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The inverse problem: Determining cause from effect

Integrating data and models to infer uncertain parameters is an
inverse problem (also called data assimilation, history-matching,
parameter estimation, model calibration, system identification, etc.)
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parameter estimation, model calibration, system identification, etc.)

Applications across a broad spectrum of natural and engineered
systems (seismic inversion, medical imaging, weather forecasting,
non-destructive testing, inverse scattering, reservoir parameter
estimation, remote sensing, source localization, ...)

Some key milestones in regularization-based inversion

1920s: Hadamard lays down theoretical foundations for ill-posed
problems
1950s-60s: Marchuk introduces idea of adjoint method
1960s-70s: Tikhonov’s work on regularization provides a systematic
means for computing inverse solutions
2000s: Advent of terascale supercomputers and advanced algorithms
permits solution of some large-scale regularized inverse problems
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The inverse problem: Determining cause from effect

Integrating data and models to infer uncertain parameters is an
inverse problem (also called data assimilation, history-matching,
parameter estimation, model calibration, system identification, etc.)

Applications across a broad spectrum of natural and engineered
systems (seismic inversion, medical imaging, weather forecasting,
non-destructive testing, inverse scattering, reservoir parameter
estimation, remote sensing, source localization, ...)

Some key milestones in Bayesian inversion

1763: Bayes’ theorem
Metropolis (1953) and Hastings (1970) lay groundwork for Markov
chain Monte Carlo Method, providing a method for computing
solutions to Bayesian inverse problems
2010s: Advent of petascale supercomputers and advanced algorithms
permits solution of some large-scale Bayesian inverse problems
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Ocean dynamics example: Observational data
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Ocean dynamics example: Model

Navier-Stokes equations

Conservation of mass

Conservation of momentum

Conservation of energy

Conservation of salinity

Equation of state

Subgrid parameterizations TACC Stampede supercomputer
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Ocean dynamics example: Uncertain parameters

2D and 3D parameter fields

3D initial temperature and salinity
fields

2D time-varying atmospheric state at
ocean–atmosphere interface

surface air temperature
specific humidity
downwelling shortwave radiation
zonal and meridional wind speed

3D subgrid model parameter fields

vertical mixing coefficient
GM coefficient (geostrophic eddy
mixing)
Redi coefficient (along-isypycnal
mixing)

Courtesy Patrick Heimbach, ICES/GEO
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Anatomy of an inverse problem

Input parameters, computational
model, and output observables

The forward problem

Given model parameters m, solve forward
model F to yield output observables d

F(m) −→ d

Well-posed: solution exists, is unique, and
is stable to perturbations in inputs

Causal: later-time solutions depend only on
earlier time solutions

Local: the forward operator includes
derivatives that couple nearby solutions in
space and time
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Anatomy of an inverse problem

Input parameters, computational
model, and output observables

The inverse problem

Given output observations dobs and forward
model F, infer model parameters m

m←− F−1dobs

Ill-posed: observations are usually sparse;
many different parameter values may be
consistent with the data

Non-causal: the inverse operator couples
earlier time solutions with later time ones

Global: the inverse operator couples
solution values across all of space and time
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Anatomy of an inverse problem

Input parameters, computational
model, and output observables

Occam’s approach to ill-posedness

Employ regularization to penalize unwanted
solution features, guarantee unique solution:

min
m

1
2 ‖F(m)− dobs ‖2W +α

2 ‖m−mref ‖2R

Bayesian approach to ill-posedness

Describe probability of all models that are
consistent with the data and any prior knowledge
of the parameters:

π(m|dobs) ∝

exp
(
− 1

2 ‖F(m)−dobs ‖2C−1
d

− 1
2 ‖m−mpr ‖2C−1

m

)
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Ill-posedness demonstration: Image deblurring/denoising

F−−→
forward model F: blurring (convolution with a Gaussian)

model parameters m: unknown left image

observations dobs: blurred and noisy right image
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Ill-posedness demonstration: Image deblurring/denoising

min
1
2‖Fm−dobs‖2+

α
2 ‖m‖

2

←−−−−−−−−−−−−−−−−
forward model F: blurring (convolution with a Gaussian)

model parameters m: unknown left image

observations dobs: blurred and noisy right image

regularization: Tikhonov

O. Ghattas (UT-Austin) Introduction to Inverse Problems August 26, 2015 7 / 17



Ill-posedness demonstration: Image deblurring/denoising

min
1
2‖Fm−dobs‖2+

α
2 ‖m‖

2

←−−−−−−−−−−−−−−−−
forward model F: blurring (convolution with a Gaussian)

model parameters m: unknown left image

observations dobs: blurred and noisy right image

regularization: Tikhonov

O. Ghattas (UT-Austin) Introduction to Inverse Problems August 26, 2015 7 / 17



Ill-posedness demonstration: Image deblurring/denoising

min
1
2‖Fm−dobs‖2+

α
2

∫
(∇m·∇m)0.5

←−−−−−−−−−−−−−−−−−−−−−

forward model F: blurring (convolution with a Gaussian)

model parameters m: unknown left image

observations dobs: blurred and noisy right image

regularization: total variation

O. Ghattas (UT-Austin) Introduction to Inverse Problems August 26, 2015 7 / 17



Ill-posedness demonstration: Image deblurring/denoising

min
1
2‖Fm−dobs‖2+

α
2

∫
(∇m·∇m)0.5

←−−−−−−−−−−−−−−−−−−−−−

forward model F: blurring (convolution with a Gaussian)

model parameters m: unknown left image

observations dobs: blurred and noisy right image

regularization: total variation

O. Ghattas (UT-Austin) Introduction to Inverse Problems August 26, 2015 7 / 17



Example: Inverse problem for Antarctic ice sheet

Ice flows from interior of polar ice sheets to ocean is primary
contributor to sea level rise (200 billion tons/yr currently)

Flow rates of outlet glaciers in Antarctica have been increasing over
past several decades

Thinning of ice shelves due to increased mixing in ocean driven by
intensification of polar winds, bringing warmer water to surface;

Ice shelf thinning leads to loss of buttressing effect and retreat of ice
sheet

0.5 m sea level rise by 2070 estimated to jeopardize 136 largest port
cities, with 150M inhabitants and $35 trillion in assets

We need to develop predictive models, with quantified uncertainties,
to better anticipate future sea level rise
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Motivation, cont.

Recent evidence suggests that sea level rose abruptly at the end of
the last interglacial (∼118 kyr ago) by ∼5-6m; the likely cause is
catastrophic collapse of polar ice sheets

Ice sheet collapse following a prolonged period of stable sea level
during the last interglacial, MJ O’Leary, PJ Hearty, WG Thompson,
ME Raymo, JX Mitrovica, JM Webster, Nature Geoscience, 6,
796800, 2013.

Recent work indicates that retreat of the Amundsen Sea Embayment
(a portion of the West Antarctic ice sheet) is accelerating with no
major bed obstacles to prevent draw down of the entire basin.

Widespread, rapid grounding line retreat of Pine Island, Thwaites,
Smith and Kohler glaciers, West Antarctica from 1992 to 2011, E.
Rignot, J. Mouginot, M. Morlighem, H. Seroussi, and B. Scheuchl,
Geophysical Research Letters, 41(10):3502–3509, 2014.
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Dynamics of the Antarctic ice sheet and sea level rise
Glaciers flow thousands of miles from the continent’s deep interior to its coast

Credit: NASA Goddard Space Flight Center/JPL-Caltech
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“Full Stokes” ice sheet model

Balance of linear momentum, mass, and energy

−∇ · [η(θ,u) ε̇− Ip] = ρg [ε̇ = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρc

(
∂θ

∂t
+ u ·∇θ

)
−∇ · (K∇θ) = 2 η tr(ε̇2)

Constitutive relation

η(θ,u) =

{
A0 exp

(
− Q

Rθ

)}− 1
n

ε̇
1−n
2n

II [ε̇II = 1
2 tr(ε̇2)]

Boundary conditions

θ|ΓFS
= θFS

Dz

Dt
|ΓFS

= a σn|ΓFS
= 0

K∇θ · n|ΓB
= qB u · n|ΓB

= 0 (I − n⊗ n) (σn+ βu) |ΓB
= 0
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∇ · u = 0
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(
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∂t
+ u ·∇θ
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Boundary conditions dynamic free surface
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“Full Stokes” ice sheet model

Balance of linear momentum, mass, and energy

−∇ · [η(θ,u) ε̇− Ip] = ρg [ε̇ = 1
2 (∇u+ ∇uT )]

∇ · u = 0

ρc

(
∂θ

∂t
+ u ·∇θ

)
−∇ · (K∇θ) = 2 η tr(ε̇2)

Constitutive relation

η(θ,u) =

{
A0 exp

(
− Q

Rθ

)}− 1
n

ε̇
1−n
2n

II [ε̇II = 1
2 tr(ε̇2)]

Boundary conditions basal sliding coefficient

θ|ΓFS
= θFS

Dz

Dt
|ΓFS

= a σn|ΓFS
= 0

K∇θ · n|ΓB
= qB u · n|ΓB
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Regularization approach to ice sheet inverse problem

Minimize regularized data misfit

min
β

J(β) :=
1

2

∫
Γt

(Bu(β)− dobs)2 ds+
α

2

∫
Γb

∇Γβ · ∇Γβ ds

where u and p satisfy the forward (nonlinear) Stokes equations

∇ · u = 0 in Ω

−∇ · [η(u)(∇u+ ∇uT )− Ip] = ρg in Ω

σun = 0 on Γt

u · n = 0, (σun)Γ + exp(β)uΓ = 0 on Γb

u: velocity, β: log basal sliding coefficient field

dobs: observed surface velocity, α: regularization parameter

B: observation operator,

Γ: indicates surface tangential component or surface operator

O. Ghattas (UT-Austin) Introduction to Inverse Problems August 26, 2015 12 / 17



Antarctic ice sheet inversion for basal sliding field:
Synthetic data

Left: Synthetic surface velocity observations
Right: “Truth” basal sliding field
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Antarctic ice sheet inversion for basal sliding field:
Synthetic data

Left: Reconstructed surface velocity field
Right: Inferred basal sliding field
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Left: InSAR-based Antarctica ice surface velocity observations
Right: Inferred basal sliding field
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Left: Reconstructed ice surface velocity field
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

InSAR-based Antarctica ice surface velocity observations
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Reconstructed ice surface velocity field
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Antarctic ice sheet inversion for basal sliding field:
InSAR data

Error in velocity observations
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Bayesian approach to inverse problem:
Standard deviation of basal friction

Posterior standard deviation
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