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Chapter 15

An Adaptive p- Version Finite Element
Method for Transient Flow Problems
with Moving Boundaries

L. Demkowicz. J. T. Odell. alld T. Slrouboulis

15.1 INTRODUCTION

We present in this paper a review of some preliminary results on the
development of self-adaptive finite element methods for use in the study of
transient two-dimensional f10w problems in domains with moving boundaries.
This study focuses on the so-called p-version of the finite clement method, in
which the degree p of the local polynomial shape functions is increased to enrich
the quality of the approximation while the mesh size is kept fixed.

Our enrichment strategy is based on the calculation of reliable a posteriori
error estimates over each element at the end of each time-step. These estimates
are based on the assumption that the mesh size II is sufficiently small; thus the
quality of these estimates improves with some refinement of the mesh. These
estimates allow us to compute error indicators for each element at each time-step,
and to compare the local clement indicator with the total indicator for the
whole mesh. When the local error indica.lor reaches a preassigned percent of
the total, the local polynomial degree p is increased; conversely, when this local
error is less than the critical percentage, our algorithm provides for the reduction
in p so as 10 reduce the computational effort.

So as to provide for time-dependent moving boundaries, we develop a space-
time variational formulation of the f10w problem and corresponding space-time
finite elements. A more detailed account of the methods described here is given
in Demkowicz el al. (1984).

15.2 VARIATIONAL PRINCIPLES FOR FLOW PROBLEMS
WITH MOVING BOUNDARIES

In order to incorporate the effects of a time-varying boundary on which
time-dependent conditions are imposed into the formulation of flow problems,
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it is convenient to develop space-time variational statements of such problems
in which the time-variable is integrated over a fixed interval [0, TJ.

In the following we will use the following notation:

Dr the spatial domain at time l, le[O, TJ, an open bounded domain in 1R2
continuously dependent on t;

aD, the boundary of D, consisting of two disjoint parts r:' and r'[ where the
kinematic and traction boundary conditions are prescribed respectively;

D the space-time domain, D = U Dr·
O<I<T

In the present study, we assume for simplicity that the 'moving portion' r{"
of the boundary aD, is always contained in r~.An illustration of such a time-
varying domain is given Figure 15.1.

The f10w of an incompressible viscous fluid through a time-dependent domain
is characterized by the transient Navier-Stokes equation with appropriate
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"'i\.:ure 15.1 Space-lime domain with strip D. and a space-lime
linile clement
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boundary and initial conditions:

p(~~+U'VU)-µAU+VP=f} inD

divu = 0
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(15.2)

(15.1)

U= Uo onur~,}

t(u,p) ~ g on yr;,
u(O) = Uo (t = 0),

Here p is the mass density (a constant)" U the flow velocity, µ the fluid
viscosity, P the hydrostatic pressure, f the prescribed body force, t(u, p) is the
traction on the boundary, Uo and g are prescribed boundary data and Uo is
the prescribed initial velocity.

From many variational formulations which may be formulated for different
purposes, we present here this one which laid down a foundation for computa-
tion. In the subsequent analysis we drop the nonlinear, convective term as well
and assume that there exists at least one velocity field Uo such that

. aUn 2 }un: D~IeL (D),

dlv Uo =0,

Uo= Uo on Ur~.
I

Introducing the following spaces:

V = {v = v(x, t)lv, :;t eL2(D), div v = 0, v = 0 on yr~},

H={r/J=r/J(x,t)lr/JeJ-Jl(D), divr/J=O, r/J=O onyr~} (15.3)

and assuming that the solution U to equation (15.1) is sufficiently regular
(au/ateL2(D)) the problem (15.1) may be characterized by the following
variational statement. Find u such that

u-uoeV and A(u,r/J)=L(r/J) Vr/JeH. (15.4)

In the above A(',') and L(.) denote the bilinear and linear forms

~(u, r/J)= - f pu' aa~dxdt + f u'r/Jdx + µf (UI.) + Ui'MJi'idXdt,}
D flT D (15.5)

L(r/J) = f f- r/Jdxdt + f g'r/J dxdt + f Uor/J(O)dx.
D Ur; flo

One can prove that a solution to equation (15.4) exists and is unique.
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For numerical purposes it is convcnientlo lake into accounlthe incompressi-
bility condition by a penalty method. This lcads to Ihc new pcnalizcd variational
formulation: Find u such that

u-uoeV and A(lI"ljJ)+~f divll,divljJdxdt=L(ljJ) VljJeH (15.6)
e D

Here e denotes the penalty parameter, and obviously the incompressibility
condition has been dropped in both the definitions of V and H. Again one can
prove that 11, converges to u, when e approaches O.

The formulation (15.6) lays down the foundation for numerical purposes.

15.3 SPACE-TIME FINITE ELEMENTS

The idea of using finite element approximations in both space and time
was introduced in the 1960s by Oden (1969) and has since been expanded and
further developed by a number of authors. We mention in particular the work
of Jamet (1978) which contains a priori error estimates of some interest with
regard to the present study.

Our space-time discretization first involves a partition of the time interval
into N-strips with endpoints Ii such that

(15,7)

We denote

DIl=D,,, and DIl= U D"
'11-1 <I<t"

and we shall apply the appropriate variational principle from the preceding
section to cach strip DII' The initial data Uo shall apply to strip D I and the
approximatc solution calculated for cach successive strip shall be uscd as initial
data for the subsequent strip. Within each strip, Galerkin-finite element
approximations are constructed. In the present study, we employ prismatic-
triangular or prismatic-quadrilateral subparamctric clcments of the type
indicatcd in Figure 15.1 ovcr which the approximate solution is assumed to
vary lincarly in time, and for which hierarchical shape funetions involving
polynomials of degree 1, 2, or 3 are used in the spatial variables.

15.4 A POSTERIORI ERROR ESTIMATE

A kcy to mcaningful adaptive finite clement schcmes is the availability of
. reliable estimates of the local error. While rigorous a posteriori error cstimates
are not availablc for many complex flow problems, it is possible to develop
error estimators which provide information of'sufficient accuracy to construct
good adaptive schemes for many classes of practical problems.
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Although our attention is focused primarily on the f10w problem, for the sake
of better understanding we present an estimate to a model heat-conduction
problem with a varying domain, generalizing the results afterwards to the now
case. The numerical examples in the next section illustrate both cases.

15.4.1 A heat-conduction problem with moving boundaries

For the sake of simplicity we assume that the time-varying domain is
polygonal at all times and that the approximations satisfy Dirichlet boundary
conditions exactly.

The problem can be formulated as a sequence of variational problems defined
on the strips D" of the following form. Find

such that

where
A(ll, v) = L(v) 'rive V"'

u = Uo on U ruI'
',,-1 <1<1"

(15.8)

v,,={veH1(D,,)lv=0 on U r;'}, (15.9)
'n-l <1<111

A(II'V)=f (-ll~; +VU'VV)dXdt+f ll'vdx, (15.10)
Dn 0"

L(V)=f f'VdXdt+f g'VdSdt+f uvdx, (15.11)
Dn uri 0._ I

wherein 1110._ I is assumed to be known from information passed forward
from the prcvious strip, In the above II(X,t) is thc temperature at the point x
and time t, 110' g is the prescribed boundary data, and I is the heat source
intensity.

Consider a triangulation ffh of D" over which piecewise polynomial shape
functions of degree p in the spatial coordinates and linear in time are defined;
these functions satisfying exactly the essential boundary conditions. We denote
the subspace spanned by such functions as V:, and the corresponding FE
solution by u:. We introduce also the error eC = II - IIC and the relative error
of the first-order approximation with respect to the p-order as e:·1 = u: - II,:.

It is easily verified that

A(U,V)=f [~~v+Vl/'VvJdXdt+f u·vdx (15.12)
Dn 0..- I

and'

(15.13)
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Thus it makes sense to define an energy norm by

II u 11.01 = [A(u, u)] I/Z

Obviously, we have

Also
lIeC"II~ = A(neC,I,eC·1 - v,,)

for V"E V~ such that Vh(Xi) = eC·I(xi) and

A(neC·I,v/I)= L f Vl/IK'VVhdx+f eC,lv"dx
Kef. K 0._1

f [ (OIIC au) ]+ Dn v" Tc- ot + VeC,Vvh dxdt

Here, n is a map from VC onto v~P defined so that

A(nllh,vh)=A(u",Vh) 'VUheVC, 'Vv/leVgP,

V2p = {V"E VCIv,,(xi) = O}.
Here, l/IK = a solution of the local auxiliary problem

L Vl/IK' Vvhdxdt = f /hvhdxdt + fK((;h) 'VVhEV2P(K)

f I au~
rh= +6u,,--at

(15.14)

(15.15)

(15.16)

(15.18)

(15.19)

(15.20)

(15.21)

f 1(0111 OUI
.) f ( alii)f,;(Vh)= - - -.!!.. +--;- vhds + y - -.!!.. v"ds

11K- r 2 Oil all aK"I' all

( 15.22)

where II· = - n and u~· denotes the approximate solution for the adjacent
element.

It is possible to prove that constants CI and Cz exist such that

f
IVWhlZdxdt~Clf IVeC,112dxdt, (15.23)

Dn Dn

f n._.1 whiz dx ~ Cz f n._
1

leC·112 dx (15.24)

.for Wh= eC,1 - 0h' where Vh(Xi) = eC·I(x~, and we assume that C3 >0 exists such
that the last two terms in equation (I5.19) are bounded by
C3[JD.I 'VeC·llz dxdtJ I/Z.
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These considerations lead to the bound
297

(15.26)

(15.27)

Ile~,lll~, ~ {c1( L IljIKIZ)l
/
Z + C3}lel:'lll.Dn + {C2 -t} Ile~,lllt2(n.._I)'

K&f"

( 15.25)
wherein ljIK is defined by equation (15.19),

lIull~, def f IVUIZdXdt+~f lul2dx,
D" n"

leP,ll2 =f IVep,llZdxdth l.Dn h •
Dn

Observing that for real numbers a,b, e, d >0,

ta2 + d2 ~ bd + te2 ~ [ta2 + d2] 1/2 ~ b + 2 -l/2e

we reduce equation (15.24) further to

(15.28)

where
E = C3 + jC2 -He~IIL2(n._I) + lIe~IIA" (15.29)

When the solution u is sufficiently smooth, and the mesh sufficiently refined,
we expect the quantity E to be negligible in comparison with the term involving
ljIK'

15.4,2 Flow problem

The extension of the methodology outlined in Scction 15.4.1 to the gcncral
viscous now problem described earlier is straightforward and very similar to that
used for problem (15.8). We must note that the unknown velocity ficld u is vcctor-
valucd and that the bilinear form JD" Vu' Vv dxdt should bc replaced by the virtual
work

G(u, v) = µf (IIi.] + Ilj.i)Vi,j dxdt + e - I f div u div v dxdt, (15,30)
Dn Dn

etc. Using assumptions completely analogous to those used in deriving equation
(15.28), we obtain the estimate

lIe~IIG == [ G(e~,en +~fo._.leWdx T/
2

~Cl{ L It/1Kli}1
/
2 +JC2-tf le~12dx, (15.31)

K&f" 0,,-1
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(15.32)I 1/11\1~ = fK [/J(t/JKi.j + t/JKj,i)t/JKi.j + e-'(div 1/11\)2] dxdl

and 1/1K is the solution to the local auxiliary problem

I/IKEVfp(K)

Gdt/JI\' w,,) = L[fi - (O;/i - (J'ij(U,:).j) }V/Jidxdt - II\_/(II/~)'W"dsdl

+ f (g - t(uW'whdsdl 'v'wheVfP(K). (15.33)
aKnr'r

Here GK(',') is the restriction of G(',') to element K'O'iJ{U)=µ(Ui,j+Uj.i)
+ ,,-I div uc5ij,and t is the difference of tractions on an element side.

In the above bound, the constant C2 is the same as that in Section 15.4.1,
whereas C I is not since the 'energy norm' has now changed, In particular, C, is
now derived from the condition that

G(Uh- V",Uh - v,,) ~ CiG(Uh,Uh) 'v'u"eV~

where vh is the first-order (linear) basis function interpolating u" exactly at the
nodes (triangular vertices).

15.5 NUMERICAL RESULTS

We conclude this chapter with a series of numerical experiments concerning both
the flow, as well as our model (heat-conduction) problems.

. 15.5.1 Mesh enrichment strategy

Although the a posreriori error estimate prescribed in the previous section is of a
global time, j,e. estimates the global-integral type error over the whole domain,
we make use of it in a local manner. More precisely, if 11K denotes the normalized
contribution of thc elemcnt K to the estimate, the new variable order of
approximation is defined in the following way:

(a) For triangular elements
o ~ 'IK < 15, first-order approximation
151 ~ 'IK < 152 second-order approximation
152~ '1K ~ I third-order approximation

(b) For quadrilaterals
o ~ '1K < c5 first-order approximation
c5 ~ 'IK ~ 1 second-order approximation

At this stage, the numbers 15,,152, c5 are chosen intuitively and this part of the work
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requires some further research. We will specify (51' (52' (5 separalely for each of the
examples.

15.5.2 Investigation of local and global behavior of the
a posteriori error estimate

The a posteriori error estimate has been tested on the following example.
Let D = (0,4) x (0,3) (fixed domain). The purely Dirichlet boundary and initial

data as well as the right-hand side of the equation correspond to the following
(exact) solution:

11= 10 e - S(x- 1)2X(4 - x)y(3 - y)t.

where \I exhibits some kind of 'singular' behavior for x = I. All the comparison
has been made on the base of one time-step solution /it = 1. Because of linear
dependence of II on l the error is due to the space approximation only. (In the
sense that for an exact space approximation, the error would be equal to zero.)

The approximate mesh presented in Figure 15.2. consists of 24 prismatic
triangular elements. The problem has been solved three times:

(1) with the first-order approximation (12 freedom degrees);
(2) with variable-order approximation (68 freedom degrees) (refined mesh,

see Figure 15.2);
(3) with the third-order approximation (I76 freedom degrees).

p = 1
~
p=2

~
p= 3

A 1JA"IIIIIIIIII rnlllllllllili/ 1/ 1 A

Figure 15.2 Mesh for lhe Iirst problem. Local order of approximation for the
refined mesh
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Table 15.1 Element Contributions to lhe Error

Error for lirsl Error for lirst Error for second
order approximation mesh relinemenl mesh relinement

(12 degrees of freedom) (68 degrees of freedom) (176 degrees of freedom)

Element f", Ve2 If fl: Vel If ftc Ve2 Ife2 e2 e2

K no. 2 "'nil, 2 "'nil, 2 "'nil,

1 351.25 240.92 42.46 0,80 43.22 0.82
2 357.20 23.30 362.79 72.45 36.lll J.211
3 6114.47 797,34 19167 5.06 122.08 2.48
4 571.99 37.96 258.20 77.40 49.62 1.43
5 591.92 257.68 620.21 51.92 57.97 1.17
6 116.53 6.54 114,57 3.70 7.88 0.12
7 308.51 30.07 4.73 0.12 3.95 0.06
8 1065.99 341.39 45.82 1.34 42.55 1.15
9 1310.53 174.41 83.07 1.43 80.90 1.66

10 1420.99 933.72 125.12 2.81 10109 2.75
11 831.91 107.03 77.82 1.10 74.36 1.81
12 542.58 264.43 288.54 28.39 68.81 1.42
13 0.00 0.00 0.00 0.00 0.00 0.00
14 0,64 0.01 0.40 0.01 0,08 0.00
t5 0.00 0.00 0.00 0.01 0.06 0.00
16 2.04 0,06 0,29 0.11 0.50 0.01
17 0.00 0.00 0.00 0,08 0.18 0.01
18 0.64 0.01 0.40 0.17 0.27 0.01
19 0.00 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 0,00 0.00 0.00 0.00
21 0.00 0.00 0.00 0.00 0.00 0.00
22 0,00 0.00 0.00 0.00 0,00 0.00
23 0.00 0.00 0.00 0.00 0.00 0.00
24 0.00 0.00 0.00 0,00 0.00 0.00

Total 8157.25 1607.47 2218.16 123.48 691.76 8.12

The respective values of thc constants 0, and Oz arc: 0, = 1/9; 152= 4/9.
Let us recall that thc error is measurcd in the following energy norm:

lIell~=f IVeI2dxdt+~ r e2dx.
D JOI

Tablc 15.1 presents thc contribution of each element to the error for all
three approximate solutions.

Finally, Table 15.2 shows the contribution of each element to the a posteriori
error estimate compared with the contribution of the first-order approximation
error itself. Similar, although obviously not identical behavior is observed. Also,
one can see that the contribution of the error due to initial data is of onc, two
orders lcss than that from the error indicator function and therefore may be
neglected.
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Tllble 15.2 Element Conlributiolls 10 the a posterior; Error Eslimate

Error estimate for the (irst order
approx. soln,

Normalized

Element First-order Normalizcd J Vf/li LVf/li f e
2

Kno. appro error error Ii A:nilo

I 592.17 0.25 71.01 0.03 1.70
2 380.50 0,16 4tl.16 0.18 1.70
3 1481.81 0,63 221.64 0.10 5.09
4 609,95 0.26 508.68 0,23 1.69
5 849.60 0.36 257.75 0.12 1.69
6 123.07 0.05 22.73 0.01 0.00
7 338,58 0,14 17.30 0.01 1.13
8 1407.38 0.60 1177.28 0.53 4.22
9 1484.94 0.63 463,03 0.21 8,12

10 2354.71 1.00 2239.35 1.00 9.26
II 938.94 0.40 418.34 0.19 4.39
12 807.01 0.34 348.68 0.16 1.69
13 0.00 0.00 5.95 0,00 0.11
14 0.65 0.00 7.39 0.00 1.61
15 0.00 0.00 7.81 0.00 2.30
16 2.10 0.00 72.68 0.03 4.55
17 0.00 0.00 42.06 0.02 1.82
18 0.65 0.00 68.43 0.03 1.25
19 0.00 0.00 0.00 0.00 0.00
20 0.00 0.00 1.45 0.00 0.11
21 0.00 0.00 0.28 0.00 0,11
22 0.00 0.00 0.76 0.00 0.40
23 0.00 0.00 0.95 0,00 0.14
24 0,00 0.00 2.26 0.00 0.14

Total 9764.72 6367.08 53.35

Finally, we can estimate the global quality of Ihe error estimate. Since all the
elements are identical with the master element, we can assume C t, Cz equal to
those for the master clement, which can be proved to be equal:

Ct=J3,

thus, the ratio of effectiveness defined as

error estimate - error
r=

norm of the solution

is equal to

,. 166.96 - 98.82
105.46

0.646.
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40

o

Time> 1.0
.-..... First order
__ Enriched

-EXQCI

4.0

Figure 15.3 Heat conduclion problem. Computed solulions on
scetion AA for II= I and adaptive correclion for time t = 1.0

30

20

Time· 2.0
__ First Older
__ Enriched

-E.nci

4.0

Figure 15.4 Heat conduction problem. Computed solutions on
section AA for p = I and adaptive correction for time t = 2.0
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15.5.3 Solution of the heat-conduction problem in a moving domain

Let D, = (0,4 + a.ll) x (0.3). The purely Dirichlet boundary and initial
data. as well as the right-hand side of the equation correspond to the following
exact solution:

II = lOe - S(X-I-o.2r)2x(4 +0.1t - x)y(3 - y)' C.
where

for 0 < t < 0.5,
for t > 0.5.

The problem has been solved for the mesh (see Figure 15.2) with 24
elements. The time-step has been chosen as !:!.t = 0.1. The first 20 time-steps
have been calculated. The constants 151and az have been chosen as 151= 1/20,
b2 = 1/2.

Figures 15.3 and 15.4 present the computed first-order and enriched
solutions on the section AA (sec Figure 15.2) with comparison to the exact
solution.

15.5.4 Flow problem in a moving domain

As the final example. we have chosen a 'Poiseuille-type' f10w through the
duct with decreasing cross-section. At time t = 0, the spatial domain corresponds
to Do = (0, 12) x (0. 10) and is discretized using a 6 x 5 mesh as in the previous

-------------- .7,,, ,,/'

" ----- ---- v

~ ~ ~ ~

~ ~ ~,~ ~ ~

~ ~ ~~ ~
/- 0.25,"'---- ----,-

/' ,
/' /=0.10

I~ "'-----------

c

A

Ib
I

I
Ib

Is
1
I

/=0.00 : a

c

c

x--o

Fi\.:lIre 15.5 How problem in moving domain. Mcsh cnrichmenl for
t=O.IOand t=O.25



304 Finite Elements in Fluids

example. For t > 0 the lateral boundaries in the central portion of the duct
move into the duct with a constant speed equal to 5, as shown in Figure 15.5.
Kinematic boundary conditions are prescribed along parts AB, BC, DA of the
duct boundary, while the tractions are prescribed on CD. The 'nonslip' boundary
condition, applied on the portions BC and DA of the boundary implies that
the velocity of the fluid there coincides with the velocity of the boundary. The
applied velocities on AB, the applied tractions on CD, the initial conditions,
and the body force were chosen to correspond to steady-state Poiseuille flow
in an infinite duct. This is intended to model the transient local disturbance of
a Poiseuille flow induced by local contraction of the cross-section of the duct.

The problem has been solved with a mesh that remains fixed in the interior
of the domain but deforms to follow the motion of the boundary on BC and
DA, as shown in Figure 15.5. The velocity components for the steady-state
Poiseuille f10w are

40

35

u = y(1O - y), v=o

Time -0.10
__ First order
__ Enriched

- Poi •• uille flow
(fixed domo;n)

o
2.0 4.0 6.0 8.0 10.0 12.0

FiJ:ure 15.6 Flow problem in moving domain. Computed
solutions on section aa for lime t = 0.10
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35

30

25

20

15

10

5

o

Time' 0.25
__ Fint order

........ Enriched

- Poiseuille flow
(Iiled domain)

2.0 4.0 6.0 8.0 10.0 12.0

Figure 15.7 Flow problem in moving domain. Computed
solutions on scelion aa for lime t = 0.25

and the corresponding body force

.r. = 2. I,= 0

and the pressure is gi.ven by p = O.
The parameters used for the solution are: time-step = 0.05; penalty parametcr

& = lOs; coefficient b = 0.25.
Figure 15.5 shows the mesh enrichmcnt at timcs t = 0.10, 0.25 (the mesh was

the same). Figures 15.6 and 15.7 present the computed velocity profiles for the
u-components of thc fluid velocity along sections a-a.
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