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A POSTERIORI ERROR ESTIMATION

.J.T.ODEN

No matter how sophisticated or how appropriate a ma.thematica] mode]
can be for characterizing certain physical phenomena of interest, all com-
putationa] results obtained using it will be in error. Fundamentally, the
discretization process of transforming a mode] characterized by partial dif-
ferentia] or integra] equations into one manageable by digital devices natu-
rally loses information, the result being that the numerical approximations
differ from thmie of continuum models. This approximation error can be
enormous; it can completely invalidate numerical predications; it is often
perv-,1Siveand difficult to detect or evaluate by intuitive or heuristic means.
Over the last two decades, mathematical theories and computational proce-
dures have been under development for estimating approximation error in
numerical solutions of boundary - and initial - value problems in mechanics.
The genera] subject is referred to as a posteriori error estimation; basically,
it involves post-processing numerical solutions in such a way that important
and useful information can be obtained OIl the aetnal error present in the nu-
merical solutions themselves. This information can manifest itself in severa]
forms; typically, as rigorous upper and lower bounds on the approximation
error measured in appropriate norms, but also as quantitative estimates of
actual local features of the error in principal quantities of interest, such as
stresses, strains, displacements, fluxes, natura] frequeneies, etc. C]early, if
the error can be estimated, then it should be possible to enhance the ap-
proximation so as to reduce the error; i. e. error estimation makes feasible
error control. This fact is at the heart of adaptive computational methods,
those which allow modification of the mesh, the order of the approximation,
time steps, or other features of numerical algorithms so as to reduce and
control numerical error.

In a typical computational situation, the approximation error is a function
of position x and time t and is defined simply as,

e = U - Uh

where u is the exact solution of the equations, inequalities, boundary - and
initial - conditions characterizing the mathematical model of the phenomena
of interest and Uh is the numerical approximation of U obtained, for example,
by finite element, finite difference, or boundary element approximations of
the model. Obviously, for models involving systems of equations and many
dependent variables, e can be a vector - or tellsor - valued function.
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In most. engineering applications, we are not only interested in assessing
the magnitude of Ilell of the error ill some appropriate norm, but also the
error in some specific, real-valued quantity of interest Q that depends on
the solution u. Thus, we wish to estimate the error

£ = Q(u) - Q(Uh).
The quantity Q(u) may be a "local" feature of u, such as the value of u at
a point Xo in the domain of u, Q(u) = u(xo) or the value of the stress a(u)
in the direction II on a material surface with unit normal n,

Q(u) = II O'(u) . n
or the average stress in the direction v over a material interface of area w:

Q(u) = I~ILv,O'(u).ndS

etc. Importantly, the analyst may specify a list of quantities of interest Q;
then the goal of methods of a posteriori error estimation is to assess the
error Q(u) - Q(Uh) or to obtain upper and lower bounds,'71ow and 1)upp,on
this error:

1JIo\\'~ Q(u) - Q(Uh) ~ 1)upp·
The function Q(u) may be a linear or nonlinear function of u. If Q is a
linear functional, then

Q(u) - Q(Uh) = Q(e) or Q(u) = Q(e) + Q(Uh)'
Of course, the exact solution U is, in general, unknown and impossible to
compute, but if Q(e) can be well approximated, the actual value of Q(u)
can also be approximated. The error bounds 1)lowand 1]uppare computed
using the numerical approximation Uh.
It is also emphasized that the validity of results producible by a mathe-

matical model can only be measured to within some arbitrary preset toler-
ance provided by the analyst. Thus, the model has been solved "correctly"
(i.e., the goal of verification has been reached) when

IQ(u) - Q(uh)1 ~ 'Ytol'

Notice that if the error £ is, in fact, estimated by computable bounds 1}lo\\"
1)uppgenerated through post-processing Uh, then

1 1
£ ~ '21J1ow+ '21)upp='7 and Q(u) ~ Q(Uh) + 1).

1. GLOBAL ESTI~1ATES

Let us first review the idea of obtaining so-called global estimates of nu-
merical error. Global methods have dominated the literature on this subject
for nearly two decades and can be obtained through straightforward, well-
known, efficient, post-processing procedures, Presuming, for sirnplieity, that
the domains of U and Uh coincide, the classical goal of methods of a poste-
riori error estimation is t.o obtain a number 'T/, the global error estimate of
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e, which provides bounds on e in certain meaningful norms II . II. Thus, one
uses to compute a number "I, which approximates or bounds Ilell. A major
requirement of any successful error estimator TJ is that positive constants G1

and G2 exist such that

Giliell ~TJ ~ G211ell·
Then, when Ilell is small, we are confident that "I is also small, provided G2
is not too large. Conversely, when "I is small, we know that lIell is small,
provided Gl is not too small. The quantity

_ "IO-W
is referred to as an effectivity index. Obviously, 0 is a measure of the quality
of the estimator TJ: when 0 = 1, TJ is close to Ilell. Of course, lIell is seldom
known, so that it is customary to eompute for special benchmark problems
where e or u is kIlown or can be accurately approximated. Then, the ro-
bustness and accuracy of various estimators can be experimentally assessed.
Barring such experiments, the quality of all estimator can also be assessed
theoretically, but then only asymptotically as certain mesh parameters are
refined or as e - O.

The estimate Gdlell ~ "I ~ G211ell is a global error estimatc, meaning that
the total error over the entire eomputational domain is measured in the par-
ticular norm appearing in these inequalities. In general, for a computational
mesh containing N cells (elements), cellwise (elementwise) error indicators
TJK are computed using restrictions of the approximate solution Uh to each
cell K. Then the global estimator is given by

{

N }1/2
"I = I>k

K=1

The local (or elementwise) effectivity index is then

'1K
OK = IlelIK'

IlellK being the norm of functions restricted to cell K. It should be under-
stood that the element indicators TJK for an element K do not represent the
local error in this element. All that ean be said is that TJK is the contribution
from element K to the global error estimate TJ.

Indeed, the actual local error lIell K in element K is "polluted" by errors
in elements remote from K. Thus, local refinements of an c1emcnt in a mesh
can only reduce error to a certain thre..<;hold;the pollution of the error from
remote sources can only be controlled by appropriate mesh refinements or
enrichments relevant to those remote sources. Despite the existence of pol-
lution effects, the quant.ities "IK are nevertheless frequently used effectively
as a basis for mesh adaptivity procedures for controlling and reducing the
global error.
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There are several distinct methods for computing the element error indi-
cators 11K. We mention two broad classes;

(1) Residual t-,'{ethods
(2) Recovery Methods,

For an abstract problem, Au = f (plus boundary and initial conditions),
A being a linear operator and f the source data, we observe that since
U = Uh + e, the error satisfies the equation Ae = R, where R is the resid-
ual; R = f - AUh. Thus, the residual defines the degree with which the
approximate solution Uh fails to satisfy t.he equations, boundary - and initial
- conditions of the original problem. Residual methods of error estimation
are based on the idea of determining efficient (and sometimes rough) ap-
proximate solutions to Ae = R. In the same spirit as explicit and implicit
methods for numerically solving ordinary differential equations, residual er-
ror estimation methods can be explicit or implicit. The explicit methods
produce estimators 17K by function evaluations and substitutions, they do
not involve the solution of linear systems of equations, while implicit meth-
ods involve the solution of local equations over K for local error indieators.

For example, in a linear elliptic boundary-value problem solved by finite
elements, the equation Ae = R takes on as a "weak" form for element K,

for arbitrary test functions v, aK(-,') being the local bilinear form charac-
terizing the problem over element K, WK is the local error estimator, and
rKC) is the functional produced by the residual restricted to element K.
It is argued that the solutions 1/JK of these local problems exist and satisfy
bounds of the type

where C is a positive const.ant, possibly dependent on mesh size hk and
IrKI is an appropriate norm of the local residual. In an explicit error esti-
mator, the easily computable quantity IrK I can be obtained directly from
calculations ofrK and one sets 11K = IrKI as the local indicator. In implicit
estimators, one solves

for 1/JK and sets

Of course, these local equations are rarely solvable exactly, so that instead of
'l/JK one obtains an approximation 'l/J'K generally computed using polynomial
approximat.ions of higher degree than those used to eompute the approxi-
mation Uh itself. To solve the local equations for 1/)7<, it. is often uecessary to
proecss the right- hand side (the rcsid uals) so that they balance; i. e. so that
they are equilibrated. Then, for sufficiently accurate approximations 'l/J7< of
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1/JK, one can sometimes prove that the global error bound

;;

holds wit.h constant C2 = 1.
In general, the explicit residual error estimators can be calculated easily

and efficiently, but they may be useful in only giving trends of error distri-
butions in computational grids and do not furnish quantitative measures of
the error. They produce error indicator8, as opposed to error estimators.
They are well suited for use in adaptive meshing algorithms. The implicit
residual estimators, on the other hand, require more computational effort
but can sometimes yield remarkably accuratc estimates of the global error.

Another type of error estimator is t.hat of the recovery type. In these
approaches, the approximate solution Uh is post-processed to obtain an en-
hanced solution uh that is pre.sumably more accurate than Uh,. Then the
function e* = uh - Uh provides a computable approximation of the error
e ~ e*. In some cases, U;t can be obtained by extrapolation, but more com-
monly, other techniques must be employed. One of the most popular recov-
ery methods is the so-called ZZ Super Convergence Patch Recovery Method
(after ZienkiewiC'.l and Zhu). In this technique, a higher-order polynomial
is fit over nodal values of Uh (or 'i7uh) over a patch of elements surrounding
the element of interest K, and a lea.<;;t-square fit is calculated to determine
an enhanced approximation G ~ 'i7u. Then the L2-norm of G - 'i7uh over K
is used as the local error indicator T}K. The ZZ indicator has the attractive
property that it can be implemented independently of the aetnal operators
characterizing the problem being solved. Thus, it is applicable to nonlinear
problems as well as linear problems.

2. LOCAL ESTIMATES AND ERRORS IN QUANTITIES OF INTEREST

One of the most important developments in a posteriori error estimation
in recent years is the discovery of methods for obtaining estimates of error
in local quantities of interest Q(u) discussed earlier. As noted earlier, these
local quantities could be, for example, averaged stresses or displacements on
surfaces within a structure or material body or mollifieations of pointwise
stresses or displacements. Whatever the desired quantity, the irlea is to
characterize it as a functional on the class of admissible displacements for
which the problem of interest L."l posed. For example, consider the weak form
of a linear elliptic boundary-value problem such as

a(u,v) = (f,V)

for any v in a class V of admissible functions, a(-,·) being the global bilinear
form and (f,.) the data functional. Suppose Q(v) defines a quantity of
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interest, e.g. for the average stress eomponent 0'11 on a surface w.

Q(v) = I~Ii 0'11 (v) ds.

Then, an auxiliary adjoint problem is set up in the form

a(v, w) = Q(v)

for any v in V. The solution w is the influence function for the particular
choiee of Q. We obtain numerical approximations of both the primal and
the adjoint problems and we use the numerical solution Uh of t.he primal
problem and Wh of t.he adjoint problem t.o compute the estimate of t.he error
in Q(Uh):

£ = Q(u) - Q(Uh) ~ (.

The local effectivity index is then

(
eQ = £- ( , 1(1)

01 iTi .
In many of t.he post-processing algorithms used to compute the estimates
(, global error estimates 1] and fJ are computed for the primal and adjoint.
problems, respectively. Thus, the global methods remain useful in a poste-
riori error estimation, even in estimating local errors. However, it is also
clear that estimating Q( u) - Q( Uh) requirf:'~"the solution of two problems,
the primal problem characterized by the model we wish t.o verify and the
adjoint problem that characterizes the quantity of interest Q. Once again,
we emphasize that the original model can never be fully verified for all pos-
sible choices of Q: t.he best that can be done is to compare t.he estimated
error £ ~ ( wit.h some preset toleranee /'tol' If this tolerance is exceeded, one
may resort to adaptive meshing to reduce (or control) t.he error in Q. Such
adaptive schemes built arouncl controlling errors in quantity of interest, as
opposed to global bounds in energy norms, are called GOALS algorithms
after "Goal-Orient.ed Adaptive Local Solutions".

3. THE ROLE OF A POSTERIORI ERROR ESTIMATION IN VERIFICATION

Verificat.ion is the process of assessing whether a model of a physical event
or an engineering system is "solverl" correctly - or, if not, with how accu-
rately it is solved in a particular applicat.ion. A key question that arises when
stating this definition is: what is meant by the term "model",? The answer
lies in the most basic notion of the mission of verification and validation: to
assess the reliability of compllt.er-ba ..<;edsimulations and predictions of phys-
ical events and systems. Thus, it is fundament.ally import.ant to understand
that the model referred to here is the mathematical model of the event:
the system of equations (ordinary or part.ial differential, integral, int.egro-
differential), inequalities, boundary and initial eonditions, clata (coefficients,
source terms, geometry, load history), etc. that constitute the mat.hematical
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abstraction of the physical phenomenon of interest. It is not the discrete ver-
sion of the model fed into the computer. Verification and code verification
are thus quite different subjeets. Code verification is the process of assessing
if a given computer code reliably solves the discrete versions of the class of
mathematical models targeted in the application software. Code verification
is the province of software engineering. It involves bug fixes, benduuarks,
testing results against manufactured solutions, performance tests, and other
technologies. It is, of course, a fundamentally important proeess in the
broad area of verification and validation, but it is not, in itself, sufficient
to complete the process of verification. In principle, the fact that a given
code has been verified free of bugs and is highly effjeient does not mean
that the "model was solved correctly." Indeed, the accuracy with which the
model is solved depend'! upon factors independent of the parameters used
in code verification, such as the mesh used in the simulation, the order of
the local approximations, time step size, etc. Verification, it is emphasi:,o;ed,
has to do with the accuracy with which the mathematical model is solved.
This fact means that assessing the accuracy of numerical approximations of
solutions of the model is fundamentally the essence of verification. Implicit
in the idea of verification is that models are somehow obtained and that we
are bound to determine to what degree these simulations actually solve the
model under study. This is a posteriori error estimation.

4. SUMMARY AND RECOMMENDATIONS

A posteriori error estimation provides a powerful tool for verification of
results of computer simulations and predictions. l\:[any techniques for a pos-
teriori error estimation exist and they vary in cost, robustness, and quality
of results, but virtually all available approaches give useful information on
quality of computed solutions or on trends of the distribution of error as
mesh parameters are varied. The theory and algorithms underlying a poste-
riori error analysis of finite element approximations have matured to a level
that the technology can be used confidently to provide measures of the ac-
tual accuracy of eomputed solutions. Importantly, techniques for computing
upper and lower bounds of errors in local features of computed solutions are
now available for a significant class of problems. As an added benefit, error
estimation provides a ba.sis for adaptivity - the systematie alteration of the
computational model, the mesh, the algorithms, etc. - to improve results
and control the error,
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