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Abstract

In this work we provide an extension of the classical von Neumann stability analysis for

high-order accurate discontinuous Galerkin methods applied to generalized nonlinear convection-

reaction-diffusion systems. We provide a partial linearization under which a sufficient condition

emerges that guarantees stability in this context. The stability behavior of these systems is

then closely analyzed relative to Runge-Kutta Chebyshev (RKC) and strong stability preserving

(RKSSP) temporal discretizations over a nonlinear system of reactive compressible gases arising

in the study of atmospheric chemistry.

1 Introduction

In numerical methods, stability analysis is an essential tool for understanding and controlling the
behavior of equation systems. Generally stability analysis can be applied to implicit or explicit
timestepping methods, where the notions of both absolute and relative stability have been well-
characterized [21]. The absolute stability region of a method can be determined from the region
where the amplification factor of the method is bounded above by unity, while the relative stability is
a more nuanced concept requiring an understanding of specific aspects of the solution itself, leading
to the concept of, for example, order stars [46], which not only characterize stability of the method,
but also limitations on its accuracy.

In explicit timestepping methods, two often complementary ways of approaching the temporal
stability of a particular evolving system of equations is by way of either identifying the relevant CFL
condition, or alternatively, by determining the von Neumann stability constraints as determined
from the region of absolute stability; where, in the simplest of cases, the two can be shown to
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2 Nonlinear Stability

coincide. It is, however, also frequently the case that the von Neumann stability timestepping
constraint is more strict than the derived CFL-type constraint [42].

The von Neumann stability analysis, in particular, has been applied in broad contexts for de-
veloping an understanding of how the characteristic eigenstructure of a particular system can be
used to predict and preserve the stability behavior of a numerical method. These techniques have
been extended to high-order accurate models and primarily developed and analyzed in the context
of linear hyperbolic conservation laws [12, 17, 19, 20]. The goal of this work is to extend the classi-
cal von Neumann analysis to support generalized nonlinear convection-reaction-diffusion equations
discretized via high-order accurate discontinuous Galerkin methods.

We start by considering a generic equation of the form u
t

� L = 0, where L is a nonlinear
differential operator. In the case where L is linear and hyperbolic the situation is fairly well-
understood in the numerical setting (see for example [17, 19] in the case of scalar transport),
and total variation diminishing schemes such as strong stability preserving schemes are often very
effective at recovering linear stability of the solution to a fixed order of accuracy. However, when L
is a nonlinear operator that includes nonlinear reactive/source terms, nonlinear convection terms,
as well as nonlinear diffusion terms, the situation can be more complicated.

In this present work, we consider initial-boundary value problems that can be broadly written
as a system of nonlinear convection-diffusion-reaction equations, of the form,

@

t

u

j

(x, t) = L
j

(@2
x

u(x, t), @
x

u(x, t),u(x, t), t), (x, t) 2 ⌦⇥ (0, T ), j = 1, . . . , N,

u(x, 0) = u0, (x, t) 2 ⌦,

u(x, t) = u
b

(x, t) 2 @⌦⇥ (0, T ).

(1.1)

Here u = (u1, . . . , uN )> is the state vector, and the physical domain ⌦ ⇢ R is an open bounded
interval. An intuitive way of thinking about (1.1) is by decomposing the nonlinear operator into its
component parts, such that:

u
t

= LR + LD + LC , 8t 2 (0, T ) (1.2)

where LR = LR(u), LD = LD(u,u
x

,u
xx

), and LC = LC (u,u
x

) are reactive, and divergence form
diffusive and convective operators, respectively. In this work these operators correspond to the
mathematical concepts of nonlinear subsystems of ODEs (i.e. the reactive subsystem), parabolic-
like PDEs (i.e. the diffusion subsystems), and hyperbolic-like PDEs (i.e. the convection subsystems).
It is important to recognize that the nonlinearity in these subsystems tends to lead to dynamics
that are not purely hyperbolic (or parabolic), etc.

The basic behavior of the pure subsystems (i.e. of type reactive, parabolic, and hyperbolic) is
reasonably well-characterized in comparison to the nonlinear mixed equation (1.2). For example,
parabolic subsystems of the form u

t

= LD are known to be rather stiff numerically, and to produce
highly stringent CFL-type timestepping restrictions. Similarly reactive subsystems can be reduced
to nonlinear first-order ordinary differential equations u

t

= LR , where the Jacobian matrix of this
operator has indeterminate spectrum (in contrast to purely hyperbolic and parabolic operators,
which are always real-valued), and is also often characterized by numerical stiffness.

It is, however, not infrequently the case in nonlinear application models that convection-diffusion-
reaction systems are treated as dominated (and as a consequence completely determined) by one
of these “pure-form” solutions, viz. convection-dominated flows being treated as purely “hyperbolic
systems.” Though this can be both a convenient as well as important simplifying assumption, it
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can also, when done without completely determining the full impact of the subordinate subsys-
tem (for example, the parabolic subsystem in a convection-dominated flow), lead to unexpected
and unpredictable stability behavior. For example, in concert with parabolic subsystems, cou-
pled reaction-diffusion can readily lead, in even simple cases, to traveling wave-form solutions (e.g.
shockwave-type structures with zero wavespeed [34]), demonstrating locally varying spectrum (see
for example the Poincare-Lyapunov Theorem), and even nonintegrable solution behavior [27].

Thus, while it can be tempting to view these three subsystems as distinct, and while it can even
be done explicitly (e.g. numerically up to a formal “splitting error”) by way of a fractional multistep
operator splitting method [8, 16, 30, 36], it is important to note that it is often the interactions
between the three subsystems that ultimately characterize the signature model behavior of the
coupled problem, and thus determine the stability properties of the flow. This interacting aspect
of nonlinearly-coupled subsystems can lead to dynamics that can show very different behaviors
than that of the pure subsystems they are comprised of. However, just as importantly, this is also
not always the case, in that coupled subsystems can also be truly dominated by one of the pure
subsystems to such an extent that neglecting contributions from the subordinate dynamics can,
under certain circumstances, be absolutely essential to fully optimizing performance.

This nuanced, and delicate, solution behavior is perhaps underscored by the broad array of
application models subsumed by the system of equations (1.2). Indeed the purview of applications
described under the general description of nonlinear systems of convection-diffusion-reaction equa-
tions is remarkably vast. For example, many standard models in continuum mechanics fit within
this designation, including: multicomponent reactive Navier-Stokes [39], two-fluid plasma [24], MHD
[37], and reduced plasma fluid models [10], shallow water equations [7], morphodynamics [18], first
order acoustics and scattering [40], Maxwell’s equations in classical electrodynamics [1], and so
forth. However, the scope of convection-diffusion-reaction systems is not restricted to classical con-
tinuum models, but extends to statistical representations as well, such as those frequently used in
biological [25, 45] and chemical applications [27]. The scope of these systems even extends to full
phase space dynamics, such as those encoded by the Fokker-Planck [22] and Vlasov-Poisson [14]
equations, which themselves span fields ranging from the molecular description of fluids, plasmas,
and gases [6, 11, 15], to the collective behavior of aggregates with individual agency, as demonstrated
in models arising in sociology and economics [29], etc.

Though nonlinear convection-diffusion-reaction equation are quite common, the classical von
Neumann stability analysis is not, in the standard sense, directly applicable to such nonlinear
problems. In practice, the lack of rigorous stability results in such cases, can lead practitioners to
approximate CFL-type conditions derived for complicated models using relatively simple heuristic
arguments. Indeed, these heuristics can fail to provide the strict estimates desired for guaranteeing
global stability. In this paper, we present a systematic approach for generalizing a von Neumann-like
stability analysis in the context of nonlinear convection-diffusion-reaction systems of the form (1.2),
that have been spatially discretized using discontinuous Galerkin methods. In particular, we develop
a systematic procedure that can be used in concert with the DG spatial discretization to partially
linearize any equation of the form (1.2), such that nonlinear stability conditions can be computed,
and ultimately used to determine lower bounds on the necessary timestep size dt needed to guarantee
stability of the method. Throughout our numerical tests, we examine both the explicit Runge-Kutta
Chebyshev (RKC) and strong stability preserving (RKSSP) temporal discretizations, and illustrate
their different behaviors relative to different physical regimes.

It should be further noted here that the lack of CFL inequalities, and/or von Neumann stability
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estimates on the timestep in these nonlinear problems, should not be taken as an indication that
additional forms of temporal stability are not known, and of substantial practical importance. For
example, as discussed in our previous work [27], fractional multistepping can be performed outright
up to “splitting error,” where the split form of the operators can then be solved using mixed IMEX
(implicit/explicit) type methods [31] and/or implicit Integration Factor (IF) methods [23], for ex-
ample. When these methods are applied linear stability results follow due, in part, to implicit time
integration in “stiff” terms with fixed order splitting assumptions, etc. The forms of stability that
follow, such as A-stable, C-stable, and L-stable methods, require additional assumptions on the
linearity of the operator L

j

, even when the sign of the operator is “indefinite” [31]. In this paper,
we do not perform operator splitting, or for that matter make additional constraints on the non-
linearity of the operators of the subsystems (or the signs of their eigenvalues), but rather develop a
framework to determine lower bounds on the necessary timestep size dt needed to preserve nonlinear
stability of an explicit timestepping method assuming a potentially highly nonlinear dynamics with
indeterminant nonlinear coupling. In other words, the framework developed here can also be used
to determine whether operator splitting, and/or implicit timestepping, might be necessary given
a nonlinear system of equations. In this sense, the results in this paper can be viewed as a guide
for developing a deeper analytic framework around the numerical behavior of nonlinear systems of
equations discretized using discontinuous Galerkin methods.

The paper begins in Section 2.1 by introducing the discontinuous Galerkin spatial discretization,
where the standard approximation spaces are reviewed. In Section 2.2 the variational form of (1.2)
is derived in full, where the details of this derivation become important for the development of the
stability results to follow. In Section 2.3 the temporal discretization procedures are discussed, where
in this paper we restrict to two basic temporal discretization methods: the RKSSP and the RKC
schemes. Section 3 is dedicated to the main stability theorem of the paper. In Section 3.1 we show
how a partial linearization of the system is enough to reformulate the problem into a form that is
fully amenable to classical-type von Neumann stability analysis. In Section 3.2 the von Neumann
analysis is performed on the system, which follows immediately from Section 3.1. Finally, in Section
3.3 we present a nonlinear stability theorem, predicated on a discrete nonlinear stability condition.
This theorem is enough to guarantee stability in nonlinear convection-diffusion-reaction systems 1.2.
Section 5.1 characterizes a physical problem arising in atmospheric chemistry. This problem utilizes
a reduced form of the reactive multicomponent Navier-Stokes equations, where some of the basic
mathematical properties of this system are discussed. In Section 5 the basic numerical behavior of
the system from Section 5.1 is presented, and some of the relevant physical regimes are discussed.
Finally, in Section 5.2 the stability of these nonlinear systems is evaluated closely, where multiple
numerical experiments are performed, along with insight and discussion about their meaning and
relationship to both the physical and theoretical aspects of the system. In Section 6 we conclude,
and discuss some remaining open problems and future directions.

2 Discretization Schemes

In this Section we discuss the discretization schemes used throughout the paper. The discontinuous
Galerkin method is used for the spatial discretization, which is then utilized to recast the system
(1.2) into its variational form. The temporal discretizations used in this paper are the classical
strong stability preserving Runge-Kutta schemes (RKSSP) and the “optimal thin region stability”
preserving, Runge-Kutta Chebyshev (RKC) schemes.



Discretization Schemes 5

2.1 Spatial Discretization in Classical Discontinuous Galerkin Methods

Consider a bounded open interval ⌦ ⇢ R with boundary @⌦ = �, and given T > 0, we let
Q

T

= ((0, T ) ⇥ ⌦). Let ⌦
h

denote the partition of the discretization of ⌦ into a finite number of
subintervals ⌦

e1 ,⌦e2 , . . . ,⌦e` . Here we define the mesh width h, and let �
ij

denote the boundary
shared by two neighboring elements ⌦

ei and ⌦
ej . Finally let ⌅(i) denote the indexing set spanning

the left and right shared boundary of each element ⌦
ei , such that @⌦

ei =
S

j2⌅(i) �ij

.

We are interested in obtaining an approximate solution to u at time t on the finite dimensional
space of discontinuous piecewise polynomial functions over ⌦ restricted to T

h

, given as

S

p

h

(⌦
h

,T
h

) = {v : v|⌦ei
2 Pp(⌦

ei), 8⌦
ei 2 T

h

}

where Pp(⌦
ei) the space of polynomials of degree less than or equal to p defined on ⌦

ei .
Choosing a set of degree p polynomial basis functions N

l

2 Pp(G
i

) for l = 0, . . . , n
p

the corre-
sponding degrees of freedom in the nodal basis, we can denote the state vector at time t over ⌦

h

,
by

u

h

(x, t) =

np
X

l=0

u

i

h

(xi
l

, t)N i

l

(x), 8x 2 ⌦
ei ,

where N

i

l

are the finite element shape functions, and u

i

l

correspond to the nodal coordinates. The
finite dimensional test functions '

h

are characterized by

'

h

(x) =

np
X

l=0

'

i

l

N

i

l

(x), 8x 2 ⌦
ei ,

where '

i

`

are the nodal values of the test functions in each ⌦
ei . It should be noted that all compu-

tations below follow through choosing a modal basis as well.

2.2 Variational Form of the System

Using the definitions from Section 2.1 we can recast (1.1) into a local variational form1:

d

dt

Z

⌦ei

'

h

u

j

(x, t) dx =

Z

⌦ei

'

h

L
j

(@k

x

u(x, t), u(x, t), t) dx

=

Z

⌦ei

'

h

LRj

(u(x, t), t) dx+

Z

⌦ei

'

h

LDj

(@2
x

u(x, t), t) dx

+

Z

⌦ei

'

h

LC j

(@
x

u(x, t), u(x, t), t) dx,

(2.1)

where '

h

is chosen as a test function. We proceed by linearizing (1.1) in the mixed form, by defining
the j auxiliary variables

�

j

(x, t) = @

x

u

j

(x, t), (2.2)

1
Note that here we choose the weak mixed formulation for convenience, but the resulting theory can be easily

shown to work more broadly, e.g. the strong form mixed formulation.
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such that we can rewrite (2.1) as

d

dt

Z

⌦ei

'

h

u

j

(x, t) dx =

Z

⌦ei

'

h

LRj

(u(x, t), t) dx+

Z

⌦ei

'

h

LDj

(@
x

�(x, t), t) dx

+

Z

⌦ei

'

h

LC j

(@
x

u(x, t), u(x, t), t) dx,
(2.3)

and the auxiliary weak form of (2.2) satisfies
Z

⌦ei

'

h

�

j

(x, t) dx =

Z

⌦ei

@

x

('
h

u

j

(x, t)) dx�
Z

⌦ei

u

j

(x, t)@
x

'

h

dx. (2.4)

The standard discrete approximations follow in each term of (2.1), where we only draw attention
to the convection and diffusion terms. First the convection term is integrated by parts to recover
the interelement fluxes. That is, componentwise we can write

Z

⌦ei

'

h

LC j

(@
x

u(x, t), u(x, t), t) dx =

Z

⌦ei

@

x

('
h

f

j

(u(x, t)) dx�
Z

⌦ei

f

j

(u(x, t))@
x

'

h

dx,

where the convective numerical flux F̂

i`

will be represented by,

F

ij

:=
X

`2⌅(i)

Z

�i`

F̂

i`

(u
h

|�i` , uh|�`i , ni`

)'
h

|�i`dS ⇡
Z

@⌦ei

'

h

f

j

(u(x, t)ndS. (2.5)

Here n

ij

is the unit outward normal to @⌦
ei on �

i`

, while '|�i`
and '|�`i

denote the values of ' on
�
`j

considered from the interior and the exterior of ⌦
ei , respectively. Here and below we will choose

F̂

i`

from the usual class of monotone numerical fluxes. Notice that the form of (2.5) presumes an
indeterminate function f satisfying LC j

(@
x

u(x, t), u(x, t), t) = @

x

f

j

.
Similarly, the diffusive flux is integrated by parts,

Z

⌦ei

'

h

LDj

(@
x

u(x, t), u(x, t), t) dx =

Z

⌦ei

@

x

('
h

g

j

(�(x, t), u(x, t))) dx

�
Z

⌦ei

g

j

(�(x, t), u(x, t))@
x

'

h

dx,

(2.6)

where the diffusive flux Ĝ

i`

is characterized by

G

ij

:=
X

`2⌅(i)

Z

�i`

Ĝ

i`

(�
h

|�i` ,�h|�`i , uh|�i` , uh|�`i , ni`

)'
h

|�ijdS ⇡
Z

@⌦ei

'

h

g

j

(�(x, t), u(x, t))ndS.

As above, we again assume some indeterminate function g, such that LDj

(@
x

u(x, t), u(x, t), t) = @

x

g.
The exact numerical form, as so determined by a choice of flux, will ultimately be chosen from

the broad class of unified fluxes [2, 3]. Finally, in the usual way as above, the auxiliary flux X̂

i`

is
represented by:

X

ij

:=
X

`2⌅(i)

Z

�i`

X̂

i`

(u
h

|�i` , uh|�`i , ni`

)'
h

|�i`dS ⇡
Z

⌦ei

@

x

('
h

u(x, t)) dx.
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Using the above for each species j we can now write the semidiscrete form of (1.2) as

d

dt

Z

⌦ei

'

h

u

h

j

dx =

Z

⌦ei

'

h

LRj

(u
h

, t) dx+F

ij

+G

ij

�
Z

⌦ei

f

j

(u
h

)@
x

'

h

dx�
Z

⌦ei

g

j

(�
h

, u

h

)@
x

'

h

dx,

Z

⌦ei

'

h

�

h

j

dx = X

ij

�
Z

⌦ei

u

h

j

@

x

'

h

dx.

(2.7)

2.3 Temporal Discretization: RKSSP and RKC

In this section, we describe the time discretization schemes for the semi-discrete version of (1.1),

Muh

t

= L�uh(t)
�

, (2.8)

where M is the mass matrix associated to the finite element spatial discretization of (1.1). Below
we briefly discuss the Runge-Kutta schemes for time integration of the system.

RKSSP schemes: Consider a system of the form

u

t

= L(u).
Here we describe the family of SSP (strong stability preserving) Runge-Kutta schemes, as discussed
in [32, 33], and as originally designed for hyperbolic type problems [13]. We denote a generalized
s stage of order � SSP Runge-Kutta method by RKSSP(s, �). The RKSSP(s, �) can be written in
the following form:

u

(0) = u

n

,

u

(i) =
i�1
X

r=0

(↵
ir

u

r +�t�

ir

Lr) , for i = 1, . . . , s

u

n+1 = u

(s)
.

Here ↵

ir

and �

ir

are coefficients, Lr = L(ur, tn+�

r

�t) and the solution at the nth timestep is given
as u

n = u|t=t

n and at the (n+ 1)-st timestep by u

n+1 = u|t=t

n+1 , with t

n+1 = t

n +�t. The second
argument in Lr corresponds to the time-lag. That is �

r

=
P

r�1
l=0 µ

rl

, where µ
ir

= �

ir

+
P

i�1
l=r+1 µlr

↵

il

,
where we have taken that ↵

ir

� 0 satisfying
P

i�1
r=0 ↵ir

= 1.

RKC schemes: To recover the so-called “optimal thin region stability” (see [41, 44]) originally
designed for parabolic type problems [43], we alternatively adopt the finite damped �-staged Runge-
Kutta Chebyshev (RKC) method of second order, which can be written as follows:

u

(0) = u

n

,

u

(1) = u

(0) +�t

n

µ̃1L0
,

u

(j) = (1� µ̂

j

� ⌫̂

j

)u(0) + µ̂

j

u

(j�1) + ⌫̂

j

u

(j�2) +�t

n

µ̃

j

Lj�1 +�t

n

�̃

j

L0
, for j 2 {2, . . . ,�},

u

n+1 = u

(�)
.
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Here, µ̃1 = !1!
�1
0 and for each j 2 {2, . . . ,�}:

µ̂

j

=
2b̂

j

!0

b̂

j�1

, ⌫̂

j

=
�b̂

j

b̂

j�2

, µ̃

j

=
2b̂

j

!1

b̂

j�1

�̃

j

= �a

j�1µ̃j

,

where a

j

= 1� b

j

T

j

(!0), b̂0 = b̂2, b̂1 = !

�1
0 b̂

j

= T

00
j

(!0)T
0
j

(!0)
�2

, for j 2 {2, . . . ,�},
with !0 = 1 + ✏�

�2
, !1 = T

0
�

(!0)T
00
�

(!0)
�1

,

where the T

j

are the Chebyshev polynomials of the first kind, and U

j

the Chebyshev polynomials
of the second kind which define the derivatives, given by the recursion relations:

T0(x) = 1, T1(x) = x, T

j

(x) = 2xT
j�1(x)� T

j�2(x) for j 2 {2, . . . ,�},
U0(x) = 1, U1(x) = 2x, U

j

(x) = 2xU
j�1(x)� U

j�2(x) for j 2 {2, . . . ,�},

T

0
j

(x) = jU

j�1, T

00
j

(x) =

✓

j

(j + 1)T
j

� U

j

x

2 � 1

◆

for j 2 {2, . . . ,�}.

Finally the operator Lj is evaluated at time Lj(tn + c̃

j

�t

n), where the c̃

j

are given by:

c0 = 0, c1 =
1
4c2!

�1
0 , c

j

=
T

0
�

(!0)T 00
j

(!0)

T

00
�

(!0)T 0
j

(!0)
⇡ j

2 � 1

�

2 � 1
for j 2 {2, . . . ,�� 1}, c

�

= 1.

Since we consider only second order RKC methods, in what follows, we denote by RKC(s) an s-stage
RKC scheme.

Traditionally, stability of RK schemes is studied through linear stability analysis where one
considers the linear ODE u

t

= �u. The stability region of an RK scheme is obtained by considering
the corresponding characteristic polynomial (also referred to as the stability polynomial), P (z),
with z = �t�, given by

Sstab = {z 2 C : |P (z)|  1}.
For the purposes of illustration, in the top row of Fig. 1, we show the stability regions of second
order RKSSP and RKC schemes evaluated at different stages. In the bottom row of Fig. 1, we show
the dependence of the stability region of RKC(5) on the parameter ✏. Notice that as ✏ ! 1, we
recover the stability region of the RKSSP(2,5).

Note that in the case of a linear system of the form u
t

= Lu, with the state vector u(t) 2 Rn

and L 2 Rn⇥n, one conventionally studies the stability region of the method by considering the
eigenvalues of L. More generally, for a nonlinear system, u

t

= F (u), with u : R+ ! V ⇢ Rn, to
ensure stability, we consider the set

E = {�t� : � is an eigenvalue of JuF (u),Re(�)  0,u 2 V },

and require that E ⇢ Sstab; see e.g., [41] for more details. In the present work, we study the stability
of the RK schemes for fully coupled nonlinear systems of type (1.1). More precisely, we study the
stability of the semi-discrete system (2.8), where the right hand side operator is given by the spatial
discretization of a nonlinear system of PDEs. In our study we use an approach motivated by a
classical von Neumann analysis (see e.g., [38]), and the approach taken in [17, 19] as discussed in
detail in Section 3.
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Figure 1: Top row: the stability regions for RKSSP(2, s) and RKC(s) with stages s = 3, . . . , 6. The
RKC schemes use ✏ = 0.15. Bottom row: the effect of the parameter ✏ on the stability region of the
RKC(5) scheme.

3 A Framework for Stability Analysis in Nonlinear Systems

The strategy for developing a framework for the stability analysis will be in keeping with a gener-
alized approach to the classical von Neumann stability analysis. The approach will be to partially
linearize the operator L, and study the stability theory as a local signature of the nonlinear sys-
tem. Once the Fourier components of the partially linearized operator are recovered, a simple
transformation of the form of the equation allows the proof of a nonlinear stability theorem for
convection-diffusion-reaction systems of the form (1.2).

3.1 Partial Linearization of the Operators

Here we will restrict to the Legendre polynomial basis, denoted by {'
l

}np

l=1, for the test space. Note
that this choice is relatively arbitrary, and the following analysis remains valid for any orthogonal
basis. Recall that the Legendre polynomials satisfy

R 1
�1 'l

'

m

= 2/(2l+1)�
lm

for l,m 2 {1, . . . , n
p

}.
Using the orthogonality of the basis, and setting u

i

jl

to mean the lth degree of freedom of the jth
species component on the ith element, we can rewrite (2.7) in terms of a single nodal component l,
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as
d

dt

u

i

jl

(t) =
2l + 1

h

⇢

Z

⌦ei

'

l

(x)LRj

(u
h

, t) dx+ F

ijl

+G

ijl

�
Z

⌦ei

f

j

(u
h

)@
x

'

l

(x) dx�
Z

⌦ei

g

j

(�
h

, u

h

)@
x

'

l

(x) dx

�

.

(3.1)

The goal now is to factor the coefficients of u through the nonlinear system. Towards this, we
make use of the following basic partial linearization assumptions on the first order variation in the
Taylor series expansion of the fluxes:

f

j

(u
h

) ⇡ (J
u

f

j

)uh
j

, LRj

(u
h

) ⇡ (J
u

LRj

)uh
j

, and g

j

(�
h

, u

h

) ⇡ (Jru

g

j

)�
j

, (3.2)

where the notation used for these Jacobian products is explained/defined below.
To arrive at these partial linearizations, one must use a Taylor series expansion about a point,

and restrict to the first order variation. For example, consider the convective flux f :

f(u
h

) ⇡ f(u0) + Jf(u0)(u
h

� u0)

The linearization point u0 is eventually taken as the previous timestep u0 = u

n�1. The above
relation also satisfies

f(u
h

) ⇡ (Jf)u
h

+ b,

where b does not depend on u

h

. In the context of stability analysis we will be focusing on the linear
part, f̃(u

h

) ⇡ (Jf)u
h

, where f̃(u
h

) is an isometry preserving the first order variation. As a result
we drop the tilde, and notice that what is meant by the jth entry of f(u

h

) is

f

j

(u
h

) ⇡ (J
u

f

j

)uh
j

,

where j is the species index, making (J
u

f

j

)uh
j

the jth entry in the matrix-vector multiplication
(Jf)u

h

. Notice that this notation should be understood as,

(J
u

f

j

)uh
j

:=
⇣

(J
u

f)uh
⌘

j

=
X

k

(J
u

f)
jk

u

h

k

=

 

X

k

(J
u

f)
jk

u

h

k

u

h

j

!

u

h

j

, (3.3)

where the last equality assumes u

h

j

> 0, though note that this assumption is never actually needed
in the actual computation described in Section 3.2. This is because here we have written the terms
“componentwise” to connect with the standard theoretical presentation [20], though when actually
computing these terms, we naturally sum over the component index j first, making the Jacobian
factorization trivial. The other two terms in (3.2) follow in a very similar way.

Using these approximations, the convective flux term (2.5) is now able to be linearly decomposed
into a contribution from a base ⌦

ei and neighboring ⌦
e` elements over each node l:

F

ijl

⇡
Z

@⌦ei

(J
u

f

j

)uh
j

'

l

ndS

⇡
X

`2⌅(i)

Z

�i`

F

ij`

(u
h

|�i` , uh|�`i , ni`

)uh
j

|�i`'l

|�i`dS.
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For simplicity, we choose F

ij`

using a classical monotone flux, so that it linearly depends on the
stencil and can clearly be split over the base element component and the neighboring element
component in terms of some indeterminant F 0 (up to the exact choice of numerical flux), such that

X

`2⌅(i)

Z

�i`

F

ij`

(u
h

|�i` , uh|�`i , ni`

)uh
j

|�i`'l

|�i`dS =

0

@

np
X

k,m

F

0
jkm

u

m

'

l

1

A

�

�

�

�

�i`

+

0

@

np
X

k,m

F

0
jkm

u

m

'

l

1

A

�

�

�

�

�`i

.

(3.4)
Note that k,m, and l all span the nodal degrees of freedom here, and thus F

0
jkm

is an N ⇥ (n
p

+
1)⇥ (n

p

+ 1) tensor. Using this notation as well as (3.2) we can recast (3.1) as

d

dt

u

i

jl

=
2l + 1

h

(

Z

⌦ei

'

l

(J
u

LRj

)uh
j

dx+

0

@

np
X

k,m

F

0
jkm

u

m

'

l

1

A

�

�

�

�

�i`

+

0

@

np
X

k,m

F

0
jkm

u

m

'

l

1

A

�

�

�

�

�`i

+G

ijl

�
Z

⌦ei

(J
u

f

j

)uh
j

@

x

'

l

dx�
Z

⌦ei

g

j

(�h

k

, u

h

)@
x

'

l

dx

)

.

(3.5)

Notice that all that has been done here is that numerical fluxes have been split into components
relative to element ownership. So, for example, the different contributions from these fluxes, such
as classical jump terms, are seen simply by summing over species index j and nodal index l:

Z

@⌦i

Jui
h

K'
h

ndS =

Z

@⌦i

(ui
h

|�i` � u

i

h

|�`i)'h

ndS

=

0

@

np
X

k,m

F

0
km

u

m

'

h

1

A

�

�

�

�

�i`

+

0

@

np
X

k,m

F

0
km

u

m

'

h

1

A

�

�

�

�

�`i

,

where the F

0’s would all be unity in this simple case, and so forth.
It remains to factor the diffusive terms G

ijl

. These terms follow in a very similar way to the
convective flux terms F

ijl

, except for now we have to factor through the two separate fluxes that
linearize the second order operator; namely the diffusive flux G

ijl

, and the auxiliary flux X

ijl

.
Towards this end notice that (2.4) factors through the diffusive fluxes, where first

�

j

(t) = M

�1
j

 

Z

@⌦ei

'

h

u

h

j

ndS �
Z

⌦ei

u

h

j

@

x

'

h

dx

!

.

Note that here M

j

is the diagonal (species-wise) DG mass matrix. Using the same technique as for
the convective flux above, this term can be rewritten in each node l over the local stencil, as

�

jl

=
2l + 1

h

 



np
X

k

X

0
jk

u

k

'

l

�

�

�

�

�

�i`

+



np
X

k

X

0
jk

u

k

'

l

�

�

�

�

�

�`i

�
Z

⌦ei

u

h

j

@

x

'

l

dx

!

. (3.6)
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The diffusive fluxes are now written in terms of these factored �

jl

’s, such that we have

G

ijl

⇡
Z

@⌦ei

'

l

g

j

(�, u)ndS

⇡
Z

@⌦ei

'

l

(Jru

g

j

)�
j

ndS

⇡
Z

@⌦ei

'

l

np
X

k,m

[Jru

g

j

]
km

�

jk

ndS

⇡
X

`2⌅(i)

Z

�i`

G

ij`

(�
h

|�i` ,�h|�`i , uh|�i` , uh|�`i , ni`

)�h

j

|�ij'l

|�ijdS.

(3.7)

The crucial observation here, is that �

h

j

in (3.7) is determined by (3.6), so that the edge diffusive
term in (3.9) demonstrates a domain of dependence that is two layers of elements thick from the
base element ⌦

ei . That is, since the factored �

jl

depends on a local stencil of elements (3.6), the
G

0s, as determined in the same way as the F

0s,

X

`2⌅(i)

Z

�i`

G

ij`

(�
h

|�i` ,�h|�`i , uh|�i` , uh|�`i , ni`

)�h

j

|�ij'l

|�ijdS

=

0

@

np
X

k,m

G

0
jkm

u

m

'

l

1

A

�

�

�

�

�i`b

+

0

@

np
X

k,m

G

0
jkm

u

m

'

l

1

A

�

�

�

�

�b`i

(3.8)

depend on a local stencil of elements that is two elements thick, precisely as one would expect.
The notation in (3.8) �

i`b

is used to denote this multilayer dependence; that is, the evaluation
�
i`b

indicates that G

0 depends on a two-element thick local stencil. The evaluation for element ⌦
i

depends on its neighbor ⌦
`

and the neighbor of its neighbors ⌦
b

. Finally, as a consequence, we can
rewrite the fully factored system

d

dt

u

i

jl

=
2l + 1

h

(

Z

⌦ei

'

l

(J
u

LRj

)uh
j

dx+

0

@

np
X

k,m

F

0
jkm

u

m

'

l

1

A

�

�

�

�

�i`

+

0

@

np
X

k,m

F

0
jkm

u

m

'

l

1

A

�

�

�

�

�`i

+

0

@

np
X

k,m

G

0
jkm

u

m

'

l

1

A

�

�

�

�

�i`b

+

0

@

np
X

k,m

G

0
jkm

u

m

'

l

1

A

�

�

�

�

�b`i

�
Z

⌦ei

(J
u

f

j

)uh
j

@

x

'

l

dx�
Z

⌦ei

np
X

k,m

[Jru

g

j

]
km

�

jk

'

k

@

x

'

l

dx

)

.

(3.9)

3.2 Nonlinear Stability Analysis

Now, having rewritten the nonlinear system in the above form is enough to reformulate the system
using a relatively straightforward von Neumann analysis. Namely, after summing over nodes l, and
suppressing the element index i and the component index j on u, then using the SSP scheme from
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Section 2.3 and the notation of (1.1), the first stage can be written for the left side of (3.9):

u(0)|⌦ei
=un|⌦ei

,

u(1)|⌦ei
=↵10u

(0)|⌦ei
+�t�10L0

⇣

u(0)|⌦ei
,L
⌘

.

(3.10)

This means we can decompose the right hand side operator in the following way,

u(0)|⌦ei
=un|⌦ei

,

u(1)|⌦ei
=A(L̃,LR)u(0)|⌦ei

+B(L̃)u(0)|�ij + C(L̃)u(0)|�ji

+D(L̃)u(0)|⌦ej
+ E(L̃)u(0)|�jk + F (L̃)u(0)|�kj ,

(3.11)

where the matrices A,B,C,D,E, and F can be explicitly formed relative to a choice of L̃(LD ,LC ).
Note as well that the base element here is denoted with index i, its first neighbor by index j, and
the neighbor of its first neighbor by index k.

For this first stage, we proceed by considering the first Fourier component of the now factored
solution from (3.11) of every element j, u(1)

j

= ũ
j

e

i#j , where ũ
j

is a vector of length (n
p

+ 1)
in every component, or a matrix of size (n

p

+ 1) ⇥ N over the system. Note that i denotes the
imaginary unit, i

2 = �1, and here we take #

j

= j⇠�x

j

, given ⇠ the wavenumber. By �x

j

we
mean the characteristic cell metric h

j

= �x

j

for element j. The von Neumann analysis now follows
by simply expanding into Fourier modes. That is, the domain of dependence of the differential
operators are determined using a straightforward application of the Fourier shift property. The
Fourier expansion (and shift) is performed relative to cell ownership as characterized by lengthscale
h

j

, where all spatial dependencies in the coefficient tensors that are smaller than this lengthscale
(i.e. for �x < h

j

) are assumed to effectively decouple relative to the discretized representation.
For more details on As such, the first stage is rewritten over each element j (after including all
neighboring element dependencies in (3.11)) as:

u(1)
j

=
n

Ãj
z }| {

A

j

+B

j

+[

B̃j
z }| {

C

L

j

+D

L

j

+ E

L

j

]e�i#j + [

C̃j
z }| {

C

R

j

+D

R

j

+ E

R

j

]ei#j + F

L

j

e

�2i#j + F

R

j

e

2i#j

o

u(0)
j

.

Here we have used the exhaustive notation C

L and C

R, for example, to denote left and right hand
neighbors in one dimension, respectively, and where Ã

j

, B̃
j

, C̃

j

, F

L

j

and F

R

j

are tensors due to the
linearizations chosen in (3.2) of size (n

p

+ 1)⇥ (n
p

+ 1)⇥N ⇥N .
From here it easily follows that the prefactor for an arbitrary stage RK method becomes the

following tensor as factored in each component:

G

j

= Ã

j

+ B̃

j

e

�i#j + C̃

j

e

i#j + F

L

j

e

�2i#j + F

R

j

e

2i#j
, (3.12)

such that we can write the compact form at timestep t

n+1:

un+1
j

= G

?

j

un

j

. (3.13)

The matrix G

?

j

in (3.13) is now simply a polynomial in G

j

as determined by the RK scheme. For
example, the RKSSP(2, 2) scheme can now be written:

un+1
j

= [12 + 1
2(Gj

)2
| {z }

G

?
j

]un

j

, (3.14)
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where details of formalizing G

?, and and a simple example using Burger’s equations are provided
in Appendix 8.1.

Note that it is further important here to understand the structure of the G and G

? tensors.
As discussed above, these tensors are of size (n

p

+ 1) ⇥ (n
p

+ 1) ⇥ N ⇥ N , meaning that in each
component of the vector solution u = (u1, . . . , uN )T , these correspond to (n

p

+ 1) ⇥ (n
p

+ 1) ⇥N

tensors. For the sake of our spectral analysis below in Section 3.3, we view these tensors of size
(n

p

+ 1)⇥ (n
p

+ 1)⇥N in each component, as N matrices of size (n
p

+ 1)⇥ (n
p

+ 1).

3.3 Discrete Nonlinear Stability Condition

From the above discussion, it is clear that considering a single component l  N of (3.13) at timestep
n+ 1 can be understood to satisfy the form:

un+1
l

=
N

X

j=1

G

?

jl

(tn)un

l

. (3.15)

Now let G

?

jl

= dtG

\

jl

+ , then by definition:

N

X

j=1

G

?

jl

(tn)un

l

=

0

@ +
N

X

j=1

dtG

\

jl

(tn)

1

Aun

l

. (3.16)

Notice that the right hand side of (3.16) is just a first order expansion of the matrix exponential,
such that:

e

PN
j=1 dtG

\
jlun

l

=

0

@ +
N

X

j=1

dtG

\

jl

(tn)

1

Aun

l

+O(dt2).

As a consequence, the classical Trotter formulas [see eq. 6 in [47]] can be applied for each matrix,
such that the error is effectively determined from the residual of the commutators [dtG\

jl

, dtG

\

il

] for
j 6= i in each. That is,

e

PN
j=1 dtG

\
jlun

l

=
N

Y

j=1

e

dtG

\
jlun

l

+O(dt2). (3.17)

Again using a first order expansion of the matrix exponential on the right hand side of (3.17),
followed by a substitution of the definition of G\

jl

, we arrive with,

N

Y

j=1

e

dtG

\
jlun

l

+O(dt2) =
N

Y

j=1

⇣

+ dtG

\

jl

⌘

un

l

+O(dt2)

=
N

Y

j=1

G

?

jl

un

l

+O(dt2),

and this yields the key observation, which is that
N

X

j=1

G

?

jl

(tn)un

l

=
N

Y

j=1

G

?

jl

un

l

+O(dt2).

This observation is used to determine the following discrete nonlinear stability condition.
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Definition 3.1 (Discrete nonlinear stability condition). For any system satisfying (3.15) such that
to first order,

un+1
l

=
N

Y

j=1

G

?

jl

(tn)un

l

,

the discrete nonlinear stability condition is kG?

jl

(tn)k  1 for every l and each j.

Notice now that the operator norm simply provides for each entry that

k
N

Y

j=1

G

?

jl

(tn)k 
N

Y

j=1

kG?

jl

(tn)k,

but since the product norm allows for kG?

jl

(tn)k to be unbounded from both above and below, we
apply instead the discrete nonlinear stability condition.

Now, invoking standard perturbation analysis (see e.g., [4]), by perturbing the initial state
vectors u0

l

with e0
l

, for l 2 {1, . . . , N}, we can denote by "0 the bound,

ke0
l

k  "0, l 2 {1, . . . , N}.
Defining zn through, zn+1

l

=
Q

N

j=1G
?

jl

(tn)zn

l

with z0
l

= u0
l

+ e0
l

, we consider

en
l

= zn

l

� un

l

, n � 1,

and seek a sufficient condition ensuring ken
l

k  ke0
l

k. Notice also that en+1
l

=
Q

N

j=1G
?

jl

(tn)en
l

.
Let us recall that for a d⇥d matrix A, the spectral norm kAk is given by kAk = max

k2{1,...,d} �k(A),
where �

k

(A) are singular values of A. Recall also that, if we denote by �

k

(A), k = 1, . . . , d, the
eigenvalues of A,

max
k2{1,...,d}

|�
k

(A)|  kAk. (3.18)

Theorem 3.2 (Nonlinear stability). Suppose the discrete nonlinear stability condition is satisfied
for every time t

n � 0. Then, we have

ken
i

k  "0, i 2 {1, . . . , N}. (3.19)

Proof. The result follows by induction. Let i be in {1, . . . , N}, and consider the case of n = 1. We
have,

ke1
i

k =
�

�

�

N

Y

j=1

G

?

ij

(t0)e0
j

�

�

�


N

Y

j=1

kG?

ij

(t0)kke0
j

k 
⇢

N

Y

j=1

kG?

ij

(t0)k
�

"0  "0.

For the inductive case, assuming (3.19) holds for n, it easily follows that,

ken+1
i

k =
�

�

�

N

Y

j=1

G

?

ij

(tn)en
j

�

�

�


N

Y

j=1

kG?

ij

(tn)kken
j

k 
⇢

N

Y

j=1

kG?

ij

(tn)k
�

"0  "0.

Recall that �
k

(G?

ij

(tn)) = P (�
k

(G
ij

(tn)) for a polynomial function P of G. Additionally, notice
that by (3.18) we have

max
k2{1,...,N}

|�
k

(G?

ij

(tn))|  kG?

ij

(tn)k.
so that max

k2{1,...,N} |�k

(G?

ij

(tn))|  1 (for all i, j 2 {1, . . . , N} and n � 0) is a necessary condition
for (3.19). Note also that this condition on the magnitude of the eigenvalues is not a sufficient
condition for the temporal stabilization in this context. This can be contrasted with linear advection
for example [17, 19], where here we require the stronger discrete nonlinear stability condition instead.
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4 An Atmospheric Model problem

As an example problem we consider the barotropic compressible multicomponent reactive Navier-
Stokes equations [9, 26, 28, 35] applied to a problem arising in atmospheric chemistry.

4.1 Multicomponent Reactive Navier-Stokes

Considering a barotropic pressure law p(⇢
i

), and a pressure-dependent constitutive relation for the
viscosity ⌘(p), we are interested in solving the following system of equations
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where A = LR is the law of mass action calculated relative to the forward k

f

and backward k

b

reaction rates (in units of m3molecule�1s�1). The mass action law in general satisfies the form
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The molar concentration n

i

of the ith chemical constituent in (4.3), up to a scaling by Avogadro’s
constant N

A

, is just the number density n

i

= N

A

n
i

. We use this convention since, as we will see
below, the reaction rates are often formulated in molar units. The species are given by ⇢

i

= ⇢µ

i

=
m

i

n

i

where µ

i

is the mass fraction of the ith species, and m

i

is the molar mass of the ith species.
The total density is recovered additively ⇢ =

P

i

⇢

i

, while the barotropic pressure law can be written
as a sum of partial pressures p

i

, such that p =
P

i

p

i

=
P

i

⇢

�i
i

, for �

i

the adiabatic index of each
constituent. The viscosity will be taken to satisfy the scalar constitutive law, ⌘ = Cp
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P

i

⇢

i
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⇢ip,
for ↵ a positive constant between zero and one, and C 2 R

+.
The forward and backward stoichiometric coefficients of elementary reaction r 2 N are given by
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2 N , while k
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, k

br

2 R are the respective forward and backward reaction rates of
reaction r. These terms serve to define the mass action A

i

= A
i

(̊n) of the reaction. Moreover, we
denote the indexing sets Rr and Pr as the reactant and product wells Rr ⇢ N and Pr ⇢ N for
reaction r. Then for a reaction indexed by r 2 R, occurring in a chemical reactor R ⇢ N, comprised
of n distinct chemical species M

i

the following system of chemical equations are satisfied,
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Equation (4.1)-(4.2) obey a standard mass conservation principle as the elementary reactions
are balanced, the conservation of atoms in the system is an immediate consequence of (4.4). Let
a
il

be the lth atom of the ith species M
i

, where l 2 Ar is the indexing set Ar = {1, 2, . . . , n
atoms,r

}
of distinct atoms present in each reaction r 2 R. Then the total atom conservation is satisfied for
every atom in every reaction
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r 2 R, l 2 Ar

. (4.5)
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Since the total number of atoms is conserved, so is the total mass in each reaction,
X
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m

i
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=
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8r 2 R. (4.6)

It then immediately follows that integration yields the following bulk conservation principle satisfied
globally:

d

dt

n

X

i=1

Z

⌦
⇢

i

dx = 0. (4.7)

We solve the system (4.1) and (4.2) for the n = 9 fluid of atmospheric gas phase organic halogen
reactions [5, viz. reactions 88 and 89]:

Cl + HC(O)Cl
k1 HCl + ClCO

Cl + CH3OCl
k2 Cl2+CH3O

k3 HCl + CH2OCl
(4.8)

Here high energy chlorine radicals (an important species in ozone depletion) develop due to photodis-
sociation from sufficient actinic flux of UV radiance, and subsequently react with formyl chloride
HC(O)Cl) and methyl hypochlorite (CH3OCl) to produce chlorocarbonyl (ClCO ) radicals, HCl,
chloride gas, and a methoxy (CH3O ) radical. The final product of this reaction is the CH2OCl rad-
ical, which is an important intermediate in the atmospheric oxidation of methyl chloride (CH3Cl),
or chloromethane, the most prevalent halocarbon in the atmosphere, with a global average tropo-
spheric abundance of 600 pptv [48]. It should be noted that as a subsystem (4.8) can be written as
a collection of ordinary differential equations, leading to chaotic dynamics in the reactive subsystem
[27].

4.2 The State Vector Form

So let us take a look at what this means in the above notation. The operator L can now be written
out explicitly relative to ten-vector, u = (⇢v, ⇢1, . . . , ⇢9)>, where

(⇢1, . . . , ⇢9)
> = (Cl ,HCl,Cl2,CH3OCl,CH2OCl ,CH3O ,HC(O)Cl ,ClCO , bath)>.

The convective fluxes are given explicitly as f = (⇢v2, ⇢1v, . . . , ⇢9v)>, the diffusive fluxes as

g = (⌘@
x

v, 0, . . . , 0)>,

and the mass action by
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The convective flux f = (⇢v2 + p, ⇢1v, . . . , ⇢9v)> has the following Jacobian matrix
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2. Similarly the diffusive flux can be written relative to the following matrix:

Jrug = ⌘

✓

⇢

�1 �⇢

�1
u . . . �⇢

�1
u

0 0 . . . 0

◆

,

with the zero-vector 0 of length n. Finally, the Jacobian matrix of the operator LRi

(u
h

(x, t), t) with
respect to (⇢1, . . . , ⇢9)> is written:
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5 Numerical Results and Experiments

Here we present basic numerical behaviors of the system 1.2 given the different spatial and temporal
discretizations described in Section 2. First the basic physical regimes governing the nonlinear
convection-diffusion-reaction system from Section 4 are demonstrated and explained. Next a number
of stability results are presented, with an explanation of how these results relate to both the physical
systems, as well as the nonlinear stability results from Section 3.

5.1 Basic Physics of the Coupled System

The various relevant physical regimes of the system can be evoked by rewriting (4.1)-(4.2) as the
following rescaled initial-boundary problem:
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Figure 2: Here we show a reaction regnant regime, with ↵ = 0.7, 3 = 10�4, the ̃

i

= 0.1, 1 = 1,
2 = 10�4. The mesh includes 40 elements, dt = .26, and h = 1.35.
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Figure 3: The physical flow regimes accessible to the coupled system (4.1)-(4.2).

assuming periodic boundary data, and the consistency condition ⇢1 =
P

i

⇢0,ĩi. The initial state
can be seen from the fluxes in Section 4 to effectively scale the relative dynamic transport in the
subsystems (as discussed in detail below). We also use a rescaled viscosity ⌘ = 3p

�↵

P

i

⇢

i

@

⇢ip for
the same purpose.

In this system we characterize three standard regimes: convection dominated, diffusion domi-
nated, and reaction regnant. These regimes can be formally derived using kinetic theory (see Fig. 3,
and for background see [27]). The three regimes can be qualitatively understood using by way of
the following characterizations: 1) convection dominated flows are those driven by convective fluxes
having a qualitatively “hyperbolic flavor,”, 2) diffusion dominated flows are those driven by diffu-
sive effects (e.g. viscosity) having a qualitatively “parabolic flavor,” and 3) reaction regnant flows
are those driven by an n-coupled system of first order autonomous nonlinear ordinary differential
equations (or nFANODEs, see [27] for more details).

These three regimes elicit the possibility of four additional mixed-state regimes that encompass
large classes of frequently encountered flows in nonlinear application models. A graphical repre-
sentation of these flow relations is provided in Fig. 3. More clearly, systems where the convective
modes of the system have similar scalings to the diffusive modes of the system, but do so without
appreciable reactions, are characterized here as turbulent flows T . For example, single component
high Reynold’s number flows with large eddy viscosity are turbulent flows. When diffusive modes
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Figure 4: The pressure p =
P

i

⇢

�i
i

profiles for a reaction regnant solution (top left), a diffu-
sion/viscosity dominated solution (top right), and a convection dominated solution (bottom center).
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Figure 5: The median reacting surface M(µ) for a labile solution (top left), a turbulent solution
(top right), and a RL

T solution (bottom center).

have similar growth characteristics to reactive modes in the absence of appreciable convection (or
mixing), one obtains a reactive quiescent flow R, as arising in laboratory experiments in non-mixed
(or quiescent) states (see [27]). When the the reactive modes evolve on scales commensurable to
convective scales, where diffusive modes become negligible, the system is characterized by rapidly
changing transitory states, and is characterized as labile L, as seen in explosive detonations, chain
reactions, and flow cascades, etc. Finally, when all three regimes are competing, e.g. when the
convective, diffusive, and reactive modes all occur on similar scalings, the flow is characterized as a
reacting turbulent labile flow RL

T , such as occur (often locally) in high energy reactor systems.
The regimes discussed above are inherent to the nonlinear system (4.1)-(4.2), and indeed to

any nonlinear convection-diffusive-reactive system (1.1). An easy way to force the system between
the different regimes, in order to probe sensitivities and responses within the coupled system, is
to simply scale the 

i

’s and ̃

i

in (5.1)-(5.3). On a basic level, these rescalings effectively weight
the flux jacobians from Section 4, thus amplifying the basic character of the solution relative to
a particular regime. For example, if we increase ̃

i

, then the ⇢

i

are upscaled as a consequence,
implying the entries in the reactive Jacobian matrix J

⇢iA (̊n) get upscaled and the reactive character
of the flow is (at least initially) enhanced. Similarly we can increase the convective nature of the
flow my increasing 1 or 2, though we have to be careful, since increasing the ̃

i

also enhances the
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nonlinearities present in the pressure-driven convection. These inter-related nonlinear responses are
inherent of course to nonlinear dynamics, and come as no surprise. Finally, if we want to enhance
the diffusion regime, we can simply increase the viscosity scaling using 3. It can be noted here that
though initial conditions offer an easy way to navigate between the different regimes, it is by no
means the only way to do so. We could similarly use boundary forcings, or even construct evolution
states that reach perturbed equilibria, or dynamic cascades that push between different regimes. In
general, even for a flow that is initially reaction regnant, the natural dynamics of the system can
evolve in time to, for example, a turbulent regime; or one where the reactions have exhausted to
some metastable equilibrium, and so forth.

Take as an example a reaction regnant solution. In Fig. 2 we show such a solution, where the
chemical subsystem (4.8) completely dominates the dynamics of the system over 100 timesteps. This
is achieved by tuning the  and ̃ parameters, as notated in Fig. 2. In this regime, the dynamical
subsystem determined by LR completely characterizes the relevant temporal constraints. The initial
species densities of the components are given as linear combinations of smooth functions, which can
be seen on Fig. 2, while the initial momentum and total density are chosen as periodic sinusoidal
functions. These conditions are chosen to help differentiate and visualize the influence from the
reaction, the convection, and diffusion diffusion in the various regimes. Similarly, this initial data
drives the solutions shown in figures 4 and 5, where aspects of the regimes above are shown on a
simple example. In Fig. 4 the barotropic pressure profiles are provided over each solution regime.
In this example, in the absence of appreciable convection (e.g. the reaction regnant or quiescent
regimes) the pressure is driven by local perturbations in the reactive species density.

Similarly in Fig. 5, we show the median reaction surface M(µ). This surface is computed over
the mass fractions µ

l

at each quadrature points n

q

and timesteps n

t

according to

M(µ(x
i

, t

j

)) = median
lN

µ

l

(x
i

, t

j

).

Since the bath component µ9, for example, should completely dilute the average value over the N

species (by virtue of the definition of a negligibly inert background chemical bath), the median is a
more natural measure of the effective relative approximate reacting character of the multicomponent
system. In Fig.5 the contour shadings (i.e. the approximate system isoclines of the surface) em-
phasize the relative local variation that the species densities experiences in the presence of strong
reactive components (i.e. labile and RL

T flows), while the turbulent flow shows smooth variance
driven by diffusive-convecting transport. Also note the absence of appreciable chemical repellers
and attractors in the strictly turbulent regime, while when the reactive modes are more impactful,
the topology of the isoclines becomes more interesting.

5.2 Stability Behavior in Nonlinear Systems

Finally let us take a look at the stability properties of the example problem posed in Section 5.1.
Here we use a timestep of dt = h/18 for every case in the figures presented below (unless otherwise
stated), primarily for the sake of comparison between the various regimes, though we do discuss how
the choice of timestep affects the results in the accompanying text. Notably, reducing the timestep
is always a way of achieving stability in the sense of Theorem 3.2 for this example system. The
examples are chosen to highlight the differences between the RKC and RKSSP schemes, as well
as the relationships between the various regimes shown in Fig. 3. Also note that we analyze the
eigenspectrum by restricting to a single element in the center of the domain for each case. The
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Figure 6: For a convection dominated problem we show G

?, with dt = h/18, for the RKSSP(2,5)
on the left, and RKC(5), ✏ = .15 on the right.

eigenspectrum is also provided for each of these examples to highlight how different (and irregular)
the nonlinear spectrum is relative to the strictly linear case (viz. [20]).

In the (nonlinear) convection dominated case we first consider the problem using the notation
from Section 5.1, with 1 = 1, 2 = 0.5, ̃

i

= 10�4 for i = 1, . . . , 8, and ̃9 determined from the
consistency condition. The viscosity scaling is 3 = 10�4. In this setting the reactive modes are
nearly completely suppressed, as are the diffusive modes, leaving primarily the nonlinear convective
fluxes. In Fig. 6 however, even when the reactive and diffusive modes are suppressed, the presence of
the nonlinearity in the convective modes is still enough, it turns out, to show remarkable differences
in the eigenstructures corresponding to the RKC and the RKSSP schemes. Note from Fig. 1 that the
RKC(5) regime with ✏ = 0.15 is a longer and thinner stability region than the RKSSP(2,5) stability
region. In Fig. 6 both regimes are stable at a timestep of dt = h/18, and it is also interesting, as
shown in Fig. 7, that significant nested spectrum are present in both regimes, though at remarkably
different scales in terms of the amplitude of eigenvalues between the RKC and RKSSP, where the
RKC scheme seems to amplify the structural content of the eigenstructure in comparison to the
RKSSP scheme in this case.

In the reaction regnant regime, we set 1 = 20, 2 = 10�4, ̃

i

= 1 for i = 1, . . . , 8 and ̃9

determined from the consistency condition. The viscosity scaling is again taken as 3 = 10�4.
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Figure 7: Here we show nested zooms of G? the RKSSP(2,5) solution to the convection dominated
regime shown in Fig. 6.
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Figure 8: The reaction regnant spectrum of G? for RKSSP(2,5) on the left, and RKC(5), ✏ = 0.15
on the right.
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Notice how different the spectrum is from the (nonlinear) convection dominated regime in Fig. 6
to the reaction regnant regime in Fig. 8. Perhaps the most compelling difference is how suppressed
the reactive modes look to be in the RKSSP(2,5) scheme, in comparison to the RKC(5), ✏ = 0.15
scheme. In fact, this is what we observe to frequently be the case between these two regimes: the
RKSSP scheme seems to produce much less elaborate eigenstructures than the RKC schemes. In
this case however, this is to the benefit of the stability, as the RKSSP(2,5) scheme in Fig. 8 is inside
the stability region while the RKC(5) scheme is not. Nevertheless, both solutions appear robust
at the given timestep when plotting out the state vector of unknowns u, highlighting the fact that
even solutions that may “appear to be stable,” may in fact not be evolving in a fully stable regime.

The diffusion dominated regime is set using the following: 1 = 1, 2 = 10�4, ̃
i

= 10�4 for
i = 1, . . . , 8 with ̃9 determined from the consistency condition, and viscosity scaling 3 = 0.5.
Here we see dramatic differences between the RKC(5), ✏ = 0.15 and RKSSP(2,5) schemes, where
the RKC scheme seems to develop a substantially finer structure, as seen in Fig. 9. Not entirely
surprisingly, the diffusion dominated regime shows a characteristic stiffness in both RK schemes,
where even though the majority of the modes are within the stability region, small perturbations near
Re(z) = 1 send the eigenvalues into slightly unstable regions leading to both schemes being slightly
unstable in the sense of theorem 3.2. Moreover, in contrast to the reaction regnant subsystem, the
diffusion dominated regime seems to be much more sensitive to unstable eigenvalues, where even
very slight perturbations from the stability region are immediately visible in the actual solution u.
It is therefore essential to preserve stabilization in the diffusion dominated system, and in order
to do so, smaller timesteps must be chosen, which is in accordance with the standard approximate
CFL heuristics for linear parabolic-type subproblems.

Mixing together the relatively “pure” regimes (i.e. convection dominated, reaction regnant, and
diffusion dominated from Fig. 3), one immediately see more elaborate behavior in the eigenstructure
of the solution. For the labile example, we set 1 = 20, 2 = 0.5, ̃

i

= 1 for i = 1, . . . , 8 and ̃9

determined from the consistency condition, with viscosity scaling 3 = 10�3. In Fig. 10 it is
clear that the reaction modes are also “extended” by the RKC regime, in comparison to the RKSSP
regime, and moreover, in this example, as with the reaction regnant model in Fig. 8, become slightly
unstable in the sense of Theorem 3.2 only in the RKC, ✏ = 0.15 scheme. However, also as in Fig. 8,
this instability does not lead to a visible loss of stability in the solution u. In this particular example,
one can stabilize these effects easily by increasing ✏ = 5, wherein the thick regions match much more
closely to those in the RKSSP scheme, but some of the thin region spectrum remains. This leads
to a broader, more structured spectrum that is still stable under Theorem 3.2.

In the case of turbulent driven flows, we use the settings: 1 = 1, 2 = 0.5, ̃

i

= 10�4 for
i = 1, . . . , 8, and ̃9 determined from the consistency condition, with viscosity scaling 3 = 0.35.
Here again, the differences caused by the nonlinear pressure term p, that also directly drives the
viscosity ⌘(p), is not particularly subtle. In this case, with dt = h/18, both the RKSSP and RKC
schemes are stable according to Theorem 3.2, though the spectra are radically different, as seen in
Fig. 11.

Finally, in the fully mixed regime RL
T from Fig. 3, we set: 1 = 10, 2 = 0.5, ̃

i

= 1 for
i = 1, . . . , 8, and ̃9 determined from the consistency condition, with viscosity scaling 3 = 0.35. In
this case the differences between the RKSSP(2,5) and the RKC(5), ✏ = 0.15 are a bit surprising.
Here both schemes are unstable according to Theorem 3.2, though the RKC scheme is barely
unstable just along Re(z) > 1, while the RKSSP solution goes entirely unstable, Fig. 12. This
seems to be consistent with the general observation. That is, the RKC scheme seems to show a



28 Nonlinear Stability

Figure 9: The diffusion dominated spectrum of G? for the RKSSP(2,5) regime (left), and RKC(5),
✏ = 0.15 (right).
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Figure 10: The labile spectrum of G

? for the RKSSP(2,5) regime (left), and RKC(5), ✏ = 0.15
(right).
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Figure 11: In turbulent flows, the difference in G

? in the RKSSP(2,5) and RKC(5), ✏ = 0.15 is fairly
dramatic.
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Figure 12: The fully mixed regime RL
T from Fig. 3 shows complicated spectral behavior in G

?.
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Figure 13: For the mixed problem showing G

?, with dt = h/18, for RKC(5), ✏ = 0.15, show
increasing zooms of the spectrum.
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Figure 14: Top row shows the values of kG⇤k over the time steps 1–19 and its corresponding
histogram for the unstable �t = h/20, and the bottom row shows the corresponding values of kG⇤k
for the stable case �t = h/100.
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more complicated eigenstructure, though the presence of this additional structure does not seem to
simultaneously suggest anything about the stability features of the solution, and small instabilities
in RKC seem to be more numerically robust that in RKSSP tests. Indeed, dividing the timestep
by a larger factor, dt = h/45 is enough to stabilize both schemes, and leads to similar results as
those above, where the RKC scheme is stable with a more elaborate spectrum, and the RKSSP
scheme is stable with a less elaborate spectrum. What is remarkable in these nonlinear systems,
however, is the incredible nested complexity in the spectrum. For example, a typical set of zooms
is shown in Fig. 13 for the fully mixed regime, where nested self-similarity and nonlinear coupling
in the spectrum seems to indicate a wealth of complicated dynamics present in the solution space.

Note that an essential observation of Section 3.2 is that even after partially linearizing the
nonlinear system, the eigenspectrum bound is not sufficient for stability, which is in contrast to that
of the classical linear von Neumann analysis. Rather for DG systems governed by (1.2), under the
partial linearization assumption, it is the bound on the spectral norm kG?

ij

(tn)k  1 that ultimately
determines stability. To illustrate this behavior we again show the results from the mixed regime
detailed in Fig. 13, but now give the results in a strictly stable regime, �t = h/45, and a regime
that becomes rapidly unstable �t = h/20. As can be seen from Fig. 14, the spectral norm captures
this behavior as expected.

The first question that these numerical experiments on the nonlinear stability behavior of the
various regimes governed by (1.2) raises is: is it ultimately the truncation of the thicker region or
the inclusion of partial modes from the thinner region that dominate the stability behavior in RKC
or RKSSP schemes? Unfortunately the answer to this question seems to be ambiguous, and to
depend largely on the specifics of the problem at hand. Moreover, the natural follow-up question
then becomes: how substantially do the dynamics (and thus the accuracy) of the problem get
perturbed relative to the various regimes when choosing thick versus thin region stability schemes?
As a general rule, the answer to this problem too seems to be ambiguous. What can be said
with confidence, however, is that nonlinear convection-diffusion-reaction systems of the form (1.2)
can demonstrate very complicated, highly internally coupled eigenspectra, to such an extent that
choosing a temporal discretization scheme without determining the corresponding stability can lead
to unpredictable, and potentially spurious numerical results.

Some additional intuition however can also be shared, with regards to the behavior of RKC
versus RKSSP schemes in these nonlinear regimes. After exhaustive testing, it can be suggested
that, at least up to the nonlinear system studied in Section 5, convection-dominated type flows seem
to be fairly well-suited for being stabilized by RKSSP schemes. It seems that these types of flows in
general tend to be dominated by fairly thick stability regions. In contrast, diffusive, turbulent, and
reaction dominated flows (and thus flows with nonlinear source terms as well) seem to demonstrate
more erratic behaviors, where thin-region stability can completely dominate the behavior. The
degree to which this occurs, particularly with diffusion-domninated type flows, seems to depend
strongly on the form the nonlinear operator takes. As a consequence, it seems reasonable to suggest
that in the presence of nonlinear diffusion, reaction and/or source terms, RKC methods might be
the most efficient choice for temporal stabilization. However, these suggestions should be taken
with caution, as neither case is cut-and-dry, and even in the simple cases explored in Section 5, we
have observed counterexamples to both of these “rules of thumb.” It may be that in mixed regimes,
alternating (both spatially and temporally) between RKC and RKSSP could be an efficient way of
managing when different aspects of the flow dominate in different regimes locally.
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6 Conclusion

In this paper we have introduced a framework for nonlinear stability analysis using an analogue
to classical von Neumann analysis in the context of discontinuous Galerkin methods applied to
generalized systems of convection-diffusion-reaction equations (1.2). Our results indicate that a
sufficient condition for assuring stability of a method in this context, is to simply guarantee that
the discrete nonlinear stability condition from Section 3.3 is satisfied.

We examined the reactive Navier-Stokes equations applied to a problem arising in atmospheric
chemistry, and performed extensive numerical tests, where we studied the stability of the problem
in different regimes as listed in Fig. 3. We closely examined the effect of the so-called “thin region
stability” temporal discretizations (i.e. RKC schemes), versus strong stability preserving discretiza-
tions (i.e. RKSSP schemes) to see how the stability behavior of the nonlinear system changed
under each. The results indicate that when the discrete nonlinear stability condition is satisfied,
both schemes are stable, though consistently RKC schemes lead to more elaborate eigenspectra than
RKSSP schemes. The precise effect this has on instability and accuracy, however, is not entirely
clear, and remains an open and interesting question for future analysis.
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8 Appendix

8.1 Computation of the G? Operator:

In this section we briefly outline the definition of the operators appearing in an RK scheme. Note
that at the ith stage of an RK scheme we can write u(i) = G

i

u

(0) where G

i

is an ith degree
polynomial. Identifying the G

i

polynomials with the s-vectors of their coefficients, we have for the
RKSSP scheme:

G0 = (1, 0, · · · , 0)T , G1 = (0, 1, 0, · · · , 0)T ,
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(8.1)
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For the RKC scheme we have,
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=
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(8.2)

Finally, we use G

? = G

s

as the definition of the G

? operator.

8.2 Simple illustrative example: Burger’s equation

Consider the one-dimensional Burger’s equation

u

t

+
1

2
(u2)

x

= 0,

with periodic boundary data. The weak form of such a system satisfies (2.7), such that:
d

dt
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)@
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Note here that f = u

2
/2.

Now, to proceed a numerical flux is specified that is associated to F

i

. For illustration, let us
choose the local Lax-Friedrich’s flux
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Now that the flux has been specified, we proceed with the partial linearization from (3.3). The
first step in doing so is to rewrite the representation with respect to the lth degree of freedom and
replace f with the partial linearization in the volume integral, such that:
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Next the partial linearization is performed on the flux representations, such that:
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where the Jacobian in this case is trivially (J
u
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means we now have the system:
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so that using the same argument from Section 3.1, the flux can now be split relative to contributions
determined by the stencil generated by cell “ownership,” as in (3.4).

To make this explicit, let us consider only the flux contribution,
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This term is rewritten relative to cell ownership, such that:
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This makes it clear now that the F

0
km

denotes an evaluated form of J
u

f + ↵.
As stated in Section 3.1, F 0

jkm

is an N ⇥ (n
p

+ 1)2 tensor, meaning for a single component flow
such as Burger’s, we have that F

0
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is a (n
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+ 1) matrix, in this case defined by:
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simply factoring out the basis function from the solution, and evaluating at the support points
yields:
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(8.6)
Notice that (8.5), after substituting the explicit form (8.6) in for the surface terms, comprise the
matrices in (3.11) that end up forming the G

j

matrix from (3.12).
The factored contribution F

0
km

, being an (n
p

+1)⇥ (n
p

+1) matrix, clearly has dependencies on
the degrees of freedom (e.g. the spatial nodes) of the cell that owns it. However, the assumption of
the partial linearization (3.2) is that within the cell distance �x < h, these spatial dependencies can
be decoupled (by scaling arguments) from the dependencies in the Fourier expansion and subsequent
shift. Numerical examples seem to reinforce the validity of this assumption.
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