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A POSTERIORI ERROR ESTIMATORS FOR THE STOKES
AND OSEEN EQUATIONS·

MARK AINSWORTHt AND J. TINSLEY ODEN*

Abstract. The problem of obtaining a posteriori estimates of the discretization error when
one uses finite element methods to approximate problems with an incompressibility constraint is
discussed. A general approach to the treatment of the constraint condition and to the (possible)
non-self-adjointness of the associated momentum equations is presented. A posteriori error estimates
are derived for adaptive h, p, and h-p type finite clement schemes. Key features are that the local
error residual problems are not subject to an incompressibility constraint thereby avoiding the need
for special finite element schemes and that the analysis is valid for essentially any discretization
scheme, including continuous and discontinuous pressure spaces. The estimator bounds the actual
error measured in an energy-like norm.
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1. Introduction. The importance of a posteriori error estimates for controlling
adaptive finite element algorithms is now well established. For self-adjoint, second-
order elliptic systems many a posteriori error estimation techniques are known. How-
ever, for problems involving supplementary conditions or constraints the situation is
less well understood. In particular, the issue of how to take proper account of the
incompressibility condition in the Stokes approximation of the steady-state Navicr-
Stokes equations is unclear. Equally well, in the Oseen approximation of the Navier-
Stokes equations one has a non-self-adjoint operator in the momentum equations. It
is of key importance to obtain a posteriori error estimates for both Stokes and Os-
een equations. For instance, solving the steady-state Navier-Stokes equations often
involves starting with the Stokes approximation of the problem and then using an
iterative scheme based on the Oseen approximation to converge with the solution of
the original problem. To obtain a good initial approximation requires adaptive re-
finement using a posteriori error estimators for the Stokes problem. As the iteration
proceeds, the mesh is adaptively refined at each step, requiring an a posteriori error
estimator for Oseen equations.

The problem of deriving a posteriori error estimates for the Stokes problem has
already received attention. The basic approaches may be divided roughly into two
types. Baranger and EI Amri [8] and Vcrrurth [14, 15] obtain a posteriori error in-
dicators in the form of suitably scaled integrals of the square of the residuals in the
equations. Bank and Welfert [6, 7] and Verrurth [14] follow an alternative approach
based on the element residual method proposed in [5, 11]. This consists of formulating
elementwisc Stokes problems with data composed of the residuals in the momentum
equations and the incompressibility constraint along with boundary conditions de-
pending on the discontinuity in the approximation of the interelernent flux. These
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local Stokes problems are then solved approximately on each element yielding a pair
of fnnctions whose norm is then used as an estimate of the true discretization error.

The estimators based on evaluating integrals of the residuals provide only refine-
ment indicators as opposed to actual direct estimates of the error. The approach
based on solving local residual problems avoids this difficulty but obliges one to solve
local Stokes problems on each of the subdomains. This hinders the development of
a general purpose error estimation procedure since one must design stable schemes
with which to approximate the local problem.

In the present work the approach based on solving local residual problems is
considered. To begin with, a general approach is given to deal with the fundamental
question of the norm in which the error will be estimated. One result is that one is led
naturally to the conclusion that the estimator should involve the integral of the square
of the amount by which the incompressibility condition is violated. Furthermore, and
perhaps rather surprisingly, one finds that it is unnecessary to solve a local Stokes-
type problem in order to obtain an a posteriori error estimate. The significance of this
conclusion in the design of a general purpose a posteriori error estimation procedure
for incompressible fluid flow solvers is vital: the approximation of the local residual
problems can, to a large extent, be developed independently of the type of element
used to approximatc the original fluid flow problem. In fact, the analysis given is
valid for essentially any approximation scheme, continuous or discontinuous pressure
spaces (or cven a mixturc of the two), stable or unstable element combinations, in-
compressible or standard velocity spaces, and (our main interest) general h-p finite
element approximation spaces involving nonuniform meshes and elements of widely
varying nonuniform polynomial degree.

The conclusions mentioned hitherto are valid for residual based a posteriori error
estimators generally. In the present work, the a posteriori error estimator proposed in
[2] is adapted to the Stokes and Oseen equations, Particular features of the approach
are that the local problem encompasses a systematic approach to the determination
of the boundary data and leads to an error estimator which provides a guaranteed
upper bound on the true error in an energy-like norm. Under similar assumptions to
those of Bank and Welfert [6, 7], the estimator is shown to give two-sided bounds on
the actual discretization error. A simple example is given verifying the conclusions.

1.1. Model problem. Let 0 C ]R2 denote an open bounded Lipschitzian do-
main with piecewise smooth boundary an. The boundary is supposed to consist of
a finite number of smooth arcs meeting with internal angle B E (0, 21l'). The Sobolev
spaces Hm(O), m E IRare defined in the usual way [1]. Function spaces X and M
are introduced as

(1)

(2)

(3)

Let B : X x X -+ IRand b : X x M -+ IRbe the bilinear forms

b(v,q) = -In q divv dx

and

B(v,w)= k{vvv,vw+w,(U.V)V}dx,

where v > 0 is the viscosity parameter and U is a smooth solenoidal vector field on
n (i.e., div U = 0). For given data f E £2(0) x £2(0) we seek the solution of the
following problem.
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(4)
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Find (U, p) E X x M such that for all (v, q) E X x M

B(u, v) + b(v,p) + b(u, q) = L(v),

where L : X -> IR is the linear functional

(5) L(v) = fo f· v dx.

(6)

(7)

For ease of exposition we consider only homogeneous Dirichlet boundary conditions.
More general conditions are dealt with in an analogous fashion. In order to describe
sufficient conditions for the existence of a solution to (5) we introduce inner products
a(-, .) and c(·, .) on X and M, respectively:

a(v, w) = In vVv· Vwdx

and

c(p,q) = fop q dx.

These inncr products induce norms on X and M denoted by 11'lIxand II·IIM, respec-
tively. The following facts concerning Band b will be useful (see Girault and Raviart
[10]):

• There exists a positive constant CB such that

(8)

(9)

•
IB(v, w)1 ~ CB Ilvllx Ilwllx for all v, wE X.

Ib(v, q)1 ~ Ilvllx IIqllM for all (v, q) E X x M.

• b satisfies an inf-sup condition: i.e., there exists a positive constant ab such
that

(10)

(11)

Ib(v,q)1
sup II II ~ ab IlqllM for all q E M.

VEX V X

• B is coercive: i.e., owing to the vector field U being solenoidal there holds

B(v, v) = Ilvll~ for all vEX.

Under these conditions it follows [10] that therc is a unique solution to (5).

1.2. Norm on X x M. The usual norm on the space X x M is obtained by
summing the squares of the norms on X and M. It will be convenient to establish an
alternative norm OIl X x M which is nonetheless equivalent to the usual norm. Let
(e, E) E X x M be arbitrary. The pair (q,,1{;) E X x M is defined to be the Ritz
projection of the residuals

(12) a(¢, v) + c(1{;,q) = B(e, v) + b(v, E) + bee, q)

(13)

for all (v, q) E X x M. The existence and uniqueness of the pair (q,,1{;) follows from
the continuity of the forms Band b. Therefore, we may define

{
2 2 } 1/2

lI(e, E) II. = 11q,llx+ IIqllM .
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The following theorem eonfirms that this quantity is a norm on X x M equivalent to
the obvious norm.

THEOREM 1.1. Under the foregoing assumptions and definitions, there exist pos-
itive constants k] and k2 such that

(14) ktll(e,E)II: ~ Ilell~ + IIEII~ ~ k211(e,E)II~,
where k] depends only on CB and k2 depends only on Cn and QI,·

Proof Right-hand inequality. Making use of (10), (12), (8), and the Cauchy-
Schwarz inequality yields

(15)
1IIEIIM ~ - {lll/1l1x + CB Ilellx}·

Db

Using (11), (12) (with q = -E and v = e), and the Cauchy-Schwarz inequality,

(16)

(17)

From (15) and (16) one finds

~ Ilell~ ~ ~ (111/111x+ ~: 1I1/JIIM) 2 + ~b 1II/1llx 111/JIIM,

Combining (17) with (15) and once again using (17) gives the result with k2 a constant
depending on ai, and CB.

Left-hand inequality. Using (12), (8), (9), and the Cauchy-Schwarz inequality
gives

(18)

Using (12) and (9) gives

(19)

1II/111x~ CB lIellx + IIEIIM .

111/J11~= b(e, 1/J)~ lIellx 111/JIIM·
Therefore, combining (18) and (19) yields the estimate claimed, where k] depends
only on CB. 0

2. Discretization

2.1. Partitioning. Let P be a partitioning of the domain n into the union of
N subdomains K such that

• N < 00,

• n = UKE1'K,
• K nJ is cmpty whenever K =f. J,
• each K is a convex Lipschitzian domain with piecewise smooth boundary 8K.

The common boundary between sub domains K and J is denoted by

(20) rKJ =8Kn8J.

Associated with each subdomain is a space P(K) of functions mapping K x K x K
to JR3. Typically, if Qd(K) denotes some appropriate space of polynomials on K with
the parameter d rcpresenting the polynomial degree, then

(21)
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where du, d", and dp need not necessarily all take the same value and may actually
vary from subdomain to subdomain. Finally, D(K) denotes a collection of continuous
linear functionals on P(K) such that the pair D(K), P(K) is unisolvent [9]. A
finite element is then defined to be the triple (K, P(K), D(K)). Following the usual
construction [9] leads us to a global finite element space X x M given by

(22)

and

(23)

X = II [Qd..(K) x QdJK)]
KEP

M = IIQd,,(K).
KEF

It is supposed that the functionals D(K), and correspondingly P(K), are chosen in
such a way that the inclusion XxNt C XxM holds. The finite element approximation
to (4) is then as follows:

find (u,]3) E X x Nt such that for all (v, q) E X x M.
(24) B(u, v) + b(v,p) + b(u, q) = L(v).

A few remarks concerning the construction of X x M are in order. It will be noted
that there has been no requirement for a discrete inf-sup condition to hold. Unstable
discretizations do not hinder the a posteriori error analysis since only stability of
the underlying continuous problem is required. Of course, it is generally unwise to
actually use unstable discretizations. One restriction we shall impose on X, but not
on Nt, is that it contains continuous piecewise polynomial functions on the partition
of degree at least one. Many standard schemes satisfy this restriction.

2.2. Mesh-dependent forms and spaces. It will be convenient to reduce the
global spaces and forms into sums of contributions from each of the subdomains in
the partition 'P. With this in mind, define the broken Sobolev spaces for m E Z+,

(25)

Here, and in what follows, VK denotes the restriction of v to a single subdomain K.
The associated norm is

(26)

For each sub domain K E 'P let

(27)

(28)

and

VK = {v E HI(K) : "'tv = 0 on on n oK} ,

The bilinear forms B K : X K X X K -+ IR. and bK : X K X M K -+ IR. are defined as
follows:

(30) bK(v, q) = - L q div v dx
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(31) BK(V, w) = fK {vV'v : V'w + w· (U . V') v} dx.

(32)

Similarly, L K : X K -+ lR is defined by

LK(V) = if. v dx.

Hence for v, wE X, and q E M,

(33)

(34)

and

(35)

b(v, q) = L bK(VK, qK),
KEF

B(v,w) = L BK(VK,WK),
KEF

L(v) = L LK(VK).
KEF

The inner products are decomposed as sums of contributions from each subdomain
in the partition in an analogous fashion. The broken version of the space X x M is
defined by

X(P) x M(P)
(36) = {(v, q) E L2(D) x L2(D) x L2(D) : (v, q)IK E XK X MK for all K E P}.

Examining the previous notations reveals that M(P) = M. Later, we shall be led
into considering the space of continuous linear functionals T on X(P) x M(P) which
vanish on the subspace X x M. Therefore, let JH[( div , D) denote the space

(37)

equipped with norm

(38) IIAlllI(div.O)= {IIAII~,o + Iidiv AII~.o} 1/2.

The following theorem generalizes a result in [131·
THEOREM 2.1. A continuous linear functional T on the space X(P) x M(P)

vanishes on the subspace X x M if and only if there exists A E lHl(div, D) such that

(39) T [(v, q)] = LInK' A· VK ds,
KEF laK

(40)

where nK denotes the unit outward normal on the boundary of K.
Proof (d. [13]). By the Riesz representation theorem, any continuous functional

on H1(K) x H1(K) x L2(K) is of the form

(v, q) -+ t.i {t, Aij :~: + ajvj } dx +i aoqdx,
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where Aij, aj, and aD E L2(K). Therefore, for any (v, q) E X(P) x M(P),

(41) r[(v,q)]= 2.: [tl {tAij:~J +ajVj} dx+ 1aOqdx],
KEP j=1 K i=l' K

where Aij, aj, and aD now denote elements of the global space L2(0). Owing to the
hypothesis on r it follows that for any (v, q) E X X M,

(42)

Hence, in the sense of distributions

(43) 2.:28Aij + .= 0- - aJ '8x
i=l •

j = 1,2,

(44)

and aD = O. Rewriting (43) reveals A E IHI(div . 0):

div A = - [ :~ ] E L2(0)2.

Therefore using the Green identity and (41),

The converse is shown using similar arguments. 0
The import of this result is that one may identify r with an element A of the space

IHI(div ,0) and vice versa. In view of Theorem 2.1, we shall abuse the nomenclature
slightly and refer to an element of IHI(div ,0) as being a linear functional.

3. A posteriori error analysis.

3.1. Preliminaries. Suppose (u,p) E ixM is the finite element approximation
to (u,p) E X x M. In view of the inclusion i x M c X x M, the discretization error
(e,E), where

(46) c = u - u and E = p - p,

lies in the space E X x M. Pursuing the approach suggested in section 1.2, define a
pair (cp, 1/1) E X x M such that

(47) a(cp, v) + c(1jJ, q) = B(e, v) + b(v, E) + b(e, q)

for all (v, q) E X x M. In view of Theorem 1.1, the norm of the discretization error
is given by

(48) lI(e,E)II: = 114J11~ + 111jJ11~·
The problem is now that of estimating IIcpllx and 111/1IIM numerically. In prin-

ciple one could approximate the problem (47) directly and thereby obtain an error
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estimator. However, the cost associated with solving the global problem would make
this approach impractical. However, an alternative approach is to attempt to reduce
the single global problem (47) into a sequence of independent problems posed locally
over each element. The aim would be that each of these smaller problems might then
be approximated comparatively inexpensively and even in parallel. With this goal in
mind, we aim to recast the global statement (47) as a sequence of local problems posed
on each sub domain K E P.

It will be useful to introduce the stresslike tensor O'(v, q) formally defined to be

(49)
av;

t7;j(v, q) = v-a - q8;j,
X·J

where 8ij is the Kronecker symbol.
For (u,p) E X x M it is often the case that (7 (u,p) is smooth (i.e., continuous) on

each of the sub domains K E P but suffers jump discontinuities across the interelement
boundaries. In order to define the value of the normal component of the stress on the
interclement boundaries it is convenient to introduce notations for the jump on rK J:

(50) [n· O'(v, q)] = llJ( . U(VK, ql() + llJ . O'(v J, qJ).

Furthermore, an averaged normal stress on rK J is defined as

[

(1)
(nK . (7(v,ij)) = a~J

(51)
where a~J : rKJ --+ IR are smooth (polynomial) functions, the choice of which will
be discussed later. Naturally, should the stress be continuous then it is required that
the averaged stress coincide with this value. Therefore, on rK J,

(52)
[

(1)
O'.KJ

o

As a notational convenience, the averaged stress on an is understood throughout to
be identically zero.

The notation [ . ~ is also used to denote jumps in the clements of X(P) between
subdomains: after introducing an ordering on the elements (for instance using the
clement numbers in the finite element code), define

(53)

and

(54)

[v~ = { VI( - VJ, K> J,
VJ-VK, K<J

[n~ = { llK - nJ, K> J,
llJ - llK. K < J.

The following identity, valid for v E X(P), is readily verified:

(55) L i (llK' O'(u,p)) . vds = L1 (nK . O'(u,p)) . [v] ds.
KEP aK rKJ rKJ
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3.2. Localization. The process of decomposing the global problem (47) into
smaller, local problems posed over the elements can now be discussed. Two basic
steps are involved in breaking up the problem. Firstly, the unknowns (U, p) in (47)
are replaced by appealing to (4), which is valid for all (w, q) E X x M:

a(¢, w) + c(1/J, q) = B(e, w) + b(w, E) + b(e, q)

(56) = L {LK(W) - B/(u, w) - bK(w,fj) - b/(u, q)}.
KE'P

The next step is to deal with the global space X x M. The essence is to decompose
this space of globally smooth functions into functions which are smooth on each of the
elements but not necessarily continuous across the interelement boundaries. If this
could be accomplished then one would be able to compute the solutions on each of the
elements independently, thereby reducing the complexity of the problem substantially.
To analyze this approach mathematically, we begin by extending the functional given
by (56) to the broken space X(P) x M(P). For any (w, q) E X(P) x M(P) define
the linear functional R : X(P) x M(P) -t lR by

R [(w, q)] = L {LK(W) - BK(U, w) - bK(W,p) - bK(U,q)
KE'P

+ faK (UK' IT(U,p)) . wK dS}
(57) - L r (nK 'IT(u,p)) . [w] ds.

r'KJ Jr'KJ

Notice that whenever (w, q) E X x M,

(58) R [(w, q)] = a(cp, w) + c(1/J, q).

(59)

(61)

LEMMA 3.1. Under the above notations and conventions, there exists µ E lHI(div, n)
such that for all (w, q) E X(P) x M(P),

p.[(w,q)] = L r (nK ·IT(u,fj))· [w]ds.
rKJ JrKJ

Proof The right-hand side of equation (59) vanishes on X x M. Applying
Theorem 2.1, the result follows immediately. 0

Applying Lemma 3.1 yields

R [(w, q)] = L {LK(W) - BK(u, w) - bK(w,fj) - bK(u,q)
/(E'P

+ faK (UK' IT(U,p)) . WK dS}
(60) - µ [(w, q)] for all (w, q) E X(P) x M(P).

3.3. Variational analysis. Introduce the LagTangian functional .c : X(P) x
M(P) x lHI(div ,n) -lR to be

1.c [(w, q), µ] = '2 {a(w, w) + c(q, q)} - R [(w, q)] - µ [(w, q)]
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and note that

sup .c[(W,q),µ] = { ~{a(w,w)+c(q,q)}-n[(w,q)]
µEIFl(div,O) +00

(62)

Moreover, for (w, q) E X x M,
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if(w,q)EXxM,
otherwise.

(63)

(64)

12 {a(w, w) + c(q,q)} - n [(w,q)]

1
= - {a(w - cp,w - cp) + c(q -1/J, q -t/J) - a( cp,cp) - c(t/J, t/J)}

2
1 I 2~ -2 {a(cp, cp) + c(t/J,t/J)} = -211(e, E)II.·

Therefore,

1 2-211(e,E)II.
= inf sup.c lew, q), µ]

(W,q)EX(P) xM(P) µEH{div ,0)

sup inf .c[(w,q),µ]
µEEl(div ,0) (W,q)EX(P) xM(P)

> inf .c [(w q) µl
- (W,q)EX(P)xM(P) "

= L inf {!a(wK,WK)-LK(W)+BK(ii,W)+bK(W,P)
WKEXK 2

KEP

- 1 (nK' u(ii,jj)) . WK ds - !cK(div U,div U)} ,J8K 2

where the infimum over the space M(P) has been computed explicitly. The order of
the inf-sup may be changed here since a saddle point is obtained when the multiplier
µ is the true interclement flux. This choice is a valid multiplier, as can be seen by
applying Theorem 2.1. Summarizing, we have shown the following.

THEOREM 3.2. Let.:JK : XK -> IR be the quadratic functional

(65)

Then

(66)

.:JK(WK) = ~a(WK' WK) - LK(w) + BK(U, w)

+ bK(w,p) - 1 (11K' u(u,p) . WK ds.l'aK

3.4. Analysis of local error residual problems. The analysis contained in
the previous section leads to problems on each subdomain of the form

(67)
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Suppose for a moment that a minimum exists; then the minimizing element is char-
acterized by finding r/>K E X K such that

for all v E XK. This problem is simply a Poisson-type problem with Neumann
boundary conditions. The result of the foregoing analysis is that one can obtain a
local a posteriori error estimator for the Stokes problem by solving auxiliary Neumann-
type problems for the velocity, since the influence of the pressure can be explicitly
calculated. This has a considerable impact in the computation of the error estimator
since one need not solve a local Stokes-type problem, as for example is the ca.se with
[6,7, 14, 15]. The approach suggested above simplifies that of [6, 7, 14, 15] and could
be used in the context of those papers.

The necessary and sufficient conditions for the existence of a minimum are that
the data satisfy the following compatibility or equilibmtion condition:

for all (J E Ker[a, XK], where

(70)

When the subdomain K lies on the boundary an then the local problem (68) will be
subject to a homogeneous Dirichlet condition on a portion of their boundaries and
thus will be automatically well posed. However, elements away from the boundary
are subject to pure Neumann conditions and the null space of the operator aC,') will
contain the rigid body motions

(71)

where

(72)

Fortunately, we shall be able to construct data which satisfy the equilibration con-
dition (69) thanks to the freedom to choose the averaged interelement flux. First,
define

(73)

so that the consistency condition (52) becomes

(74) [
A (1)

KJ

o
o ] [(1)

}.(2) + AJK

KJ 0

The averaged interelement stress may then be rewritten

(75)
[

(1)

(nK . O'(V, q)) = (UK' O'(V, q)) 1/2 + [n . O'(V, q)] }.~ J
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where (nK . u(v, q))1/2 denotes the interelement averaged stress obtained using the
symmetrical weighting corresponding to Q = 1/2. The equilibration condition then
becomes

(76)

LK(O) - BK(u, 0) - bK(O,jJ) + J (UK' u(u,jJ)) . Ods18K

i [A(l) 0]=-L [n·u(v,q)ll KJ (2) ·Ods
JE'P rKJ 0 AKJ

for all 0 E Ker[a, XK].
Let {XA} be chosen so that

Span {XA} x Span {XA} eX
and scaled so that

(77)

(78)

For example, one might choose the piecewise bilinear pyramid functions associated
with the interior nodes in the partition. The relation (77) must hold at all points x
contained in clements which do not intersect the boundary of the domain.

The functions A~~ : rK J ~ IRare chosen to be of the form

(k) () ~ (k)AKJ S = L.. AKJ,AXA(S),
A

where A~~.A are constants to be determined. Owing the constraint (74), it is required
that

(79) (k) (k)
AK J,A + AJK,A = 0

for each A.
LEMMA 3.3. Suppose for each XA the constants {A~~,A} can be chosen to satisfy

(80)

for k = 1, 2, where

~ (k) (k) _ (k)
- L.. AKJ,APKJ,A - bK,A

JE'P

(81)
and

(82)

Then

(83) 0 = LK(O) - BK(u, 0) - bK(O,p) + 1 (UK' u(u,jJ)). OdslaK
for all (J E Ker[a,XK].



240 MARK AINSWORTH A~D J. TINSLEY ODEN

Proof The result follows immediately by forming appropriate linear combinations
of (80) and using (78) and (74). 0

In view of Lemma 3.3 in order to satisfy the compatibility condition one need only
choose the space Span{XA} so that 1 E Span{XA}. It remains to construct P.~~.A}
so that conditions (79) and (80) hold. In [3] a numerical procedure for solving the
system efficiently is presented, the cost of which is shown to be modest.

In summary, the numerical procedure is to first calculate the parameters 0: which
ensure that the local problems (67) are well posed. These problems are then solved
numerically, using for example a p version finite elcment schcme on each sub domain
to give an approximate solution cPK' It will be assumed that this solution is computed
sufficiently accurately that the error between this and the true solution to the local
problems may be neglected. The process then yields an a posteriori error estimate (K

on the subdomain K,

(84)

A global error estimate may bc obtained by summing the local cstimates. Theorem 3.2
guarantees that the estimate bounds the true error II(e, E) II. from above.

4. Reliability of estimator. In this section the question of the reliability of
the estimator is addressed. The main rcsult will be that the estimator is bounded
above by a constant multiple of the actual error under certain assumptions.

4.1. Assumptions. In addition to the previous conditions on the partition P
we require the following:

• Each subdomain K E P is convcx and satisfies a minimum angle condition.
• Let NK be the set consisting of sub domains neighboring K:

(85) NK = {J E P: oK noJ is nonempty}.

It is assumed that there exists a constant C, which does not depend on P such that

(86) card(NK) ::; C for all K E P.

• Let hK = diam(K). It is assumed that there exists a constant", which does not
depend on P such that

(87) 2. < hK < K, for all J E NK.
K· - hJ -

Together, these requirements force the partition to be locally quasi uniform. However,
the partition may still be irregular (albeit with the degree of irregularity bounded)
and strongly refined in portions of the domain n.

These restrictions are placed on the partition P. In terms of the spaces P(K) it
is assumed that

• the spaces P(K) consist of piecewise polynomials on each sub domain K E P.
The polynomial degree is allowed to vary from sub domain to subdomain but overall
must be bounded abovc independently of P by P (say).
While this assumption precludes the p and h-p version finite element methods proper,
it is a reasonable assumption in a practical context. The final restriction represents a
regularity assumption on the true solution (u,p).
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• There exists a piecewise polynomial (u· ,p.) on P with degree not exceeding
p + 1 such that

Ilu- u·lli + lip- p·ll~ + 2: 1 hK (nK . O'(U - u·,p - p.))2 ds
KE'P JaK

(88) ~ {32 {Ilelli + IIEII~} ,

where {3 is a positive constant.
This assumption is similar to the saturation assumption made by Bank and Weiser

[5]. As remarked in Bank and Welfert [6], it is a relatively weak assumption but does
require that the solution is more regular than the smoothness implied by the inclusion
(u, p) E X X M. In fact, our assumption is slightly weaker than that of Bank and
WClfcrt, since it is not assumed that {3 -+ 0 as the finite element space is refined.
Alternatively, one can avoid the saturation assumption altogether by following the
approach of Nochetto [12].

4.2. Analysis of reliability.
LEMMA 4.1. Under the above assumptions there exists a constant C > 0, inde-

pendent of the partition P, such that

(89)

Proof. Applying the triangle inequality,

[ ]

1/2

2: 1 hK (nK . O'(e, E))2 ds <
KEPJaK

(90)

[ ]

1/2

L J hK (nK . O'(u - u·,p - p.))2 ds
KEPJaK

[ ]

1/2

+ 2: J hK (nK . O'(il - u· ,p - p.))2 ds
KEPJaK

Now, using standard inverse estimates [9] applied locally to the polynomials il - u·
and p - p. on each subdomain yields the estimate

(91) L J hK(nK·0'(il-u·,p-p*))2ds:SC{llil-u*lli+llp-p*lI~f}'
KEPJaK

Using the triangle inequality and applying (88) gives the result claimed. 0
Consider the norm of the solution of the error residual problem on the subdomain

K:

a(CPK, CPK) = LK(CPK) - BK(il, CPK) - bK(CPK'P) + J (nK' O'(u,p)) . CPKdsJaK

(92) =BK(e,CPK)+bK(CPK,E)-J (nK·O'(e,E)),cpJ(ds.JaK

Let (fJK = IJ( CPJ(dx/IKI; then owing to the satisfaction of the compatibility condi-
tions, we obtain
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a(¢K' ¢K)

= BK(e'¢K - ¢K) + bK(¢K - (f)K,E) - 1 (nK' o-(e,E))· (¢K - (f)K)dsJaK
(93) :S II¢KiIx { Cn Ilellx,K + Cb IIEIIM,K+ C [iK hK (OK' o-(e,E))2 dS] 1/2} ,

where the following standard approximation result has been used:

(94)

Applying Lemma 4.1 and summing over each sub domain in the partition then gives

(95) I:a(¢K'¢K):S C {llcll~ + IIEII~} :SC ll(e,E)II:·
KEF

Summarizing and incorporating the results of section 4 we have Theorem 4.2.
THEOREM 4.2. Under the above assumptions, there exists a constant C > 0 such

that

(96) II(e,E)II::S I:(1:s CIl(e,E)II:·
KEF

4.3. Numerical example. In order to illustrate and verify the upper bound
property, we present the result obtained in a simple test case. The boundary condi-
tions are chosen so that the Stokes problem

(97)

has (smooth) solution

(98)

-//,6.u + 'Vp = 0,

divu = 0,

u = g on 8n

u = sinhxsiny + y2,

v = cosh x cos y,
p = 2//y.

The domain n is the unit square and the viscosity parameter is taken to be // =
1/100. Knowing the true solution allows one to compute II(e,E)II. and to verify
the conclusions of Theorem 3.2 in this case. The discretization scheme consists of
subdividing the domain into uniform square elements. The spaces X and P consist of
continuous polynomials of total degree p and p - 1, respectively, (p > 1). In Table 1
the results obtained using the estimator described above along the results obtained
using an estimator in which all of the splitting parameters 0: have been chosen to be
1/2.

It is seen that the upper bound property for the estimator with equilibration is
confirmed. The theory provides no guarantees regarding the performance of the latter
scheme, which also yields upper bounds in this particular example.
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TABLE 1

Performance of estimator obtained using equilibmtion fa and estimator obtained using sym-
metric averaging fl/2 for Stokes problem with knoum smooth solution.

Degrcc p Mesh Size h lI(e,E)II. fa fJ/2

2 1/4 1.722(-3) 1.778(-3) 1.901(-3)
2 1/8 4.15(-4) 4.49(-4) 4.64(-4)
3 1/4 5.226( -5) 5.229(-5) 5.232(-5)
3 1/8 6.524(-6) 6.528(-6) 6.528(-6)

5. Summary and conclusions. An important point of the present work is
that the existing estimators based on solving error residual problems can be simplified.
The reason is that the analysis shows that one does not have to solve a local Stokes
problem; it is sufficient to solve a pair of independent local Poisson problems, This
means that one is solving a system of two equations (since the residual corresponding
to the incompressibility condition can be treated directly) rather than the system of
three coupled equations nccded for existing techniques.

More importantly, when one comes to construct the basis functions used in ap-
proximating the local problems, there is no issue of stability (inf-sup) conditions.
These conditions can be quite problematic if one is trying to solve a local Stokes
problem using an appropriate space, requiring quite delicate stability analysis; see,
for example, Bank and Welfcrt [7]. By adopting the approach suggested by the cur-
rent paper this issue simply does not arise. These features makes the computation
of the estimator.~ less expensive and more easily applicable to general finite element
schemes for Stokes-type problems.

The analysis suggests that the boundary data for the local residual type problems
should be chosen to satisfy an equilibrium condition. However, the above comments
are equally valid whether one is equilibrating the boundary fluxes or not. Of course,
one loses the upper bound property if the equilibration condition is not satisfied,
but this may not be of primary importance in some applications. The concept of
equilibrating fluxes has been shown to be a key step in the development of reliable and
robust error estimators. For example, in the work of Babuska and Strouboulis [4], one
finds extensive numerical tests comparing estimators based on solving local problems
with and without equilibration of fluxes. Their main recommendation is that one
must usc an equilibration procedure if one is to obtain a robust error estimator.
Although· their conclusions were based on Poisson problems, one can expect similar
effects for more complicated problems. It is clearly desirable to derive an appropriate
equilibration principle for a Stokes problem. This is carried out in the present paper
and generalizes previous work that led to the equilibration principle for Poisson-type
problems. Although it is not proved here, one might reasonably expect that the
estimators with equilibration will be more robust. On a practical note, one cannot
compute the solution of the local problems exactly. However, one usually does obtain
an upper estimator [4]even if the problem is solved approximately.

One can question the usefulness of an upper bound in the unorthodox *-norm,
albeit equivalent with the HI-type norms. The analysis can be used to obtain an
estimator in the HI-norm. Instead, we derive an estimator for the *-norm. The
energy of the actual solution can also be estimated in the same *-llorm. This can be
computed at the same time as the error estimator by modifying the right-hand sides
used in the error estimation process by omitting the terms BK(ii, v) and b(v,p) in
equation (68). The process yields a sufficiently good estimate for practical purposes
and may be used to obtain a numerical estimate of the relative error in the *-norm.
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Although the *-norm is not necessarily ideal, it does allow one to perform rigorous
and quantitative error control for Stokes and Oseen problems.

5.1. Comparison with alternative error estimators. Alternative estima-
tors based on evaluating norms of the residuals are less expensive than solving residual
problems. However, one obtains something quite different. Unfortunately, thanks to
unknown constants in the estimator obtained by evaluating norms of residuals, one
only obtains an error indicator, making it awkward to obtain quantitative estimates
for the error. It is also the case that one may obtain pessimistic estimators because
therc is no possibility of cancellation between the interior and the boundary residual.
Another difficulty is that of correctly balancing the contributions from the different
terms. One can think of the process of solving the residual problem as correctly
balancing the contributions between the boundary and interior residuals.

Estimators based on equilibration are more cxpensive to compute compared with
classical element residual estimators in which the boundary fluxes are obtained using
a simple averaging of the fluxes between neighboring elements. However, the cost
of the equilibration procedure has been shown t.o grow only in direct proportion to
the number of degrees of freedom in the problem [3]. Our opinion is very much
that the effort of obtaining equilibrating fluxes is money well spent. A poor error
estimator increases the likelihood of having to perform extra, expensive iterations of
the refinement process. Our own experience is that this is especially true whcn one is
dealing with higWy irregular meshes, widely varying polynomial degrcc as in the case
of h-p finite element Navier-Stokes simulations.

In summary, it has been found that
• one does not have to solve a local Stokes problem to obtain an error estimator:

this has a significant impact on the expense, complexity and applicability of existing
error estimation techniques;

• the equilibration principle carries over from the scalar case. An appropriate
equilibration principle for Stokes problem was formulated and analyzed;

• one can obtain rigorous error estimates and achieve quantitative control of the
error in Stokes and Oseen problems. Moreover, the cost is not large in comparison
with other stages of the finite element solution process.

Acknowledgments. The authors wish to thank the referee for several useful
suggestions.
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