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Abstract. Hyperthermia based cancer treatments are used to increase
the susceptibility of cancerous tissue to subsequent radiation or
chemotherapy treatments, and in the case in which a tumor exists as
a well-defined region, higher intensity heat sources may be used to ab-
late the tissue. Utilizing the guidance of real-time treatment data while
applying a laser heat source has the potential to provide unprecedented
control over the outcome of the treatment process [6,12]. The goals of this
work are to provide a working snapshot of the current system architec-
ture developed to provide a real-time finite element solution of the prob-
lems of calibration, optimal heat source control, and goal-oriented error
estimation applied the equations of bioheat transfer and demonstrate
that current finite element technology, parallel computer architecture,
peer-to-peer data transfer infrastructure, and thermal imaging modali-
ties are capable of inducing a precise computer controlled temperature
field within the biological domain.

1 Introduction

Thermal therapies delivered under various treatment modalities permit a mini-
mally invasive and effective cancer treatment that eradicates the disease, main-
tains functionality of infected organs, and minimizes complications and relapse.
The physical basis for thermal therapies is that exposing cells to temperatures
outside their natural environment for certain periods of time can damage and
even destroy the cells. However, one of the limiting factors in all forms of ther-
mal therapies, including cryotherapy, microwave, radio-frequency, ultrasound,
and laser, is the ability to control the energy deposition to prevent damage to
adjacent healthy tissue [13].
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Fig. 1. Schematic of the peer to peer communication ar-
chitecture used to control the laser treatment process.
Feedback control is achieved through the continual inter-
action of the data, compute, and visualization modules.

Current imaging
technology allows the
imaging of the geom-
etry of tissue and an
overlaying temperature
field using MRI and
MRTI (MR Tempera-
ture Imaging) technol-
ogy. MRTI has the the
ability to provide fast,
quantitative temperat-
ure imaging in a vari-
ety of tissues, and the
capability of providing
biologically relevant in-
formation regarding the
extent of injury imme-
diately following a ther-
mal therapy [4]. Image
guidance [12,15] has the
potential to facilitate
unprecedented control
over bioheat transfer by providing real time treatment monitoring through tem-
perature feedback during treatment delivery. A similar idea using ultrasound
guided cryotherapy has been studied and shows good results [13].

The ultimate goal of this work is to deliver a computational model of bio-
heat transfer that employs real-time, patient specific data and provides real-
time high fidelity predictions to be used concomitantly by the surgeon in the
laser treatment process. The model employs an adaptive hp-finite element ap-
proximation of the nonlinear parabolic Pennes equation and uses adjoint-based
algorithms for inverse analysis, model calibration, and adaptive control of cell
damage. The target diseases of this research are localized adenocarcinomas of
the breast, prostate, cerebrum, and other tissues in which a well-defined tumor
may form. The algorithms developed also provide a potentially viable option to
treat other parts of the anatomy in patients with more advanced and aggressive
forms of cancer who have reached their limit of radiation and chemotherapy
treatment.

2 Software Architecture

A schematic of the software architecture embedded in the control loop is shown
in Figure 1. Figure 2 illustrates the main software modules and communication
methods between software modules. Multiple client-server applications utilizing
a remote procedure calling protocol connect the actual laboratory at M.D. An-
derson Cancer Center in Houston, TX to the computing and visualization center
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in Austin, TX. Prior to treatment, the LBIE Mesher1 uses MRI data to gener-
ate a finite element mesh of the patient-specific biological domain. Goal-oriented

Fig. 2. Three Tier Cyber-software architecture. Compu-
tation, data transfer, and visualization are done on the
backend compute nodes. A middle tier of XMLRPC con-
nections connects the backend to the visualization clients
in both Austin & Houston.

estimation and adap-
tion is used to optimize
the mesh to a partic-
ular quantity of inter-
est [9]. The tool then
proceeds to solve an
optimal control problem,
wherein the laser para-
meters (location of op-
tical fiber, laser power,
etc.) are controlled to
eliminate/sensitize can-
cer cells, minimize dam-
age to healthy cells, and
control Heat Shock Pro-
tein (HSP) expression.
Upon initiation of the
treatment process, the
compute server employs
real-time MRI data to
co-register the computa-

tional domain and MRTI data is used to calibrate the bioheat transfer model to
the biological tissue values of the patient. As the data server, in Houston, deliv-
ers new data intermittently to the client, in Austin, computation is compared to
the measurements of the real-time treatment and an appropriate course of ac-
tion is chosen according to the differences seen. A parallel computing paradigm
built from the Petsc [2] software infrastructure is used to meet the demands
of rapid calibration and adapting the computational mesh and models to con-
trol approximation and modeling error. Volume Rover1 [1] is used to achieve

Fig. 3. Selected Slices of Canine MRI Brain Data, used for mesh generation. MRTI
thermal data and Iso-surface visualization of Canine MRI Brain Data illustrate the
location of heating [8].
1 Software available at: http://cvcweb.ices.utexas.edu/cvc
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efficient visualization of the volumetric MRI and thermal MRTI images simulta-
neously with the finite element prediction. From a computational point of view,
the orchestration of a successful laser treatment is to solve the problems of co-
registration, calibration, optimal control, and mesh refinement invisibly to the
surgeon, and merely provide the surgeon with an interface to the optimal laser
parameters and visualization of the computational prediction of the treatment
treatment.

3 Image Segmentation, Meshing, and MRTI-Registration

Figure 4 shows a quality hexahedral mesh obtained for finite element simulations
from a set of MRI data (256x256x34 voxels) of a canine brain, Figure 3. The

(a) (b)

(c) (d)

Fig. 4. Canine brain data. (a) Segmentation of the
canine brain boundaries from the transverse 34-slice
stack of 256x256 MRI data. A single slice is shown in
gray-scale intensities, with the segmented boundary in
red. (b) stack of 2D contours obtained from segmen-
tation. (c) 8820 hexahedral mesh elements, Jacobian
quality > .05. (d) combined volume visualization of the
256x256x32 MRI data of a canine head, with the em-
bedded subset of hexahedral finite element mesh of the
segmented canine brain.

field view of the MRI im-
ages was 200mm x 200mm
with each image spaced
1mm apart. First, the im-
age processing techniques,
available in Volume
Rover [1], were used to
improve the quality of
imaging data. Contrast
enhancing techniques im-
proved the contrast and
anisotropic and bilateral
diffusion [3] removed noise.
Two dimensional segmen-
tation was performed via a
manual tracing of bound-
aries on each image slice,
and the stack of con-
tours tiled to form an
initial water-tight triangu-
lated surface. Three di-
mensional segmentation [1]
could not be used be-
cause of the anisotropy
in the imaging data. Af-
ter the geometric model
was obtained, geometric
flow smoothed the geomet-
ric model and a geometric
volumetric map using the signed distance function method was created. The
hexahedral mesh was generated using an octree-based isocontouring method.
Geometric flow [17], pillowing [7] and the optimization method were used to
improve the mesh quality. The constructed hexahedral mesh has two important
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properties: good aspect ratios and there is at most one face lying on the boundary
for each element.

The day of treatment, a FFT-based technique is used to register the finite el-
ement mesh to the current position of the patient. The registration software has
been rigorously tested against a suite of validation experiments using phantom
materials. The phantom materials are fabricated with two materials of contrast-
ing image density in which an inner smaller object is placed asymmetrically
within the larger object. The materials are composed of 2 % agar gel and at
least three 2 mm nylon beads are introduced as fiducials. The suite of data
consists of several 3D images of incremental translational and rotational rigid
body motions of the phantom material as well as images of incremental defor-
mation of the phantom material. The data is provided for the image registration
community from the DDDAS project webpage2.

The final image processing step is to overlay the MRTI thermal data onto the
finite element mesh. A median and Deriche filter are used to remove the inherent
noise from the MRTI data, Figure 5. The filtered MRTI data is interpolated onto
the finite element solution space. The order of interpolation is determined by the
order of the mesh.

4 Calibration, Optimal Control, and Error Estimation

Pennes model [10] has been shown [5,16,14] to provide very accurate predic-
tion of bioheat transfer and is used as the basis of the finite element prediction.
The control paradigm involves three major problems: calibration of the Pennes
bioheat transfer model to patient specific MRTI data, optimal positioning and
power supply of the laser heat source, and computing goal oriented error es-
timates. During the laser treatment process, all three problems are solved in
tandem by separate groups of processors communicating amongst each other as
needed. The variational form of the governing Pennes bioheat transfer model is
as follows:

Given a set of model, β, and laser, η, parameters,

Find u(x, t) ∈ V ≡ H1 (
[0, T ], H1(Ω)

)
s.t.

B(u, β; v) = F (η; v) ∀v ∈ V

where the explicit functional dependence on the model parameters, β, and laser
parameters, η = (P (t),x0), are expressed as follows

B(u, β; v) =
∫ T

0

∫

Ω

[
ρcp

∂u

∂t
v + k(u, β)∇u · ∇v + ω(u, β)cblood(u − ua) v

]
dxdt

+
∫ T

0

∫

∂ΩC

hu v dAdt +
∫

Ω

u(x, 0) v(x, 0) dx

2 Project Website: dddas.ices.utexas.edu
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F (η; v) =
∫ T

0

∫

Ω

3P (t)μaμtr
exp(−μeff‖x − x0‖)

4π‖x − x0‖
v dxdt

+
∫ T

0

∫

∂ΩC

hu∞ v dAdt −
∫ T

0

∫

∂ΩN

G v dAdt +
∫

Ω

u0 v(x, 0) dx

μtr = μa + μs(1 − γ) μeff =
√

3μaμtr

Here k
[

J
s·m·K

]
and ω

[
kg

s m3

]
are bounded functions of u, cp and cblood are

the specific heats, ua the arterial temperature, ρ is the density, and h is the
coefficient of cooling. P is the laser power, μa, μs are laser coefficients related
to laser wavelength and give probability of absorption of photons by tissue, γ is
the anisotropy factor, and x0 is the position of laser photon source. Constitutive
model data and details of the optimization process are given in [8,11].

5 Data Transfer, Visualization, and Current Results

Conventional data transfer methods and software rendering visualization tools
pose a major bottleneck in developing a laser treatment paradigm in which high
performance computers control the bioheat data transferred from a remote site.
The data transfer problem is addressed through the use of client-server appli-
cations that use a remote procedure calling protocol to transfer data directly
between physical memory instead of incurring the overhead of a writing to disk
and transferring data. Volume Rover [1] is able to achieve high performance inter-
active visualization through the use of modern programmable graphics hardware
to provide combined geometry and volume rendering displays, Figure 4. Software
rendering is limited by the memory and processor.

Computational time used to advance the Pennes model equations forward in
time is not a bottleneck. Computations are done at the Texas Advanced Com-
puting Center on a Dual-Core Linux Cluster. Each node of the cluster contains
two Xeon Intel Duo-Core 64-bit processors (4 cores in all) on a single board,
as an SMP unit. The core frequency is 2.66GHz and supports 4 floating-point
operations per clock period. Each node contains 8GB of memory. The average
execution times of a representative 10 second simulation is approximately 1 sec-
ond, meaning that in a real time 10 second span Pennes model can predict out
to more than a minute. Equivalently, in a 10 second time span, roughly 10 cor-
rections can be made to calibrate the model coefficients or optimize the laser
parameters.

The typical time duration of a laser treatment is about five minutes. Dur-
ing a five minute span, one set of MRTI data is acquired every 6 seconds. The
size of each set of MRTI data is ≈330kB (256x256x5 voxels). Computations
comparing the predictions of Pennes model to experimental MRTI taken from
a canine brain show very good agreement, Figure 5. A manual craniotomy of
a canine skull was preformed to allow insertion of an interstitial laser fiber.
A finite element mesh of the biological domain generated from the MRI data
is shown in Figure 4. The mesh consists of 8820 linear elements with a total of
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(a) (b) (c)

Fig. 5. (a) Contours of Pennes model prediction overlayed onto the finite element mesh.
(b),(c) Simultaneous cutline comparison of Pennes model prediction, Filtered MRTI
data, and Unfiltered MRTI data. Cutline taken through laser source.

9872 degrees of freedom. MRTI thermal imaging data was acquired in the form
of five two dimensional 256x256 pixel images every six seconds for 120 time
steps. The spacing between images was 3.5mm. The MRTI data was filtered
then projected onto the finite element mesh. Figure 5 shows a cutline comparison
between the MRTI data and the predictions of Pennes model. It is observed that
the results delivered by the computational Pennes model slightly over diffuses
the heat profile peaks compared to measured values. However, at early times the
maximum temperature value is within 5% of the MRTI value.

6 Conclusions

Results indicate that reliable finite element model simulations of hyperthermia
treatments can be computed, visualized, and provide feedback in the same time
span that the actual therapy takes place. Combining these prediction capabilities
with an understanding of HSP kinetics and damage mechanisms at the cellular
and tissue levels due to thermal stress will provide a powerful methodology
for planning and optimizing the delivery of hyperthermia therapy for cancer
treatments.

The entire closed control loop in currently being tested on agar and ex-vivo tis-
sue samples in preparation for the first real time computer guided laser therapy,
which is anticipated within the upcoming year. The culmination of adaptive
hp-finite element technology implemented on parallel computer architectures,
modern data transfer and visualization infrastructure, thermal imaging modal-
ities, and cellular damage mechanisms to provide cancer treatment tool will be
a significant achievement in the field of computational science.
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