form: 2

4Wss Wsd A
T
s

Wds Wdd A
T
d

As Ad 0

3
5
8<
:
ps
pd
p�

9=
; = �

8<
:
gs +AT

s �

gd +AT
d �

c

9=
; : (6)

RSQP is equivalent to a block-row elimination: givenpd, solve the last block of
equations forps, then solve the first to findp�, and finally solve the middle one
for the decision variable updatepd. Therefore RSQP can be written as a particular
block-LU factorization of the KKT matrix:

K =

2
4WssA

�1
s 0 I

WdsA
�1
s I AT

dA
�T
s

I 0 0

3
5
2
4As Ad 0

0 Wz 0

0 Wsd �WssA
�1
s Ad A

T
s

3
5 : (7)

Note that these factors are permutable to block triangular form (this is why we refer
to the factorization as block-LU) and thatWz is the Schur-complement forpd and
is given by

Wz =Wss +AT
dA

�T
s WssA

�1
s Ad �A

T
dA

�T
s Wsd �WdsA

�1
s Ad: (8)

Based on the Schur-type factorization we use the following preconditioner for the
KKT system:

P =

2
40 0 I

0 I AT
d
~A�Ts

I 0 0

3
5
2
4
~As Ad 0

0 ~Wz 0

0 0 ~AT
s

3
5 : (9)
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The key components of the preconditioner are~A�1s and ~W�1
z , the preconditioners

for the forward problem and the reduced space (i.e. decision space) equations re-
spectively. A natural choice for~W�1

z is a BFGS-like method which is commonly
used to approximate the reduced Hessian in QN-RSQP methods. For an analysis
of the RSQP-based preconditioner and more details on the derivations, see [6]. In
[4–7] we give theoretical and numerical evidence that these preconditioners work
well.

3 Globalization

Algorithm 1 is only locally convergent. Popular methodologies to globalize New-
ton’s method—that is, allow convergence to a local minimum from any initial guess—
include line search, trust region, and filter algorithms. Details can be found in [23].
Trust region methods have been successfully applied to PDE-constrained optimiza-
tion [17], [19], [20]. Global convergence proofs for these methods can be found in
[8]. Trust region methods are often based on the Steihaug modification [24] of the
Conjugate Gradient (CG) algorithm. However, CG requires a positive (semi)definite
system. For reduced space approaches, this is not a problem, since the reduced Hes-
sian is assumed to be positive definite. To employ a trust region method within the
full space, one could minimize thel2 norm of the KKT conditions, effectively ap-
plying CG to the normal equations, but this would entail a squaring of the already
very large condition number of the KKT system. Instead, we have opted for a line
search algorithm. Since the first order necessary conditions (4) we are solving ad-
mit non-optimal stationary points as solutions, the line search procedure may fail to
find a point that sufficiently reduces the merit function. In this case, we revert from
a full-space Newton step back to a quasi-Newton-based RSQP step, which under
appropriate conditions guarantees finding such a point. Our final strategy for glob-
alization is the use of continuation on a nonlinear parameter. Such techniques are
very popular and effective for solution of nonlinear PDEs that are otherwise difficult
to solve, and it makes sense to exploit them for PDE optimization. In the remain-
der of this section, we discuss our line search, combined QN-RSQP–LNKS, and
continuation strategies.

3.1 The line search

The basic component of a line search algorithm is the choice of a merit function, a
scalar function (ofx and�) that monitors the progress of the algorithm. In contrast
with unconstrained optimization, the choice of a merit function is not straightfor-
ward, since we are trying to balance optimality with feasibility. The two most pop-
ular choices are thel1 and the augmented Lagrangian exact merit functions. Thel1
merit function is given by

�(x) := f + ��kck1; (10)
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and the augmented Lagrangian by

�(x;�) := f + cT�+
��

2
cT c: (11)

The scalar�� is thepenalty parameter—a weight chosen to balance minimiza-
tion of the objective function and the minimization of the residuals of the constraints.
Both merit functions are exact provided the penalty parameter is large enough. By
exact we mean that if(x�;��) is a minimizer for (1), then it is also a minimizer for
the merit function. A crucial property of a merit function is that it should accept unit
step lengths close to a solution, and therefore permit Newton quadratic convergence
to be observed. Thel1 merit function often suffers from the “Maratos” effect, that
is, it sometimes rejects good steps and slows down the algorithm. The augmented
Lagrangian merit function does not exhibit such behavior, but its drawback is that it
requires accurate estimates of the Lagrange multipliers to perform well. (This is not
a problem in LNKS since second-order accurate Lagrange multipliers estimates are
computed.) Both algorithms are sensitive to the penalty parameter, which must be
chosen judiciously to avoid an unbounded merit function, or very slow convergence.

In LNKS we use an Armijo-type line search algorithm. A safeguarded back-
tracking procedure is used to search for a scalar� 2 [�min; 1] so that the so-called
Armijo criterion

�(�) � �(0) + �ÆAp
Tr�(0); (12)

of sufficient descent is satisfied. The algorithm used to compute the search direction
p is left intentionally unspecified. All that matters to ensure global convergence is
the properties of the merit function and the properties ofp. If � is bounded and takes
its minimum at a finite point, and ifp is bounded, the safeguarded Armijo search is
guaranteed to converge to a local minimum [22]. The line search algorithm we use
is simple backtracking.

3.2 Continuation

One of the standard assumptions in global convergence proofs is that the Jacobian
of the constraints is nonsingular for all optimization iterations. For highly nonlinear
PDEs this may be an unrealistic assumption. Even if the Jacobian is nonsingular,
severe ill-conditioning will cause both QN-RSQP and LNKS algorithms to stall.
Indeed, in our numerical experiments (for iterates far from the solution), difficulties
in the line search algorithm are correlated with difficulties converging theAs and
K linear solves.

Continuation is a popular method for addressing such convergence difficulties.
Many nonlinear problems are characterized by a scalar parameter whose increase
tracks the shrinking diameter of the attraction basin of Newton’s method. In its sim-
plest form, one begins with a value of this parameter for which Newton’s method
converges easily, and then solves a sequence of problems with larger values of the
parameter, until the target value is reached. Each problem is initialized with the
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converged state field of the previous iterate. Examples of such parameters are the
Reynolds number in viscous flow, the Mach number in compressible flow, the Hart-
man number in magnetohydrodynamics, the load parameter for nonlinear solid me-
chanics problems, and more generally the grid size for many problems that exhibit
increasing nonlinearity with finer numerical resolution. In problems where such a
parameter is not natural, one can construct a surrogate problem that is easy to solve
in the parameter limit; an example is the pseudo-transient continuation method [18].

The popularity of continuation for solving PDEs suggests their use in PDE opti-
mization methods, which after all must converge the PDEs as part of the optimality
conditions. The extension is natural; the continuation steps are promoted up to the
level of the optimization iteration. Continuation allows uphill steps (unlike mono-
tone line search methods) to be taken and generates good initial guesses, not only for
the optimization variables, but also for the penalty parameter in the merit function.
The most important feature of the continuation algorithm is that it globalizes triv-
ially (when the initial optimum can be computed reliably, and when all iterates on
the continuation path are far from turning and bifurcation points). If the continuation
step places the next iterate outside the attraction basin of the Newton method then
we simply reduce the continuation step size. In principle, the method can be made
to work without incorporating any other globalization strategy. Nevertheless, tak-
ing a large number of continuation steps can significantly slow down the algorithm.
Therefore additional globalization strategies are necessary.

3.3 Combining QN-RSQP with LNKS

Quasi-Newton methods are well known for their robustness. Since LNKS already
uses the reduced space structure for preconditioning, it is natural to ask whether
QN-RSQP can be utilized to enhance the robustness of the overall algorithm. Global
convergence proofs require the reduced Hessian,Wz, to be strictly positive definite.
If Wz is positive definite (and assuming the system (5) is solved exactly), then the
resulting stepp satisfies the descent criterion. This is where quasi-Newton methods
have an advantage over Newton methods. For example, by using a BFGS approxi-
mation, ~Wz, positive definiteness can be guaranteed. LNKS does maintain a BFGS
approximation—not for driving the outer iteration but for preconditioning purposes.
Therefore, the remedy for an indefinite reduced Hessian is simple: if a computed
search direction fails to satisfy the line search conditions, we discard it, and fall
back on a search direction computed by QN-RSQP. For this reason, even when us-
ing a different preconditioner for the reduced Hessian, we insist on maintaining a
BFGS approximation ofWz for globalization purposes.

As the factorization (7) illustrates, reduced space methods can be derived for-
mally by a linear elimination of the state space stepps. The resulting unconstrained
optimization problem has a gradient that includes second derivatives. These second
derivative terms are dropped from the right hand sides of the decision and adjoint
steps, at the expense of a reduction from one-step to two-step superlinear conver-
gence [2]. The resulting QN-RSQP method is defined by Algorithm 2. An important
advantage of this quasi-Newton method is that only two linearized forward prob-
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Algorithm 2 Quasi-Newton RSQP

1: Choose xs;xd; ~Wz

2: loop
3: Evaluate c; g; A

4: AT
s � = �gs solve for � ( Adjoint Step)

5: gz = gd +A
T
d �

6: Update ~Wz ( Quasi-Newton approximation)
7: if kgzk � tol and kck � tol then
8: Converged
9: end if
10: ~Wzpd = �gz solve for pd ( Decision step)
11: Asps = �(Adpd + c) solve for ps ( State step)
12: x+ = x+ px
13: end loop

lems need to be solved at each iteration, as opposed to them needed by N-RSQP
for constructingA�1s Ad in Wz, e.g. [13].

Let us review how QN-RSQP is used in combination with thel1 and augmented
Lagrangian merit functions. For thel1 merit function we have

r�Tpx = gTpx � ��kck1 = �gTz
~W�1
z gz � �

T c� ��kck1:

If ~W�1
z is positive definite then the first term is always positive and we can choose

�� by making the remaining terms positive. By setting

�� = k�k1 + Æ; Æ > 0; (13)

we obtain a descent direction.
Similarly for the augmented Lagrangian we get

r�Tp = (g+AT
�+ ��A

T c)Tpx + p�;

= �gTz
~W�1
z gz � �

T (c+ATpx) + cTApx + cTp�;

= �gTz
~W�1
z gz � ��c

T c+ cTp�:

If we assume that~W�1
z is strictly positive definite and choose

�� �
cTp�

cT c
+ Æ; Æ > 0; (14)

then a descent direction is guaranteed. In our quasi-Newton formulations we assume
that second derivatives are available. In this case,

p� = (@x�)px = �A�Ts
�
Wss Wsd

�
px � � ~A�Ts

�
Wss Wsd

�
px: (15)

QN-RSQP can be parallelized very efficiently for moderate numbers of decision
variables [21]. But when QN-RSQP is used to globalize LNKS, the need for exact
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forward solves greatly increases the cost of the LNKS method. By carrying out
the state and adjoint solves that make up QN-RSQP inexactly, we can make the
globalization much more efficient. How to do this will be discussed in the next
section.

4 Inexact computations within LNKS

In large-scale computations inexactness is a powerful way to accelerate computa-
tions. In addition, it is often the case that inexactness robustifies algorithms (e.g.
by damping Newton steps). In LNKS both outer and inner iterations are performed
inexactly. We use inexact Lagrange-Newton solves within continuation loops, inex-
act Krylov-Schur solves to compute the Newton direction, and an inexact reduced
Hessian in the KKT preconditioner and the QN-RSQP globalization. The various
types of inexactness influence the algorithm in two basic ways: global convergence
to a KKT point and local convergence rates. Analysis is required not only to pro-
vide theoretical guarantees for the robustness of the proposed algorithms, but also
to suggest choices for truncation tolerances.

4.1 Inexact Newton’s method

Before we discuss inexact Newton’s method in the context of LNKS, we briefly
summarize a few results for a general nonlinear system of equations. Assume we
want to solveh(q) = 0. Further assume the following: (1)h andK := @qh are suf-
ficiently smooth in a neighborhood of a solutionq�; (2) at each iteration an inexact
Newton method computes a stepp that satisfies

kKp+ hk � �Nkhk; (16)

where�N is often called theforcing term. It can be shown that if�N < 1 then
q ! q� linearly; if �N ! 0 thenq ! q� superlinearly; and if�N = O(khk) then
we recover the quadratic convergence rate of a Newton method. The forcing term is
usually given by

�N =
kh(+) � h�Kpk

khk
: (17)

For other choices of�N and details on inexact Newton methods, see [10] and the
references therein.

The extension of inexact methods to optimization is immediate, especially for
unconstrained optimization. In [17] a global analysis is provided for a trust region
RSQP-based algorithm. Close to a KKT point the theory for Newton’s method ap-
plies and one can use the analysis presented in [9] to show that the inexact version of
the LNKS algorithm converges. However, the line search we are using is not based
on the residual of the KKT equations but instead on the merit function discussed in
the previous session. That means that an inexact step that simply reduceskhk may
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not necessarily satisfy the merit function criteria. In [7] we show that for points that
are close enough to the solution inexactness does not interfere with the line search.

Here we extend our discussion to the inexact QN-RSQP algorithm since, espe-
cially in the absence of a continuation scheme, QN-RSQP globalization is a crucial
component of the LNKS method. In the analysis that follows we compare the inexact
computation with an exact one. We assume that we have chosen a penalty parameter
that gives sufficient decrease (based on the exact steps), and we establish conditions
for the inexact computation so that this sufficient decrease is not compromised.

In the presence of inexactness the QN-RSQP steps (Algorithm 2) become

AT
s
~�+ gs = rz;

~gz = gd +AT
d
~�;

~Wz~pz = �~gz;

As~ps = �(Ad~pz + c) + rc;

~pd = ~pz:

We have introduced two vectors,rz andrc, to account for the inexactness in the
adjoint and forward solves. The following equations give the Lagrange multipliers,
reduced gradient, and state and control steps for the exact (left column) and the
inexact case (right column).

� = �A�Ts gs; ~� = �+A�Ts rz;

gz = gd �A
T
dA

�T
s gs; ~gz = gz +AT

dA
�T
s rz;

pd = � ~W�1
z gz; ~pd = pd � ~W�1

z AT
dA

�T
s rz;

ps = A�1s Ad
~W�1
z gz �A

�1
s c; ~ps = ps +A�1s Ad

~W�1
z AT

dA
�T
s rz +A�1s rc:

Let us define the following constants :�1 := max(k ~W�1
z k),�2 := max(kA�1s Adk),

�3 := min(�min( ~W
�1
z )), and�4 := max(kA�1s k); � denotes singular values and

themin;max operations are across optimization iterations. We assume that these
quantities are uniformly bounded.

4.2 l1 merit function

The directional derivative of the merit function is given by

r�Tpx = r�Tpx + gTs (A
�1
s Ad

~W�1
z AT

dA
�T
s rz +A�1s rc)� g

T
d

~W�1
z AT

dA
�T
s rz ;

= r�Tpx + (AT
dA

�T
s gs � gd)

T ~W�1
z AT

dA
�T
s rz + (�A�Ts gs)

T rc;

= �gTz
~W�1
z gz � �

T c� ��kck1 � g
T
z

~W�1
z AT

dA
�T
s rz � �

T
rc:

To ensure thatr�Tpx < 0 we can set

�gTz
~W�1
z gz � g

T
z

~W�1
z AT

dA
�T
s rz < 0;

��T c� �
T
rc � ��kck1 < 0;

(18)
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and therefore if we choose

krzk <
�3

�1�2
kgzk; (19)

we satisfy the first inequality in (18).
If we assume that the penalty parameter is given by (13) then

��T c� �
T rc � ��kck1 < 0;

��T c� �
T rc � k�k1kck1 � Ækck1 <

k�k1kck1 + k�k1krck1 � k�k1kck1 � Ækck1:

If we choose

krck1 <
1

2

Æ

k�k1
kck1; (20)

then1

��T c� �
T rc � ��kck1 < �

1

2
Ækck1:

For each iterate we therefore compute sufficient descent without having to increase
the penalty parameter.

4.3 Augmented Lagrangian merit function

For the inexact QN-RSQP method, the directional derivative of the augmented La-
grangian merit function becomes

r�T ~p = ~pTx (g +AT ~�+ ��A
T c) + cT ~p�;

= �gTz
~W�1
z gz � ��c

T c+ eT (g +AT ~�+ ��A
T c) + cT ~p� +

+ pTxA
Te� + eTAT e�; (21)

where

es := A�1s Ad
~W�1
z AT

dA
�T
s rz +A�1s rc;

ed := � ~W�1
z AT

dA
�T
s rz;

e� := A�Ts rz:

Now we examine the different terms of the gradient of the Augmented Lagrangian
function. We useg +AT

� = f0 gzg
T and (21) becomes

r�T ~p = �gTz
~W�1
z gz � ��c

T c+

+ gTz ed + pTxA
T e� + eTAT e� + ��e

TAT c+ cT ~p�: (22)

1 In our implementation we usekrck1 < 1

2
Æ=(k�k1 + 1)kck1 and the right hand side

becomesÆ=2(1=(1=k�k1 + 1) � 2)kck1. By noticing that0 < 1

1=k�k1+1
< 1 we get

the sufficient descent condition.
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It is easy to check that the terms in the right hand of (22) simplify to:

gTz ed = �rTzA
�1
s c;

pTxA
T e� = �rTzA

�1
s c;

��e
TAT c = ��c

T rc;

eTAT e� = rTzA
�1
s rc:

Thus

r�T ~p =� gTz
~W�1
z gz � ��c

T c+ ��c
T rc �

� rTz (A
�1
s c+A�1s Ad

~W�1
z gz) + cT ~p� + rTzA

�1
s rc: (23)

In the following we assume thatcT ~p� is absorbed in the penalty parameter��.
We use the following inequality

gTz
~W�1
z gz + ��c

T c � 2max(�3kgzk
2; ��kck

2) =: 
:

If we choose

rTz (A
�1
s c+A�1s Ad

~W�1
z gz) < �

1

2

; 0 < � < 1

then

krzk <
�

2

max(�3kgzk
2; ��kck

2)

max(�4kck; �2�3kgzk)
: (24)

Similarly if we choose

rTc (��kck+ �4rz) < �
1

2

; 0 < � < 1

then

krck <
�

2

max(�3kgzk
2; ��kck

2)

max(��kck; �4krzk)
: (25)

By insisting that (24) and (25) are satisfied, we guarantee a descent direction
without a penalty parameter significantly larger than that of the exact case. Of course
these relations are not implemented in this form since we do not knowkgzk. Instead
of kgzk we use the reduced gradient norm from the previous iteration—scaled by a
standard inexact Newton forcing parameter�N computed from

�+N =
k~g+z � ~gz � �~pdk

k~gzk

at the end of each SQP step.
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Notice that the analysis is different from the case of thel1 merit function. In the
latter the errorsrz andrc have been compared to�gTz ~W�1

z gz and��cT c respec-
tively, whereas in the augmented Lagrangian both errors are compared to1

2

. This

allows a balance between feasibility and optimality. If, for example, we start very
close to a feasible point but far from the optimum, an inexact Newton’s criterion
based only on the residual of the constraints (as in (20)) will oversolve, since far
from the optimum we do not need the constraints to be satisfied. Of course it is very
easy to extend the analysis for the augmented Lagrangian to thel1 merit function.

4.4 The globalized inexact LNKS method

Algorithm 3 gives a high-level description of the globalized inexact version of
LNKS. Some of the implementation details and heuristics are discussed in this sec-
tion. We use the following notation:q = fx �gT ; �(0) := �(q); h(0) := h(q);
�(�) := �(q + �p); andh(�) := h(q+ �p).

The algorithm uses a three-level iteration. In the outer iteration the value of the
continuation parameter (here symbolized by Re, the Reynolds number for viscous
flows, following the examples of the next section) is gradually increased until the
target value is reached. The middle iterations correspond to Lagrange-Newton lin-
earizations of the optimality system for a fixed continuation number. Finally, the
inner iteration consists of two core branches: the computation of a Newton direction
and the computation of the search direction with QN-RSQP. The default branch is
the Newton step. If this step fails to satisfy the line search conditions, we then switch
to QN-RSQP. If QN-RSQP fails too, then we reduce the continuation parameter Re
and return to the outer loop.

The linear solves in Steps 8, 16 and 17 are performed inexactly (that is, by early
termination of iterative solvers). In Step 8 we follow [10] in choosing the forcing
term. In Steps 16 and 17 the forcing term is based on the formulas developed in
Section 4.3.

In Step 6 we use the adjoint variables to update the reduced gradient. This is
equivalent togz = gd �AT

dA
�T
s gs, if � is computed by solving exactlyAT

s � +

gs = 0. When� is taken from LNKS, it includes second order terms (which re-
duce to zero as we approach the solution), and when� is taken from QN-RSQP it
also introduces extra error since we never solve the linear systems exactly. In our
numerical experiments this approximation has not caused problems.

We allow for non-monotone line searches. If the LNKS step is rejected by the
merit function line search we do not switch immediately to QN-RSQP. Instead, we
perform a line search (Step 12) on the KKT residual (as if we were treating the KKT
conditions as nonlinear equations) and if the step is accepted we use it to update the
variables for the next iteration. However, we do store the iterate and the merit func-
tion gradient, and we insist that some step satisfies the conditions of the merit line
search (evaluated at the failure point) after a fixed number of iterations. Otherwise,
we switch to QN-RSQP. This heuristic has been very successful. Typically, we per-
mit two steps before we demand reduction of the merit function.
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Algorithm 3 Globalized LNKS
1: Choose xs; xd; ��; t; ÆA, set Re = Restart ; tol = tol0

2: AT
s �+ gs � 0 solve inexactly for �

3: while Re 6= Retarget do
4: loop
5: Evaluate f; c; g; A; W

6: gz = gd +A
T
d �

7: Check convergence: kg +AT
�k � tol and kck � tol

8: P�1Kp+P�1h � 0 solve inexactly for p

9: Compute �� such that r�T (0)p � 0

10: Compute � s.t. �(�) � �(0) + ÆA�(r�T (0)p)
11: if Line search failed then
12: Compute � s.t. kh(�)k < tkh(0)k

13: end if
14: if Line search failed then
15: ~Wzpd = �gz solve inexactly for pd
16: Asps +Adpd + c � 0 solve inexactly for ps
17: AT

s �+ + gs � 0 solve inexactly for �+

18: Compute � s.t. �(�) � �(0) + ÆA�(r�T (0)p)

19: if Line search failed then
20: Reduce Re and go to step 5.
21: end if
22: end if
23: �+ = �+ p� (only for LNKS step)
24: x+ = x+ px

25: end loop
26: Re = Re +�Re

27: Tighten tol

28: end while

We use various heuristics to bound the penalty parameter and if possible reduce
it. A new penalty parameter�+� is computed using the LNKS step and formula

(14). If �+� > 4�� we update the penalty parameter and we switch to QN-RSQP. If

�+� < ��=4 we reducethe penalty parameter and set�+� = 0:5��. We also reduce
the penalty parameter after successful steps in the KKT residual.

We use the BFGS method for the quasi-Newton approximation of the reduced
Hessian. To preconditionWz we use either BFGS or a matrix-free method we in-
troduced in [6]. This preconditioner, which requires the action ofWz on a vector,
can be also used as a driver for the reduced space globalization step. Although we
have the luxury of second derivatives, computing the reduced Hessian exactly is
very expensive. Instead we use an approximate reduced Hessian, given by

~Wz =Wdd + ~A�Ts AT
dWss

~A�1s Ad �Wds
~A�1s Ad �A

T
d
~A�Ts Wsd; (26)

and ~A�1s is the preconditioner to the forward problem. We employ a Lanczos pro-
cess to estimate the lower and upper eigenvalues of~Wz . In case of a negative eigen-
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value (i.e. negative curvature) we can use a modified reduced Hessian,�I + ~Wz,
where the parameter� is chosen to shift the spectrum to the positive real axis.

5 Application to optimal boundary control of viscous flows

In this section we present results that typify the performance of the LNKS algo-
rithm. The PDE-constrained optimization problem we consider is finding the op-
timal boundary control (suction/injection) that minimizes the rate of energy dissi-
pation in a viscous flow. The flow (and hence state constraints) is described by the
stationary incompressible Navier-Stokes equations. A survey and a number articles
on flow control can be found in [15]. More on numerical approximation of the in-
compressible Navier-Stokes equations can be found in [14,16]. We consider flow
around a circular cylinder, which is anchored inside a rectangular duct, much like
a numerical wind tunnel. A quadratic velocity profile is used as an inflow Dirichlet
boundary condition and we prescribe a traction-free outflow. The control variables
(i.e. decision variables) are the velocitiesd on the downstream portion of the cylin-
der surface. We use the velocity-pressure(i:e: u; p) form of the incompressible
steady state Navier-Stokes equations. The objective function(al) is given by

J (u;d) :=
�

2

Z



ru � ruT +
�

2

Z
�d

d � d;

where the first term is the energy dissipation, and the second reflects the “cost”
of the boundary velocity controls. The usual approach of defining a Lagrangian
functional and requiring its stationarity with respect to Lagrange multipliers, state
variables, and decision variables gives (the strong, infinite dimensional form of) the
KKT optimality conditions, which consist of theforwardproblem

��r � (ru+ruT ) + (ru)u+rp = b in 
;

r � u = 0 in 
;

u = ug on �u;

u = d on �d;

�pn+ �(ru+ruT )n = 0 on �N ;

(27)

theadjointproblem

��r � (r�+r�T ) + (ru)T�� (r�)u+r� = �r � (ru+ruT ) in 
;

r � � = 0 in 
;

� = 0 on �u; (28)

� = 0 on �d;

��n+ �(r�+r�T )n+ (u � n)� = ��(ru+ruT )n on �N ;

and thecontrol (i.e. decision) problem

�(r�+r�T )n+ �(ru+ruT )n� �d = 0 on �d: (29)
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Here� = 1=Re and the decision variables are the velocitiesd on �d; � are the
adjoint velocities and� are the adjoint pressures. For a forward solve we need not
distinguish between�d and�u. In the optimization problem, however,ud is to be
determined.

We discretize by the Galerkin finite element method, using tetrahedral Taylor-
Hood elements (quadratic velocities, linear pressures). Our software is built on top
of the PETSc library [1] and we use PETSc’s block-Jacobi preconditioners with lo-
cal ILU(0) for the domain decomposition approximation of the forward and adjoint
operators. For the Krylov solves of the forward and adjoint problems, we use the
quasi-minimum residual method (QMR) [12], and for the KKT Krylov solves we
use a symmetric variant of QMR.

(a) (b)

(c) (d)

Fig. 1. PDE-constrained optimal control problem. The constraints are the steady three-
dimensional incompressible Navier-Stokes equations modeling viscous flow around a cylin-
der. The objective is to minimize a linear combination of the energy dissipation in the fluid
and the cost of the controls. The controls are injection/suction velocities on the downstream
portion of the cylinder surface. The left images depict streamtubes for the uncontrolled flow at
Re 20 (top) and40 (bottom). The right images depict streamtubes of the optimally-controlled
flow (same Reynolds numbers). Injecting fluid entirely eliminates recirculation within the
wake of the cylinder, thus minimizing dissipation. The optimization problem was solved on
256 processors of the Cray T3E-900 at the Pittsburgh Supercomputing Center.
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Figure 1 illustrates the optimization results for different Reynolds numbers. The
optimal controls eliminate the recirculation region within the cylinder wake. This is
achieved by injecting fluid on the downstream portion of the cylinder. We observe
a tenfold relative reduction of the dissipation functional (which is proportional to
drag on the cylinder).

Table 1 shows results for 32, 64, and 128 processors of a Cray T3E-900 for
a roughly doubling of problem size. We compare QN-RSQP (exact solves), with
LNKS (exact solves) and IN-LNKS (inexact solves). Continuation was used for the

Table 1. Scalability of QN-RSQP and LNKS algorithms for solution of the optimal flow
control problem on 32, 64, and 128 processors of the Cray T3E-900. Results correspond to a
roughly doubling of problem size for each doubling of number of processors.QN-RSQP is
quasi-Newton reduced-space SQP; inLNKS we terminate the KKT Krylov iterations when
the Euclidean norm of residual is less than0:9�10

�7 ; in IN-LNKS we use a inexact Newton
method on the KKT conditions;N or QN iter is the number of Newton or quasi-Newton
steps;KKT iter is the number of inner iterations averaged across the outer iterations;time is
wall-clock time in hours. Continuation was used for Re=60.

Re = 30

states
controls

method N or QN iter KKT iter time

117,048 QN-RSQP 161 — 32.1
2,925 LNKS 6 1,367 5,7

(32 procs) IN-LNKS 11 163 1.4
389,440 QN-RSQP 189 — 46.3
6,549 LNKS 6 2,153 15.7

(64 procs) IN-LNKS 13 238 3.8
615,981 QN-RSQP 204 — 53.1
8,901 LNKS 6 3,583 16.8

(128 procs) IN-LNKS 12 379 4.1

Re = 60

states
controls

preconditioning Newton iter average KKT iter time (hours)

117,048 QN-RSQP 168 — 33.4
2,925 LNKS 7 1,391 6,8

(32 procs) IN-LNKS 11 169 1.5
389,440 QN-RSQP 194 — 49.1
6,549 LNKS 7 2,228 18.9

(64 procs) IN-LNKS 15 256 4.8
615,981 QN-RSQP 211 — 57.3
8,901 LNKS 8 3,610 13.5

(128 procs) IN-LNKS 16 383 5.1



18 George Biros, Omar Ghattas

initial guess at Re 60 by using the solution from Re 30 as the initial guess. The
reduced Hessian preconditioner is a BFGS approximation, initialized using several
iterations of a 2-step stationary iterative method [6]. For this problem, QN-RSQP
successfully converged but only after a significant amount of time.2 LNKS does
much better—4 to 5 times faster than QN-RSQP. The most notable finding in Table
1 is the dramatic acceleration of LNKS that is achieved by allowing inexactness (IN-
LNKS). The inexactness did not interfere at any point with the merit function and
in all cases we observed quadratic convergence. For both Re 30 and 60, IN-LNKS
converges over an order of magnitude more quickly than QN-RSQP.

In Table 2 we compare LNKS with the inexact version of the QN-RSQP method.
In these numerical tests we have chosen Reynolds numbers in which the steady state
model of the flow is not correct physically (i.e. a steady state does not exist for this
value of Re). This was done to increase the nonlinearity of the problem, to stress the
globalizations used in LNKS. BFGS is chosen as the quasi-Newton update in both
the QN-RSQP method and the QN-RSQP preconditioner for LNKS.

The effect of inexact computations is examined in Table 2. As can be seen from
the iterations column (N or QN itr ), the number of outer iterations depends very
mildly on the nonlinearity of the problem. In the fourth column (ls failed) we mea-
sure the success of the line search algorithms. Its meaning is overloaded; for the
IN-QN-RSQP method it indicates how many times the penalty parameter increased
to greater than twice that of the maximum penalty parameter encountered in the
exact QN-RSQP solves; for the LNKS methods it indicates failures of the merit
function line search. If the latter happens we switch to a line search on the KKT
residual. The fifth column (KKT failed ) indicates the number of times that this ap-
proach failed (and as a result we had to backtrack the outer iteration and switch to
a quasi-Newton step). For this numerical experiment we observe that the number of
excessive penalty parameter increments within the inexact QN-RSQP is relatively
small. Overall the inexact methods are decidedly faster than exact versions, as shown
in the last column, which gives CPU timings.

For the LNKS methods we see that for exact solves switching to a line search
on the KKT residual does not help (in fact it slows down the algorithm). On the
contrary, for inexact solves this approach helps, and the relatively expensive quasi-
Newton steps are usually avoided.

6 Conclusions

We presented the basic algorithmic components of the LNKS method, and consid-
ered inexact variants that speed up the method without compromising convergence.
We considered an application to the optimal control of a viscous flow around a cylin-
der by boundary suction/injection. Our tests illustrate that LNKS is a robust and
scalable algorithm for PDE-constrained optimization. It exhibits the well-known

2 Here we used thel1 merit function with second order correction line search. In past ex-
periments we used standardl1 and after 48 hours QN-RSQP was terminated with just two
orders of magnitude reduction in the reduced gradient.
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Table 2. Results for three different Reynolds numbers for the 117,048 states problem on
32 processors. Exact and inexact variants of both QN-RSQP and LNKS algorithms are pre-
sented.QN-RSQP is quasi-Newton reduced-space SQP;IN-QN-RSQP is the inexact QN-
RSQP method; inLNKS we terminate the KKT Krylov iterations when the Euclidean norm
of residual is less than0:9 � 10

�7; in IN-LNKS we use an inexact Newton method for the
KKT conditions;itr is the number of Newton (or quasi-Newton) steps; for IN-QN-RSQP,ls
failed indicates the number of excessive increases of the merit function penalty parameter��;
for the two LNKS methods, it indicates the number of unsuccessful augmented Lagrangian
line search attempts;KKT failed indicates the number of iterations in which the KKT steps
had to be rejected;time is wall-clock time in hours on the T3E-900. In this example we did
not employ continuation.

Reynolds method N or QN itr ls failed KKT failed time
90 QN-RSQP 181 - - 35.4

IN-QN-RSQP 184 5 - 22.1
LNKS 9 1 1 7.2

IN-LNKS 14 4 0 1.5
120 QN-RSQP 185 - - 36.1

IN-QN-RSQP 192 5 - 23.2
LNKS 10 2 2 8.1

IN-LNKS 15 6 1 2.3
150 QN-RSQP 184 - - 36.3

IN-QN-RSQP 194 6 - 25.1
LNKS 11 2 2 8.6

IN-LNKS 15 6 2 2.9
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mesh-independence convergence properties of Newton methods, which combined
with the inner Krylov-Schur iteration results in a very fast method. Often, the op-
timal solution is found in a small multiple of the cost of a single forward problem
solve.

Inexactness is introduced into the LNKS method through inexact Lagrange-
Newton solves within continuation loops, early termination of Krylov-Schur iter-
ations to compute the Newton direction, and a BFGS approximation of the reduced
Hessian based on inexact state Jacobian solves (used both as a reduced space pre-
conditioner within the KKT solves as well as within the QN-RSQP globalization).
The numerical experiments on the effects of inexactness are of limited scope, yet
give an indication of effectiveness of inexact computations in reducing wall-clock
time while retaining robustness. Typically, introducing inexactness into LNKS led
to a factor of 3 to 4 reduction in cost relative to exact LNKS. Moreover, the aug-
mented Lagrangian globalization we tested performed robustly and we did not have
convergence problems for the (highly) nonlinear problem of separated flow around
a cylinder. The results reveal at least an order of magnitude improvement in time
over conventional quasi-Newton methods, rendering tractable some problems that
otherwise would have required unacceptable amounts of parallel supercomputing
time.
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