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Abstract

We present a class of chemical reactor systems, modeled numerically using a fractional multistep method
between the reacting and diffusing modes of the system, subsequently allowing one to utilize algebraic tech-
niques for the resulting reactive subsystems. A mixed form discontinuous Galerkin method is presented with
implicit and explicit (IMEX) timestepping strategies coupled to dioristic entropy schemes for hp-adaptivity
of the solution, where the h and p are adapted based on an L1-stability result. Finally we provide some
numerical studies on the convergence behavior, adaptation, and asymptotics of the system applied to a pair
of equilibrium problems, as well as to general three-dimensional nonlinear Lotka-Volterra chemical systems.
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§1 Introduction
Broadly speaking, chemical reactor systems might be defined as: those systems arising in nature that are
dominated, inherently characterized, or significantly influenced by dynamic reactions between the discernible
constituents of multicomponent mixtures. These systems are of fundamental importance in a number of scientific
fields [67], spanning applications in chemistry and chemical engineering [39, 47, 81], mechanical and aerospace
engineering [77], atmospheric and oceanic sciences, [23, 58, 80] astronomy and plasma physics [38, 90], as well
as generally in any number of biologically related fields (viz. [68] for example).

Much of the underlying theory for reactor systems may be found in the classical texts [21, 34, 47], where
generally reactor systems are derived using kinetic theory by way of a Chapman–Enskog or Hilbert type per-
turbative expansions. These derivation processes immediately raise important theoretical concerns beyond the
present scope of this paper (see [19, 84] for an example of the formal complications that may arise in rigorous
treatments). Here we restrict ourselves to the study of a set of simplified systems leading to a generalizable
class of reaction-diffusion equations, that may be referred to collectively as: quiescent reactors. This designation
(as we will see below) is chosen in keeping with the parlance of chemical engineering and analytic chemistry,
wherein quiescent reactors refer to systems that are relatively “still” in some basic sense.

The theory provides that quiescent reactor systems may be derived directly from fluid particle systems (i.e.
the Boltzmann equation), wherein a number of underlying assumptions on the system must be made explicit.
These derivations can become quite involved, and can vary with respect to the scope of the application. For some
examples of these derivations we point the interested reader to [1, 11, 13, 28, 31, 35, 45, 51]. On the other hand,
from the point of view of the experimental sciences, a quiescent reactor may be defined abstractly as a reactive
chemical system wherein the effects from “stirring” are either not present, or do not play a significant role in
the dynamic behavior of the medium [66]. We will make precise below our meaning of the term “quiescent” as
it applies in this paper, but suffice it to say at the outset that a quiescent reactor system is one that may be
approximated by a class of constrained systems of reaction-diffusion equations in the molar concentrations of
the associated n chemical constituents.

A large number of numerical approaches to closely related reaction-diffusion systems exist in the literature
(though often in single-component versions), some of which we discuss in the body of this paper in some detail.
Let us review here briefly some results that will not be discussed in great detail below. In addition to the
very important operator splitting methods in the temporal space that employ the Strang method formalism
[30, 62] and its entropic structure (which we shall discuss briefly below), Petrov-Galerkin methods have been
applied [49, 87]. Petrov-Galerkin-type methods offer interesting benefits in that they allow for the development
of “optimal” test functions, that are modified in a trial space by utilizing properties of the solution residual itself
[27]. Mesh adaptive finite volume (multiresolution) methods have also been found to work well in a number of
complicated application settings [9, 72], where fixed tolerance methods are deployed for “sensing” local structure
in the solution. The compact implicit integration factor (cIFF,IFF,cIFF2,ETD) methods over adaptive spatial
meshes [56] have been developed, when computational efficiency concerns are of central importance, and the
system is too stiff for explicit methods to be realistic. In addition, particle trajectory based methods [10] and
stochastic methods have been developed [4, 37], yet these approaches might be seen as critical departures from
the Eulerian frame continuum solutions of interest here.

We view our present approach as aiming towards a dynamic extension of the pioneering work in [3, 8, 64] on
diffusive systems, to the hp-adaptive finite element reaction-diffusion systems studied in [57, 74, 88, 89]. The
subsequent method that we implement can be referred to as a mixed form IMEX discontinuous Galerkin stability
preserving fractional multistepping dioristic-entropic hp-adaptive scheme. The present approach is a high order
accurate implementation that supports robust multiscale resolution both spatially (e.g. hp) and temporally
(e.g. fractional multistepping). This is the first discontinuous Galerkin application method of its type to be
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implemented, where we show optimal convergence behavior, and further address hybrid approaches to solving
the difficult (and often numerically stiff) reaction subsystems in a way that provides substantial improvements
to both the accuracy of the solution as well as the computational performance of the algorithm. In this work we
significantly extend the heuristic p-enrichment type strategies discussed in [58] to utilize the formal entropy of
the underlying system. The entropy of the system is an important physical and mathematical aspect of the fully
coupled system, and is here formally derived for the system then used as an a posteriori variable to determine
local variation of the solution. This is then worked formally into a sharp dynamic hp-adaptive strategy that
couples h-refinement and coarsening strategies to p-enrichment and de-enrichment strategies by way of a kinetic
switch algorithm.

In §2.1 we begin by outlining a formal physical derivation of the system of model problems with which we
are concerned. In §2.2 we then explicitly denote the quiescent reactor system in terms of a coupled system of
reaction-diffusion equations characterized by a highly nonlinear chemical reaction term (the law of mass action).
Next, in §2.3, we cast the numerical setting that the problem will take, first the reaction term is discussed in
§2.4, and in §2.5 the diffusion term is discussed. We proceed in §2.6 by developing the spatial discretization that
we will use in our generalized finite element discrete form model, and in §2.7 we formulate the fully discrete
system. In §3 an exact entropy relation is derived. This entropy relation, which is also a TVB and L1–stability
result, is then used to develop an hp-adaptive scheme for the coupled system of reaction–diffusion equations.
Finally, in §4 we present some example applications using some of the data structures developed in [6, 7]. The
first example is an simple academic test in linear equilibrium given an exact form solution, and the second case
is a more complicated nonlinear example, derived in the context of a Lotka-Volterra chemical system with three
constituents.

§2 Deriving the system

§2.1 The species Boltzmann equation

Let us outline a formal derivation of the reaction–diffusion equation, which will serve as the theoretical un-
derpinning for our quiescent reactor systems. For full definitions and an expansive review of the underlying
objects in this section, we point the reader in the direction of [21, 40]. For background on the derivation and
a discussion of how the Boltzmann equation may be viewed as the classical limit of the quantum mechanical
Waldmann-Snider equation, we direct the reader to [53].

We begin by considering the species Boltzmann equation comprised of i = 1, . . . , n species in N = 1, 2, or
3 spatial dimensions over (t,x,v) ∈ (0, T ) × Ω2 for Ω ⊆ RN . Taking the n distribution functions fi and the
velocity of the i-th species given by vi, and assuming an absence of external forces, the species Boltzmann
equation is determined by:

∂tfi + vi∇xfi = Si(f) + Ci(f). (2.1)

Here Si(f) corresponds to nonreactive scattering and Ci(f) to the reactivity of the coupled chemically reactive
system.

Now consider the usual Enskog expansion of (2.1), such that to linear order we have

∂tfi + vi∇xfi = ε−1Si(f) + εbCi(f), and fi = f0
i

(
1 + εηi +O(ε2)

)
, (2.2)

where ε is the formal expansion parameter. The perturbations ηi are used to determine the respective forms
of the corresponding transport coefficients, and the parameter b distinguishes between the differing regimes of
interest. When b = 0 then we are in the so-called strong reaction regime, when b = 1 we are in the Maxwellian
reaction regime, and when b = −1 we are in the kinetic chemical equilibrium regime. Note that only in kinetic
equilibrium are the scattering and reactive modes commensurate over timescales of the same order of magnitude.

§2.1.1 Cases of b = 1 and b = 0

First consider the cases b ∈ {1, 0}. Here note that for the zeroth order expansion, if we equate the powers
of ε−1 then the distribution functions f0

i are found by solving Si(f
0) = 0, where f0 = (f0

1 , . . . , f
0
n). This

result naturally recovers that the f0
i are Maxwellian distribution functions (see [21, 40] for more details on this
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standard result). Moreover, we define the maximum contracted scalar product by,

(ζ, ϕ)mcs =

nq∑
iq=1

n∑
i=1

∫
Ω

ζi � ϕidvi,

such that when either ζi or ϕi is a scalar, then ζi�ϕi = ζiϕi. If both are vectors, then ζi�ϕi = ζi ·ϕi. And if
both are matrices, then ζi�ϕi = ζi : ϕi. Here, the iq index the total number of quantum internal energy states
nq in the transition probability integral representation (see [40] for more details).

Now we are interested in recovering the bulk continuum equations. As such we define the number density
of the i-th constituent ni and the species mass density ρi respectively by

ni =

nq∑
iq

∫
Ω

fidvi and ρi =

nq∑
iq

∫
Ω

mifidvi, with mi ∈ R the molecular mass of species i. (2.3)

The momentum ρu and the total specific energy density ρE is given in terms of the total density ρ =
∑
i ρi, the

flow velocity u and the internal energy per unit volume E , such that:

ρu =

n∑
i

nq∑
iq

∫
Ω

mifividvi and ρE =
(ρ

2
|u|2 + E

)
=

n∑
i

nq∑
iq

∫
Ω

(mi
2
|vi|2 + Eiiq

)
fidvi, (2.4)

where Eiiq is the corresponding internal energy in the iq-th quantum state of the i-th constituent.
Next, by using the usual n+ 4 collisional invariants ψ` of Si(f), given by

ψ` = δ`i for `, i ∈ {1, . . . , n},
ψn+j = mivji for i ∈ {1, . . . , n}, j ∈ {1, 2, 3},

ψ̂n+4 = 1
2mi|vi|

2 + Eiiq for i ∈ {1, . . . , n},

where δ`i is the Kronecker symbol, we obtain by construction that,

(ψ`,S(f))mcs =

nq∑
iq=1

n∑
i=1

∫
Ω

ψ`Si(f)dvi = 0, ∀` ∈ {1, . . . , n+ 4},

Then taking the scalar product of (2.2) with the collisional invariants ψ` and letting δb0 be the Kronecker
delta, we find (

ψ`, ∂tf
0 + vi∇xf0

)
mcs

=
(
ψ`, ε

−1S(f0) + δb0ε
bC(f0)

)
mcs

, ∀` ∈ {1, . . . , n+ 4}, (2.5)

letting S(f0) =
(
S1(f0), . . . ,Sn(f0)

)
and C(f0) =

(
C1(f0), . . . ,Cn(f0)

)
. Equating powers of ε0 recovers:

The species Euler equations


∂tρi +∇x · (ρiu)− δb0miAi(̊n) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇xS = 0,

∂t(ρE) +∇x · ((ρE + p)u) = 0.

(2.6)

We will define the stress tensor S and the chemical mass action Ai(̊n) in some detail below. Note that the (̊·)
notation indicates the subset of constituents in the set {1, . . . , n} directly reacting with constituent i; or within
the “reaction ring” of constituent i.

In order to recover the first order approximation, or the species Navier–Stokes equations in terms of the
perturbation parameters ηi from (2.2), a decomposition into scattering and reactive perturbative components
must be made, such that ηi = ηSi + δb0η

C
i . As we will see explicitly below for the case of the mass diffusion

coefficient, this decomposition leads to a set of constrained integral equations that uniquely determine the ηi’s.
Defining η = (η1, . . . , ηn) and evaluating (2.5) keeping only terms in ε0 and ε1 we have(

ψ`, ∂t(f
0 + ηf0 + vi∇xf0 + vi∇x(ηf0))

)
mcs

=
(
ψ`,C(f0) + δb0f

0η∂fC(f0)
)
mcs

, ∀` ∈ {1, . . . , n+ 4},
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where the partial derivative is given by ∂fC(f0) = (∂fC1(f0), . . . , ∂fCn(f0)). Algebraic manipulation (see [40]
for details) then yields:

The species Navier–Stokes equations


∂tρi +∇x · (ρi(u− Vi))− δb0miÃi(̊n) = 0,

∂t(ρu) +∇x · (ρu⊗ u) +∇xS = 0,

∂t(ρE) +∇x · ((ρE + S)u) +∇x · Q = 0.

(2.7)

The reaction term in (2.7) is a linear combination of the mass action Ai(̊n) (which we define in detail in §2.2)
and a linearized perturbation term Āi, such that Ãi(̊n) = Ai(̊n) + δb0Āi. The perturbation term Āi provides
an estimate for the change in the reactivity of the chemical system with respect to the distribution function
∂fC(f0), such that the linearization leads to a pair of partial rates. These terms are generally considered to be
negligibly small [47], and as such the terms depending on the partial rates are often neglected. For simplicity
we shall do so here as well, which formally means that we consider systems in the limit ∂fC(f0)→ 0.

The constitutive laws in (2.6) and (2.7) can be written as follows. Let l = 1 when we are in the Navier–Stokes
regime and zero otherwise. Then the stress tensor is given by

S = pI− δ1l
(
ξ(∇x · u)I + µ

{
∇xu+ (∇xu)> − 2

3
(∇x · u)I

}
+ δb0πchI

)
,

where µ is the shear viscosity coefficient, ξ is the bulk viscosity coefficient, and the chemical pressure πch is
given to satisfy πch =

∑
r∈R hrĀr, but because of — as discussed above — the presence of partial rates in Ār

this term will vanish. Finally, the species diffusion velocity Vi decomposes into a linear combination of the mass
diffusion p−1Dij∂ρip∇xρi and the thermal diffusion (p−1Dij∂ϑpi + ϑ−1θi)∇xϑ, where ϑ is the temperature and
pi is the partial pressure such that

∑
i pi = p is the total pressure and is assumed to satisfy the perfect gas

law. Here we denote the multicomponent diffusion coefficient by Dij and the thermal diffusion coefficient by θi.
Then the species diffusion velocity Vi is defined by

Vi = p−1Dij∂ρip∇xρi + (p−1Dij∂ϑpi + ϑ−1θi)∇xϑ. (2.8)

We shall return to the coefficients Dij and θi below.
Taking a similar form to that of the diffusion velocity, the heat flux Q also separates into terms depending

on the spatial gradients of the temperature and species of the mixture. Here, the specific enthalpy hi weighted
diffusion component of Q is given by

∑
i hiρiVi, where Vi is defined as above. Fourier’s law additionally provides

for λ̃∇xϑ where λ̃ is the coefficient of heat conductivity. The third distinct term arising in the heat flux is often
termed the Dufour effect and is written to satisfy

∑
i θi∇xpi. Putting these together and rearranging some we

arrive with:

Q =

n∑
i=1

(
minihip

−1Dij∂ρip− θi∂ρipi
)
∇xρi −

{
λ̃−

n∑
i=1

(
minihi(p

−1Dij∂ϑpi + ϑ−1θi)− θi∂ϑpi
)}
∇xϑ. (2.9)

In the case of kinetic chemical equilibrium, or when b = −1, the conservation forms that are derived (see
[36]) for the Euler and Navier-Stokes regimes are formally equivalent to (2.6) and (2.7), up to the actual form the
transport coefficients take. This is just to say that the basic properties of these coefficients remain unchanged (for
example, both mass diffusion matrices are positive semidefinite), but the coefficients do demonstrate different
quantitative behaviors depending on b. We will briefly return to this issue in §2.5.

§2.1.2 The quiescent reactor subsystem

The derivations in §2.1.1 and §2.1.2 show the formal asymptotics provided by the Enskog expansion of the species
Boltzmann equation. We have performed the Enskog expansion in a generalized setting, allowing for inelastic
binary scattering and intermolecular reactions. Given these assumptions, we are interested in restricting to a
subsystem, which formally emerges whenever the following set of four approximate constraints are satisfied:

(1) Ci(f
0)� ∂fCi(f

0) ∀i, (2)

n∑
i

∫
Ω

vidvi ' 0, (3) ∇xρi � ∇xϑ ∀i, (4) hi ' p(nimiDij)−1θi. (2.10)
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The first constraint (1) is a very standard assumption, frequently used even in formal settings [47], since the
form of the ∂fCi(f0) is imprecise and the term is generally considered to be small. Of course, in the case of the
zeroth order expansion (2.6), assumption (1) is not even necessary.

The second constraint (2) merely assumes that the global flow velocity averages to zero over the entire domain.
It is important to note that this assumption is is made independent of the form of the collisional integral, and
thus does not have any direct bearing on the diffusivities of the flow. In other words, the second constraint
restricts to systems where the random collisional molecular motion of the fluid dominates the advective flow
characteristic.

The third (3) and fourth (4) constraints from (2.10) end up being closely related. For the zeroth order
expansion these constraints are unnecessary, where all that is required is the assumption of an isentropic Eulerian
flow along with constraint (2). However, in the first order expansion the compressible barotropic regime does not
preserve a constant entropy, but rather dissipates entropy [59, 61]. As a consequence we must restrict to solutions,
which constrain the admissible bounds on the thermal gradients. It turns out that (4) in (2.10) is equivalent to
setting a constraint on the total thermal variation of the mixture, where given a reference temperature ϑ	 and
the associated specific formation enthalpy h	j of the j-th species, the specific enthalpy hj = h	j +

∫ ϑ
ϑ	
cpj(s)ds

shows that the variation in the constant-pressure specific heat capacity cpj(ϑ) of each component is constrained.
This constraint puts (relatively) tight bounds on the thermal variation supported by (4). Moreover, the spatial
bound on this variation is then strengthened by constraint (3), which as a consequence, fully indicates that we
are interested in thermal systems that do not demonstrate rapid spatial thermal variation, but thermal systems
that may nevertheless develop large species gradients.

Then given (2.10), we arrive with a reaction-diffusion formulation, which formally yields our quiescent reactor
system (2.11). That is, for the zeroth order expansion when b ∈ {−1, 0, 1}, we are restricted to the isentropic
species Euler equations under constraint (2). In either case the mass diffusion contribution is neglected, and
when b ∈ {−1, 0} chemical equilibrium holds. In the case of the first order expansion all of the constraints from
(2.10) apply such that when b ∈ {0, 1}, we arrive with a full reaction–diffusion equation as outlined in detail
in §2.2. Now when in chemical equilibrium (i.e. b ∈ {−1, 0}) the Fick’s diffusion type law is satisfied under an
adapted mass diffusivity coefficient. We present this system in some detail below.

§2.2 The governing reaction–diffusion equations

Due to §2.1.2, we consider a solution over (t,x) ∈ (0, T )× Ω for Ω ⊆ RN chosen to satisfy:

∂tρi −∇x · (Di∇xρi)−Ai(̊n) = 0,

Ai(̊n) = mi

∑
r∈R

(νbir − ν
f
ir)

kfr n∏
j=1

n
νf
jr

j − kbr
n∏
j=1

n
νb
jr

j

 ,
(2.11)

with initial-boundary data given by

ρi(t = 0) = ρi,0, and a1iρi,b +∇xρi,b (a2i · n+ a3i · τ ) = a4i on ∂Ω, (2.12)

taking arbitrary functions aji = aji(t,xb) for j ∈ {1, 2, 3, 4} restricted to the boundary, where n is the unit
outward normal and τ the unit tangent vector at the boundary ∂Ω.

Here, ni is the molar concentration of the i-th chemical constituent, which up to a scaling by Avogadro’s
constant NA is just the number density ni = NAni. We use this convention since, as we will see below, the
reaction rates are often formulated in molar units. The species are given by ρi = ραi = mini where αi is the
mass fraction of the i-th species, and mi is the molar mass of the i-th species. The Di are the interspecies mass
diffusivity coefficients (which will be fully addressed in §2.5).

The forward and backward stoichiometric coefficients of elementary reaction r ∈ N are given by νfir ∈ N and
νbir ∈ N , while kfr, kbr ∈ R are the respective forward and backward reaction rates of reaction r. These terms
then serve to define the mass action Ai = Ai(̊n) of the reaction from (2.11). Moreover, we denote the indexing
sets Rr and Pr as the reactant and product wells Rr ⊂ N and Pr ⊂ N for reaction r. Then for a reaction
indexed by r ∈ R, occurring in a chemical reactor R ⊂ N, comprised of n distinct chemical species Mi the
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following system of chemical equations are satisfied,∑
j∈Rr

νfjrMj

kfr

kbr

∑
k∈Pr

νbkrMk, ∀r ∈ R. (2.13)

Equation (2.11) obeys a standard mass conservation principle. Since the elementary reactions are balanced
the conservation of atoms in the system is an immediate consequence of (2.13). Let ail be the l-th atom of the
i-th species Mi, where l ∈ Ar is the indexing set Ar = {1, 2, . . . , natoms,r} of the distinct atoms present in each
reaction r ∈ R. Then the total atom conservation is satisfied for every atom in every reaction∑

i∈Rr

ailν
f
ir =

∑
i∈Pr

ailν
b
ir r ∈ R, l ∈ Ar. (2.14)

Since the total number of atoms is conserved, so is the total mass in each reaction,∑
i∈Rr

miν
f
ir =

∑
i∈Pr

miν
b
ir ∀r ∈ R. (2.15)

It then immediately follows that an integration by parts yields the following bulk conservation principle that is
satisfied globally:

d

dt

n∑
i=1

∫
Ω

ρidx = 0. (2.16)

Moreover, a point that we belabor in §3, is that the system of chemical reactions are spontaneous ∆G ≤ 0
(up to a constant) with respect to the standard total Gibbs free reaction energy of the system, which further
provides that the entropy of the system dissipates (see §3 for the details and a derivation).

Let us proceed by transforming our system of equations into the matrix representation by introducing the
following n-dimensional state variables: ρ = (ρ1, . . . , ρn)>,D = (D1, . . . ,Dn)>,A (̊n) = (A1(̊n), . . . ,An(̊n))>.
Moreover we define the “auxiliary variable” σ, such that using A = A (n̊) we may recast (2.11) as the coupled
system,

ρt−∇x · (Dσ)−A = 0, and σ −∇xρ = 0, (2.17)

where we have denoted the spatial gradient, ∇xρ =
∑N
i=1 ∂xi

ρ.
Finally, we should note that under special circumstances the full system (2.11) admits traveling-wave solu-

tions that model important physical features of 2.11), such as phase transitions, oscillatory chemical reactions,
and action potential formation, e.g. [69, 76, 91]. The class of traveling-wave solutions allow under certain cir-
cumstances (2.11) to be transformed into a system of second order (though often still highly nonlinear) ordinary
differential equations (ODEs). It should also be noted that traveling-wave solutions exist that are not merely
asymptotic behavior arising in the diffusion limit [69, 76]. We will see below that the presence of solutions
of this class, and singular solutions in general, have a significant impact on how one approaches developing a
numerical strategy that can easily adapt to the subtleties of quiescent reactor systems.

§2.3 The fractional multistep operator splitting
Now we consider the multiscale solutions to (2.11) that split over “fast” ρf and “slow” ρs modes. That is, we
consider (2.11) as a system that can be split into two evolution operators: (a) the diffusive subsystem (or ideally
parabolic subsystem), and (b) the reaction subsystem. Each of these subsystems then decompose into fast and
slow modes, so we have, for example, the fast reaction modes and the slow diffusion modes, etc. This leads to
four possible modes, with each evolutionary subsystem with a fast and slow mode. However, it should be noted
that splitting the modes into “fast” and “slow” is done here for simplicity of presentation only. The notion of
“fast” and “slow” modes here is made to highlight a qualitative choice, where the physics of the system may,
of course, be substantially more complicated. That is, for simplicity in our derivation, we have assumed that
the rate laws (and diffusive time-scales) split into no more than two distinct sets of “fast” and “slow,” while
there may, of course, be k arbitrary such sets representing k grouped rates each of a quantitatively different
order of magnitude. While in some physical systems it is essential to neglect the chemical kinetics of reactions
occurring on substantially different timescales (e.g. neutrino production rates in atmospheric chemistry, etc.), in
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Transition
Regimes

Reaction

Regnant

Diffusion

Dominated

Shock

Dominated ∗
Diffusion

Limited ∗

Figure 1: At any time t ∈ (0, T ) the local behavior of the solution ρ in Ω may be defined as one of the above four
regimes, or are transitioning between them. Here the starred regimes ∗ denote heuristic solutions, where the
transitioning regimes may or may not be heuristic depending on which regimes are being transitioned through.

many settings (such as in environmental science, for example) it is important to include reactions occurring in a
number of different phases (i.e. ice, water, water vapor, etc.), which can have a large array of different timescales
for their coupled rates laws. In standard units, common chemical reaction rates can differ in a particular setting
up to some fifteen orders of magnitude.

Nevertheless, for simplicity we will consider the reaction such that we have only two distinct modal decom-
positions. We will represent this by assuming that such a system splits as ρ = ρf + ρs, such that (2.17) may
be rewritten (up to the suppressed initial-boundary data) as the coupled system:

fast/slow splitting

{
(ρf )t −∇x · (Dfσf )−Af = 0, and σf −∇xρf = 0,
(ρs)t −∇x · (Dsσs)−As = 0, and σs −∇xρs = 0.

(2.18)

The “fast” and “slow” modes of the system correspond to “fast” ∆tf and “slow” ∆ts discrete timescales, often
of substantially different magnitudes [30]. Also note that for notational simplicity the coupling determines the
arguments of the operator, such that:

Dfσf = (Dfσf )(D(ρf )σf ,D(ρs)σs) and Dsσs = Dsσs(D(ρf )σf ,D(ρs)σs),

Af = Af (ρf ,ρs) and As = As(ρf ,ρs).

This notation is somewhat cumbersome, but is simply made explicit here to emphasize the fact that in this
representation the modes from (2.18) are coupled by way of the nonlinear operators.

We proceed by solving (2.18) by way of a standard splitting method. That is, let us denote by Rt(ρf ,ρs)
the solution of the reaction part of (2.18) at time t:

fast/slow reaction modes

{
(ρf )t −Af = 0,
(ρs)t −As = 0.

(2.19)

Next we denote by Dt(ρf ,ρs) the solution of the diffusion part of (2.18) at time t:

fast/slow diffusion modes

{
(ρf )t −∇x · (Dfσf ) = 0, with σf −∇xρf = 0,
(ρs)t −∇x · (Dsσs) = 0, with σs −∇xρs = 0.

(2.20)

Then with respect to our splitting (2.18), we may determine the splitting order accuracy of our desired
solution simply by choosing the appropriate splitting scheme. For example, the first order accurate Lie, or
sequential, splitting determines that at time t we solve either LtRD = Rt(ρf ,ρs) ◦ Dt(ρf ,ρs), or LtDR =
Dt(ρf ,ρs) ◦ Rt(ρf ,ρs), while the second order accurate Strang splitting determines that at time t we solve
either StRD = Rt/2(ρf ,ρs) ◦ Dt(ρf ,ρs) ◦ Rt/2(ρf ,ρs), or StDR = Dt/2(ρf ,ρs) ◦ Rt(ρf ,ρs) ◦ Dt/2(ρf ,ρs), and
so forth.

Note that the operation of composition here is given in the natural way, such that Dt/2(ρ) ◦Rt(ρ) ◦Dt/2(ρ)
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means we solve the system:

(ρ∗)t −∇x · (Dσ∗) = 0, ρ∗(0) = ρ0 on [0, t/2]

(ρ∗∗)t −A ∗∗ = 0, ρ∗∗(0) = ρ∗0 on [0, t],

(ρ∗∗∗)t −∇x · (Dσ∗∗∗) = 0, ρ∗∗∗(0) = ρ∗∗0 on [0, t/2],

where the solution to the composition is then given by ρ∗∗∗(t/2) = ρ∗∗∗(t/2,x). Moreover, if we perform this
operation over the discrete slow timestep ∆tns = tns+1− tns and the discrete fast timestep ∆tnf = tnf+1− tnf ,
then for the Strang splitting St

ns

DR we write in the operator notation that: ρns+1 = Dtns/2(ρnf ) ◦ Rtns (ρns) ◦
Dtns/2(ρnf ), where ρ∗ = Dtns/2(ρnf ), ρ∗∗ = Rtns (ρ∗), and ρ∗∗∗ = Dtns/2(ρ∗∗).

We shall revisit the splitting scheme in the context of the fully (temporally and spatially) discrete solution in
§2.7 below. Nevertheless, as in [30], a simplification of the full splitting often arises in which we are only interested
in the time order of the slowest modes of the system. In such cases it is customary to relax the time order of
the fast components and rather only solve the reduced systems, given either by StRD = Rt/2(ρs) ◦ Dt(ρf ,ρs) ◦
Rt/2(ρs) or StDR = Dt/2(ρf ,ρs) ◦ Rt(ρs) ◦ Dt/2(ρf ,ρs), though we will not utilize these simplifications below.
Also, it is important to note that in the Strang theory the operators StRD and StDR are theoretically equivalent
up to second order [79]. Moreover, it is possible to sequentially raise the time order accuracy of the splitting
scheme [82], though this leads to the addition of negative time coefficients (in contrast to the t/2 arising in the
second order Strang method), requiring in the discrete method that the solution from some number of previous
timesteps must be stored for future use. Thus, we will define the general splitting operator YT = YT(D,R, t)
of time order accuracy T by, YT = (LtRD|T=1) ∨ (LtDR|T=1) ∨ (StRD|T=2) ∨ (StDR|T=2) ∨ . . ., where ∨ denotes
the logical disjunction operator (e.g. the logical “or” operator). Note that analysis in [30, 78] has shown that
ending the splitting method with the “stiff” mode reduces the splitting error of the scheme, and is essential.

Let us make a few comments about the theoretical implication of the multiscale splitting (2.18). As shown
in §2.1, the formal derivation of (2.11) only satisfies the appropriate asymptotics when the reaction is “slow”
with respect to the diffusion. We shall refer to areas of the domain that satisfy these dynamics as diffusion
dominated areas. If we dynamically adapt the diffusivity coefficient Di, then we may also recover the kinetic
equilibrium conservation equation §2.1.2, and we will refer to areas of the domain obeying these dynamics as
being reaction regnant areas (e.g. secondary geminate recombination reactions in transient species).

In biological applications another case frequently emerges where the rate of the reaction can be much faster
than the rate of the diffusion locally, which is just to say that the reaction can take place “instantly” given
the proper local conditions (e.g. primary geminate recombination reactions in transient species). The reaction
term then acts like a switch, and the diffusion limits the dynamics of the system. These systems are not readily
attainable via the Boltzmann formalism from §2.1 and are characterized by those that work on them as still
being largely heuristic [52]. Moreover, they are frequently obtained by using a very different set of underlying
assumptions [4, 50, 92]. Nevertheless, the (possibly incorrectly balanced) continuum form of the equation is
formally equivalent to (2.11), and since our numerics easily accommodate for these systems, we will refer to
areas of the domain satisfying these dynamics as diffusion limited areas as in Figure 1, and denote them as
heuristic by ∗.

Finally, when the reactions fully dominate the diffusion in that the rates of the reactions are globally of
a substantially faster timescale than the diffusion rates, then the system is shock dominated as in Figure 1.
Since such reactions are frequently replete with large thermal gradients, catalytic volume expansions, and are
generally convection dominated, we view these subsystems — insofar as they are numerically well accommodated
for (“robust”) in our formulation, especially when employing flux-limiting type strategies similar to [60] — as
heuristic ∗ as well.

Given (2.18) all areas of the domain are either in one of the aforementioned states, or are transitioning
between them at any time t (as denoted in Figure 1). This follows simply from the following two facts: (1) that
the diffusion rate and reaction rates either scale, or one is larger than the other, and (2) that the reaction may
run to completion leading to rate limiting constituents locally.

§2.4 Law of mass action

The law of mass action A = A (̊n) may be viewed as the source of a nontrivial set of technical complications.
Not only is it well known that A may cause numerical instabilities due to the presence of multiple characteristic
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timescales in the solution space, but more so, the existence of nonlinearities that develop in the exponents of the
n molar concentrations ni’s (as determined by the stoichiometric coefficients νfir and ν

b
ir) generate an n-coupled

system of first order autonomous nonlinear ordinary differential equations (nFANODEs), despite the simplifying
assumption of the splitting (2.19) that decouples this component from the nonlinear diffusion.

Solutions to this class of problems are fairly well-established from a purely numerical point of view, where
the choice often becomes rather: which approximation scheme should be used and to what order of accuracy?
However, the case of nFANODEs also makes the mass action functional A notable in that the decoupled system
(2.19) is, relatively speaking, also “reasonably” simple to solve from some “exact” mathematical point of view
(we will work to make this statement precise below). As such, developing a solution technique to equation (2.19)
generally rests somewhere between: (1) finding a relatively straightforward approximate solution to (2.19), and
(2) analytically solving the difficult (though often soluble) system of nFANODEs.

This section is devoted to characterizing these two distinct principal strategies for solving (2.19). The first
strategy we address are “exact strategies,” by which we mean solutions that have accessible analytic forms for
their solutions (though these forms need not necessarily be nonsingular expressions, as discussed in detail below).
We will refer to solutions developed under this premise as solutions to fully coupled strategies. The second class
of strategy we address are solutions in which analytic forms for the solution are not readily computable. These
solutions are recovered by way of approximate strategies.

Since both classes of strategies will be situated with respect to a variational form of (2.11), it is natural to
concern ourselves with the coupled integrated rate laws for our split set of rate equations (2.19), where we define
an integrated rate law as the solution to an integrable system of nFANODEs. However, the basic mathematical
preliminaries deem that systems of nFANODEs need not be integrable. In particular, some elementary chemical
systems R characterized by the coupled rate equations (2.13) do not admit a fully coupled solution in the
form of an integrated rate law, or are non-integrable systems of nFANODEs. An easily accessible example of
such is when (2.19) forms a Lotka-Volterra system. Here, it is well-known that when n = 3 such a system
admits generically many non-integrable homogeneous polynomial vector fields [63]. On the other hand, when
the Lotka-Volterra system is integrable, then the homogeneous polynomial vector field characterizes a foliation
whose leaves are homogeneous surfaces in the n = 3 dimensional space containing functions called first integrals,
which completely determine the solution of the system. We will revisit the Lotka-Volterra system in §4 in some
detail.

First, let us clarify our notation. Here and below let the solution space of the nFANODE determined by
(2.19) be denoted G = G(n̊). Next, the confluence of solutions occurs over the field K (where K is either R
or C), which should serve to remind the reader of the fundamental theorem of algebra (i.e. the only analytic
solutions to the system may require a standard field extension to C even if the system of study is observed over
R). Recall then that to (2.19) there corresponds an abstract vector field, which can be written as:

δA =

n∑
i=1

Ai
∂

∂ni
= A · ∇n̊.

The observation is that for functions of n̊, such as G : Rn → R where n̊ 7→ G(̊n), the total time derivative is
given by, dGdt = A · ∇n̊G, which is just the derivative along the flow following the solution of the nFANODE.
Then a first integral of G is defined as a C1 function on a subinterval Tloc ⊂ (0, T ) of a local neighborhood
U ⊂ Kn, such that I = I (̊n) : Tloc × U → R remains constant along solutions,

dI

dt
= ∂tI + A · ∇n̊I = 0. (2.21)

Clearly by scalar transport such a condition holds if and only if I is constant along all solutions n̊ in G. Thus
it is often customary to recast (2.21) as the sum of differential one-forms,

dI = Itdt+ In1
dn1 + . . .+ Inn

dnn = 0, where Ini
=

(
∂I

∂ni

)
. (2.22)

Note that (2.21) is also admissible when I has no dependence on time, i.e. It = 0.
The basic confusion that must be preemptively dispelled is, what exactly we mean here by the notion

of “integrability?” Tautologically, of course, what we mean in the context of quiescent reactor systems by
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“integrable” is the formal existence of an integrated rate law for any particular instance of (2.19). Being self-
referential this definition is not particularly enlightening, so let us proceed by developing a sense of the different
meanings of integrability that we are concerned with here.

First we proceed by defining two notions of global integrability, when the first integrals of A are defined
over (0, T )×Ω. In this global setting the first notion we address is that of liouvillian integrability. When (2.19)
is a classical system and can be posited in terms of Hamilton’s equations, then this is the notion of integrability
that naturally arises.

Definition 2.1. When the system G is Hamiltonian, it is Liouville integrable if it possesses n functionally
independent first integrals in involution, i.e. their mutual Poisson brackets vanish, {Ii, Ij} = 0.

This notion of integrability represents both a verdant and mature field in classical mathematics as well
as mathematical and theoretical physics. There are many approaches developing solutions to these types of
problems in the literature. A particularly beautiful one, for example, involves the identification of the particular
systems Lax pair. The extraordinary thing about this, is that the Lax pair of matrices along with a complex-
valued “spectral” parameter λ ∈ C provides an isospectral (i.e. the eigenvalues remain constant in time) evolution
equation, such that the characteristic equation for the eigenvalues of the Lax matrix determine the so-called
spectral curve (an algebraic curve) — which is nothing more than a Riemann surface whose moduli contain the
specified first integrals.

More generally, a notable feature of liouvillian integrability is how weak the condition is that it prescribes
on the ramification locus of, for example, its associated algebraic variety. That is, for a system with n degrees
of freedom liouvillian integrability requires only n single-valued first integrals, while the remaining canonical
one-forms may correspond to non-algebraic multivalued integrals. However, when the level manifolds Mf (see
[5]) generated by the intersection of the level sets of the Ii (i.e. ∩iIi = ci) are connected and compact, then
the Mf ’s are real topological tori and the singular points become well-behaved in a formal sense. Systems such
as these are indeed replete with beautiful mathematics, become extremely subtle, and frequently require quite
delicate analysis [5].

Here however, we are more generally interested in solutions that can readily be made “algorithmic,” since
the class of equations covered by A is so large. From the point of view of solving (2.19), this can be viewed as
a basic limitation of the Lax pair formulation, as there is at present no general algorithm for determining the
Lax pair of a particular differential system of nFANODEs.

Nevertheless, there is an algorithmic approach to finding solutions that are Liouville integrable. Such meth-
ods can be traced to Sophus Lie, who discovered in the nineteenth century that one can readily reduce the
order of an nFANODE by way of applying a canonical set of group transformations along symmetries of the
solution, where a “symmetry” is defined as a transformation mapping any one solution of the system to another
[12, 48, 65]. Many popular algebraic methods for finding solutions to differential equations are based on these
group homomorphism techniques (for example see DEtools in Maple 15), though the major drawback of each
is that determining the symmetries of the system can only be done heuristically, and as such cannot guarantee
that if such a symmetry exists it will in fact be found.

Moreover, the admissible forms of the canonical variables in the Liouville integrability sense has, from the
point of view of singularity analysis, led to a stronger form of global integrability that is more well-behaved,
known as algebraic integrability.

Definition 2.2. The system G is algebraically integrable if there exists k independent first integrals such that
Ii = Ci (i = 1, . . . , k) are algebraic functions. These k first integrals define an (n − k)-dimensional algebraic
variety. Additionally, there must exist (n − 1 − k) independent first integrals given by the integral of a total
differential defined on the algebraic variety

Fi =

n−k∑
j=1

∫ nj

ψik (̊n)dnj , i = 1, . . . , n− 1− k,

where the ψij (̊n) are algebraic functions of n̊.

Notice that when k = (n− 1) nothing is known a priori about the total differential of the system, and the
definition of algebraic integrability become synonymous with the existence of n− 1 independent algebraic first
integrals Ij .
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It turns out that a substantial amount is known about these systems, which is largely due to their close
relationship to the weak Painlevé property [42]. For example, it is known that all solutions to algebraically
integrable systems can be expanded in a Puiseux series about the movable singularities t∗ of G, such that every
solution satisfies:

n̊ = (t− t∗)p
(

g +

∞∑
i=0

ci(t− t∗)i/s
)

where g ∈ Cn and p ∈ Qn comprise the so-called balance F = {g,p} of the weight–homogeneous decomposition
of A , with ci ∈ Cn polynomials in ln(t − t∗) and s ∈ N constituting the lowest common denominator of a
system-dependent set, depending on the Kovalevskaya exponents of the system and the balance F .

These (algebraic and liouvillian) notions of global integrability are both powerful results, each accompanied
with a substantial set of tools by which to analyze the nature of a given solution (see for example [5, 42] for more
details). However, when solving an abstract nFANODE such as (2.19), it turns out that in general both notions
are too strong to provide generalizable solution techniques within the framework of the variational problem of
our discontinuous Galerkin setting. That is, relatively speaking, over all n very few solutions of physical interest
exist when the law of mass action A admits a globally integrable solution as defined above. Consequently we
utilize the following weaker notion of local integrability.

Theorem 2.3. (A. Goriely, see [42] for the proof) Let A be C0 on an open subset V ⊂ (0, T )×U . If the initial
value problem (2.19) with n̊|t=t0 = n̊0 has a unique C1 solution, then the vector field δA has n independent
first integrals I = (I1, . . . , In) of class C1 in the neighborhood of a point (t0, n̊0), and conversely, given n time-
independent first integrals I of δA of class C1 on an open subset V ⊂ (0, T )×U , then there exists a solution n̊
of (2.19) for any constant value of I.

Given this theorem, the problem immediately becomes that of finding the n-independent first integrals
I = (I1, . . . , In), and thus the local solution. It turns out that due largely to an extraordinary theorem by Prelle
and Singer, a rather substantially large class of first integrals can be computed purely algorithmically. That
is, if (2.19) admits a first integral that is elementary (i.e. a first integral made up of elementary functions),
then Prelle and Singer proved that there exist m algebraic functions wi such that the elementary first integral
is logarithmic and satisfies: w0(̊n) +

∑m
i di lnwi(̊n) = 0.

This fact led Prelle and Singer to develop a semidecision algorithm for finding these elementary first integrals
[70]. We utilize an adapted version of the extended modified Prelle–Singer algorithm from [20], which includes
— in addition to elementary first integrals — a subset of liouvillian functions. Generally the algorithm works
for any rational function, but we restrict naturally to the mass action Ai polynomial. The algorithm [42] is
semidecidable [22, 32], is in itself a powerful tool for solving (2.19) in the sense of Theorem 2.3, and in simplified
forms can even be found in readily available algebraic software packages [33]. The algorithm may also be
computed by hand. We will analyze such a result in §4.

The above serves now to provide a definition for the first of the two principal strategies we employ to solve
(2.19), namely the fully coupled strategies. Within this class we identify the following three types of solutions:
(1) we say we have a fully coupled algebraic mass action solution if (2.19) is algebraically integrable, (2) we
say we have a fully coupled liouvillian mass action solution if (2.19) is Liouville integrable, and (3) due to the
important aspects discussed in detail in [42], we say we have a fully coupled local mass action solution if (2.19)
is locally integrable and has a solution by way of the Prelle-Singer type algorithm.

We also implement a purely approximate form for the mass action functional A . That is, as an alternative
to the analytic “coupled” strategies above, we implement an approximate strategy wherein the global coupling
of the system is made fully approximate. We will achieve this by way of both implicit and explicit discontinuous
Galerkin schemes, as discussed in detail below in §2.6–§2.7, wherein the numerical stability of the scheme will
introduce the primary challenge.

§2.5 Mass diffusivity
In the fractional operator form, the mass diffusivity equation (2.20) obeys Fick’s second law of diffusion, where
we are frequently restricted to variational solutions in the sense of parabolic equations (when an exact form
cannot be explicitly derived, as discussed in §2.1). The auxiliary representation,

ρt = ∇x · (Dσ), and σ = ∇xρ, (2.23)
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is chosen in order to exploit the unified framework from [2, 3] by way of the flux formulation presented below.
However, first let us briefly address the form of the diffusivity coefficients D .

As is clear from §2.1 and §2.2, the diffusivity coefficient that comes into play in the quiescent reactor regime
is taken formally to satisfy

Di = ρip
−1Dij∂ρip. (2.24)

Provided the corresponding state equation for the system, the difficulty that arises in this definition is found in
determining the form of the diffusivity matrix Dij .

The determination of the transport coefficients in the kinetic formulation emerges by solving the linearized
variational problem in the Enskog expansion (2.2) as in §2.1. In order to complete this development the
associated perturbation coefficients ηi are expanded such that:

ηi = ηµi : ∇xu−
1

3
ηξi∇x · u−

n∑
`=1

ηD`
i · ∇xp` − η

λ̃
i · ∇x(1/kbϑ̄), (2.25)

where ηµi is a traceless symmetric matrix, ηDi
i and ηλ̃i are vector valued, and ηξi is a scalar valued function.

Similarly we have the function Ψi, which is just a scaled decomposition of the left hand side of (2.1).
Evaluating the i-th component yields:

Ψi = Ψµ
i : ∇xu− 1

3Ψξ
i∇x · u−

n∑
`=1

ΨDi
i · ∇xp` −Ψλ̃

i · ∇x(1/kbϑ̄),

where appropriately we have a matrix, two vectors and a scalar. Here the components are fully determined,
in particular the vector component associated to the mass diffusion ΨD`

i takes the form ΨD`
i = ci(δi` − αi)/pi,

where the relative velocity ci is given by ci = vi − u.
Then, restricting to the case of the diffusion matrix, the components of the linear expansion satisfy the

matrix equation

F(ηDi) = ΨDi , with constraints
(
ηDi , T ψ̂`

)
mcs

= 0, ∀` ∈ {1, . . . , n+ 4}. (2.26)

Here F(ηDi) corresponds to the linearized form of the right hand side of (2.1), while the ηDi matrix corresponds
to ηDi = (ηD1

1 , . . . ,ηDn
n ) and T the canonical basis. It should be noted that in the full system the linearized

decomposition has a component that corresponds to each of the coefficient η’s in (2.25). Also, in contrast to the
standard collisional invariants in §2.1.1, here the ψ̂` in the n + 4 scalar constraints of (2.26) are the modified
invariants given by:

ψ̂` = δ`i for `, i ∈ {1, . . . , n},

ψ̂n+j = mici for i ∈ {1, . . . , n}, j ∈ {1, 2, 3},

ψ̂n+4 = 3
2 − |ci|

2 + Ēi − Eiiq for i ∈ {1, . . . , n},

where |ci|2 = ci · ci,

Ēi =

nq∑
iq=1

piiqEiiq exp
(
−Eiiqkbϑ

) nq∑
iq=1

diiq exp
(
−Eiiqkbϑ

)−1

,

and diiq is the degeneracy of the iq-th quantum energy shell of the i-th species.
Then performing the variational procedure in ηDi yields,(

F(ηDi), ηDj
)
mcs

=
(
ΨDi , ηDj

)
mcs

, (2.27)

where the left hand side is given to satisfy the bracket commutator
(
F(ηDi), ηDj

)
mcs

= [ηDi , ηDj ], given explicitly
in equation 2.1.29 of [35].

The variational basis φ is chosen as linear combinations of products of Laguerre and Sonine polynomials
Sca+1/2 with Wang Chang–Uhlenbeck polynomials W d

j , denoted componentwise by

φa0cdj = φsj =
(
Sca+1/2

(
mj

2kbϑ

)
|cj |2W d

j

(
Ejiq
kbϑ

)
⊗̂ac̃jδji

)
i ∈ {1, . . . , n}, where c̃j =

√
mj/2kbϑcj
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and ⊗̂ac̃j is a tensor of rank a defined by ⊗̂0c̃j = 1, ⊗̂1c̃j = c̃j , and ⊗̂2c̃j = c̃j ⊗ c̃j − 1
3 |c̃j |

2
I. Here both ΨDi

and ηDi are written with respect to this basis. That is, ΨDi is fully determined as a linear function of the first
basis function φ1000j , while ηDi is weighted by the coefficient matrix βDi such that ηDi =

∑
sj β

Di
sj φsj , where s

denotes the set of function type indices corresponding to the basis, and j is the species index.
Then due to the orthogonality condition on the product on the right side of (2.27), recasting (2.27) in the

basis
(
F(ηDi), φ

)
mcs

=
(
ΨDi , φ

)
mcs

gives us the form: LβDi = γDi , where γDi corresponds to the coefficients
of ΨDi in the basis. Here L is an appropriately scaled type of mass matrix in the symmetric bilinear positive
semi-definite form [φa0cdj , φa0cdj ]. By using this matrix representation LβDi = γDi we recover the βDi .

Returning to the variational form (2.27) we then notice that,

[ηDi , ηDj ] =
(
ΨDi , ηDj

)
mcs

, yielding
(
ΨDi , ηDj

)
mcs

=
∑
sk

βDi

skγ
Dj

rk . (2.28)

Finally we employ the constraint equation from (2.26), where(
T ψ̂`, ηDj

)
mcs

= 0, explicitly provides the constraint
∑
k

αkβ
Dj

1000k = 0,

where again the orthogonality of the basis yields the right side. This is enough then to fully recover the diffusion
matrix Dij from (2.24) since the Enskog expansion in ηi provides that:

Dij =
pkbϑ

3
[ηDi , ηDj ].

Let us recall two salient features of the mass diffusion coefficient Di in (2.24) as dictated by the physical
derivation: first, the species weighted diffusion matrix diag(ρi)D with diagonal components ρiDij are C∞
functions of α = (α1, . . . , αn) and ϑ, where ϑ > 0 and α ≥ 0, α 6= 0; second, the matrix diag(ρi)D with
diagonal components ρiDij is a symmetric positive semidefinite matrix, and satisfies the ellipticity condition in
the inner product, (diag(ρi)Dζ, ζ) ≥ $(ϑ)z(diag(αi)ζ, ζ) for a constant z > 0 and any ζ ∈ Rn and x ∈ Ω, given
a function $(ϑ) > 0. Thus by virtue of the state equation in p (the ideal gas law) we recover the necessary
bounds on Di required in [44], which is namely that Di ∈ (L∞(Ω))N×N and that due to the bound on the
thermal variation, there exists a positive constant z such that Di(x)ξ · ξ ≥ z|ξ|2 for ξ ∈ RN and x ∈ Ω.

Finally, let us just recall the case of chemical equilibrium as discussed in §2.1. As discussed, we can treat this
case as simply satisfying the same equation arising in the strong and Maxwellian reaction regimes, except for
that the transport coefficients satisfy a different form. The full derivation of the form these coefficients take can
be found in [36]. Likewise we can introduce the “exact regimes” discussed in §2.1, where the diffusion is derived
from the species Boltzmann equation directly. Numerically this is accomplished by introducing an interchange
function Ii, which in the quiescent reactor regime is given by

Ii =

{
D̃i, if Ai(̊n) < ε ∀i
Di, otherwise

where D̃i is the diffusion coefficient derived in the case of b = −1, and ε is a numerical tolerance. For the
exact case we simply set Di to be the precise form of the mass diffusivity coefficient, instead of its variational
counterpart.

Hence, letting I = (I1, . . . ,In)> and using the same split notation as above, we account for this behavior
by rewriting (2.20) in the form:

fast/slow diffusion modes

{
(ρf )t −∇x · (Ifσf ) = 0, with σf −∇xρf = 0,
(ρs)t −∇x · (Isσs) = 0, with σs −∇xρs = 0,

(2.29)

which will be the split diffusion equation we are interested in solving approximately below.

§2.6 Spatial discretization
Let us now characterize the spatial discretization used for the numerical solution methods. Take an open Ω ⊂ R
with boundary ∂Ω = Γ, given T > 0 such that QT = ((0, T ) × Ω). Let Th denote the partition of the closure
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of the polygonal triangulation of Ω, which we denote Ωh, into a finite number of polygonal elements denoted
Ωe, such that Th = {Ωe1 ,Ωe2 , . . . ,Ωene

}, for ne ∈ N the number of elements in Ωh. In what follows, we define
the mesh diameter h to satisfy h = minij(dij) for the distance function dij = d(xi,xj) and elementwise face
vertices xi,xj ∈ ∂Ωe when the mesh is structured and regular. For unstructured meshes we mean the average
value of h over the mesh unless we are in the h-adaptive regime, in which case the mesh is structured.

Now, let Γij denote the face shared by two neighboring elements Ωei and Ωej , and for i ∈ I ⊂ Z+ = {1, 2, . . .}
define the indexing set r(i) = {j ∈ I : Ωej is a neighbor of Ωei}. Let us denote all boundary faces of Ωei contained
in ∂Ωh by Sj and letting IB ⊂ Z− = {−1,−2, . . .} define s(i) = {j ∈ IB : Sj is a face of Ωei} such that Γij = Sj
for Ωei ∈ Ωh when Sj ∈ ∂Ωei , j ∈ IB . Then for Ξi = r(i) ∪ s(i), we have

∂Ωei =
⋃

j∈Ξ(i)

Γij , and ∂Ωei ∩ ∂Ωh =
⋃

j∈s(i)

Γij .

We are interested in obtaining an approximate solution to U at time t on the finite dimensional space of
discontinuous piecewise polynomial functions over Ω restricted to Th, given as

Sph(Ωh,Th) = {v : v|Ωei
∈Pp(Ωei), ∀v ∈ v, ∀Ωei ∈ Th}

for Pp(Ωei) the space of degree ≤ p polynomials over Ωei .
Choosing a set of degree p polynomial basis functions Nl ∈ Pp(Gi) for l = 0, . . . , np the corresponding

degrees of freedom, we can denote the state vector at time t over Ωh, by

ρhp(t,x) =

np∑
l=0

ρil(t)N
i
l (x), ∀x ∈ Ωei ,

where the N i
l ’s are the finite element shape functions in the DG setting, and the ρil’s correspond to the nodal

coordinates. The finite dimensional test functions ϕhp, ςhp,$hp ∈W k,q(Ωh,Th) are characterized by

ϕhp(x) =

p∑
l=0

ϕilN
i
l (x), ςhp(x) =

p∑
l=0

ςilN
i
l (x) and $hp(x) =

p∑
l=0

$i
lN

i
l (x) ∀x ∈ Ωei ,

where ϕi`, ς
i
` and $

i
` are the nodal values of the test functions in each Ωei , and with the broken Sobolev space

over the partition Th defined by

W k,q(Ωh,Th) = {w : w|Ωei
∈W k,q(Ωei), ∀w ∈ w, ∀Ωei ∈ Th}.

Now, by virtue of §2.2 we split the reaction and the diffusion parts of (2.18) into separate equations (where
each part may contain its requisite “fast” and “slow” parts). We thus multiply (2.29), (2.19), and the auxiliary
equations by the test functions ςhp,$hp and ϕhp and then integrate locally over elements Ωei in space. Defining
the global scalar product by (ahp, bhp)ΩG =

∑
Ωe

i
∈Th

∫
Ωei
ahp � bhpdx, we then obtain:

d

dt
(ρ, ςhp)ΩG

= (∇x · (Iσ), ςhp)ΩG
, (σ,$h)ΩG

− (∇xρ,$h)ΩG
= 0,

d

dt

(
ρ,ϕhp

)
ΩG

=
(
A (n̊),ϕhp

)
ΩG
.

(2.30)

We proceed by approximating each term of (2.30) in the usual DG sense, which yields for the temporal derivative
terms that

d

dt

(
ρhp, ςhp

)
ΩG
≈ d

dt
(ρ, ςhp)ΩG

and
d

dt

(
ρhp,ϕhp

)
ΩG
≈ d

dt

(
ρ,ϕhp

)
ΩG
, (2.31)

and likewise for the mass action term that,(
Ahp(n̊),ϕhp

)
ΩG
≈
(
A (n̊),ϕhp

)
ΩG
. (2.32)
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Now, let nij be the unit outward normal to ∂Ωei on Γij , and let ϕ|Γij
and ϕ|Γji

denote the values of ϕ on
Γij considered from the interior and the exterior of Ωei , respectively. Then the mass diffusion term from (2.30),
after an integration by parts, yields,

(∇x · (Iσ), ςhp)ΩG
=

∑
Ωei
∈Th

∫
Ωei

∇x · (ςhpIσ)dx− (Iσ,∇xςhp)ΩG
, (2.33)

such that we approximate the first term on the right in (2.33) using the generalized flux G̊ij in the unified setting
(see [2, 3]) across the boundary, such that Gi = Gi(Ihp,σhp,ρhp, ςhp), and we see that

Gi =
∑
j∈S(i)

∫
Γij

G̊ij(Ihp,σhp|Γij
,σhp|Γji

,ρhp|Γij
,ρhp|Γji

,nij) · ςhp|Γij
dΞ

≈
∑
j∈S(i)

∫
Γij

N∑
s=1

(Ihpσ)s · (nij)sςhp|Γij
dΞ.

(2.34)

It is important to note here that Ihp = I |Ωei
is the mass diffusion interchange evaluated locally on the

corresponding element interior, which agrees on every face of the base elements boundary, but is determined
by the flux formulation across neighboring elements (for example, averaged etc.). The interior term in (2.33) is
approximated directly by:

H = H (Ihp,σh,ρhp, ςhp) =
(
Ihpσhp, ς

hp
x

)
ΩG
≈
(
I∇xρ, ςhpx

)
ΩG
. (2.35)

Finally, for the auxiliary equation in (2.30), a numerical flux is also chosen, satisfying:

Li = Li(L̊ij ,σhp,ρhp,$hp,$
hp
x ,nij) = (σhp,$hp)Ωei

+
(
ρhp,$

hp
x

)
Ωei

−
∑
j∈S(i)

∫
Γij

L̊ (ρhp|Γij
,ρhp|Γji

,$hp|Γij
,nij)dΞ,

where
∑
j∈S(i)

∫
Γij

L̊ij(ρhp|Γij
,ρhp|Γji

,$hp|Γij
,nij)dΞ ≈

∑
j∈S(i)

∫
Γij

N∑
s=1

(ρ)s · (nij)s$hp|Γij
dΞ.

(2.36)

§2.7 Formulation of the problem

Combining (2.31), (2.32) and (2.34)–(2.36) while setting X =
∑
Gi∈Th

Xi, we can then formulate the semidis-
crete approximate solution to (2.11) as the problem: for each t > 0, find the pair (ρhp,σhp) such that

The semidiscrete discontinuous Galerkin scheme

a) ρhp ∈ C1([0, T );Sdh), σhp ∈ Sdh,
b) ρhp(0) = Πhpρ0,

c)
d

dt

(
ρhp, ςhp

)
ΩG

= G + H , L = 0,

d)
d

dt

(
ρhp,ϕhp

)
ΩG

=
(
Ahp(n̊),ϕhp

)
ΩG
.

(2.37)

Note that the boundary forcings are implicit here, where every element is summed over, including every boundary
face. Also, by Πhp we denote the projection operator onto the space of discontinuous piecewise polynomials Sph,
and where below we always utilize a standard L2–projection on the initial conditions. In other words, given a
function f0 ∈ L2(Ωei), the approximate local projection f0,h ∈ L2(Ωei) is obtained by solving,

∫
Ωei
f0,hvhdx =∫

Ωei
f0vhdx.
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§2.7.1 The time discretization

In order to discretize the time derivatives in (2.37c-d) we employ a family of Runge-Kutta schemes as discussed
in [43, 73, 75]. That is, we rewrite (2.37c-d) in the form: Mρt = L, where L = L(ρ,σ) is the reaction–
diffusion contribution, and where M is the corresponding mass matrix. Then the generalized χ stage of order
T Runge-Kutta method (denoted RK(χ,T)) may be written to satisfy:

ρ(0) = ρn,

ρ(i) =

i−1∑
r=0

(
λ̆irρ

r + ∆tnλ̃irM
−1Lr

)
, for i = 1, . . . , χ

ρn+1 = ρ(χ),

(2.38)

where Lr = L(ρr,σr,x, tn + δr∆t
n), and the solution at the n–th timestep is given as Un = U |t=tn and at

the n–th plus first timestep by Un+1 = U |t=tn+1 , with tn+1 = tn + ∆tn. The λ̆ir and λ̃ir are the coefficients
arising from the Butcher Tableau, and the fourth argument in Lr corresponds to the time-lag constraint where
δr =

∑r−1
l=0 µrl given µir = λ̃ir +

∑i−1
l=r+1 µlrλ̆il for λ̆ir ≥ 0 satisfying

∑i−1
r=0 λ̆ir = 1.

Then we recast (2.37) in the fully discrete setting as follows. For each fast step ∆tnf = ∆tns/2m where
m ∈ N and ns corresponds to the slow step, such that nf , ns > 0 as arising in tns ≥ tnf > t0 (see Figure 2),
find the slow pair (ρns

hp,σ
ns

hp) (that is, the fast/slow mode pair) such that:

The discrete split explicit RK discontinuous Galerkin scheme

a) ρhp(0) = Πhpρ0,

b) ρ
nf

hp = ρhp(0),

cd)
(
ρns+1
hp , ςhp

)
ΩG

=
(
ρ

(χ)
hp , ςhp

)
ΩG
, L (χ−1) = 0,

dc)
(
ρns+1
hp ,ϕhp

)
ΩG

=
(
ρ

(χ)
hp ,ϕhp

)
ΩG
.

e) YT = YT(D,R, tns+1).

(2.39)

Here for every slow step ns, 2m fast steps nf must be solved in order to appropriately evaluate e (which requires
the mnf step), where the form that YT takes depends first on whether the reaction step dc or the diffusion step
cd is fast/slow, and second what order accurate scheme one imposes on the solution. Clearly the RK step (2.38)
and the asymptotic accuracy of the splitting method (2.39e) must correspond in order to achieve a fixed top
order accurate method in time. Also note that the evaluation method also depends on the strategy employed
in the mass action. When the fully coupled strategy is utilized, for example, step d from (2.37) merely becomes
an L2-projection of the exact time-dependent solution at timestep tns or tnf , and no temporal quadrature is
necessary, while in the case of the approximate strategy, the integrator must be employed.

In the remainder of this particular paper, we will be interested in time order accuracy less than third
order. This helps to explain the choice of an SSPRK scheme, which is really a methodology developed for
stability methods in advective transport problems. In this sense we view (2.39) as a pre-convective strategy,
in the sense that it is well-suited for an extension to a full convective–reaction–diffusion problem. However,
in our reaction–diffusion regime, its justification comes from the fact that up to third order an equivalency
exists between RKSSP methods and explicit Runge-Kutta-Chebyshev (RKC) methods with infinite damping
parameter (ε → ∞) designed for handling arbitrary parabolic PDEs. Up to this restriction we expect good
stability for quiescent reaction chemistry with relatively mild (non-stiff) oscillations (up to the time–stepping
factor m). The drawback of the RKSSP schemes is that infinite damping leads to a substantial contracting of
the corresponding stability region (e.g. see [86]).

To recover the more optimal thin region stability (see [83, 85]) we alternatively adopt the finite damped
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ue e e e e e utnf ,ns tnf+1 tnf+2

A full iterate of ∆tns at second order︷ ︸︸ ︷

︸ ︷︷ ︸
∆tns/2

∆tnf ∆tnf+1 ∆t2mnf−2︷ ︸︸ ︷︷ ︸︸ ︷ ︷ ︸︸ ︷
t2mnf ,ns+1

ρ2mnf ,ns+1

t
mnf

f

ρmnf

t2mnf−2

ρ2mnf−2

t
2mnf−1
f

ρ2mnf−1ρnf ,ns ρnf+1 ρnf+2

. . . . . .

Figure 2: Here we show the time integration with respect to the splitting method from §2.2 in the fully discrete
setting, corresponding to step e in (2.39) for the second order accurate Strang splitting from §2.3.

RKC method of second order, where (2.38) is replaced by

ρ(0) = ρn,

ρ(1) = ρ(0) + ∆tnµ̃1M
−1L0

ρ(j) = (1− µ̂j − ν̂j)ρ(0) + µ̂jρ
(j−1) + ν̂jρ

(j−2)

+ ∆tnµ̃jM
−1Lj−1 + ∆tnγ̃jM

−1L0 for j ∈ {2, . . . , χ}
ρn+1 = ρ(χ).

(2.40)

Here, µ̃1 = ω1ω
−1
0 and for each j ∈ {2, . . . , χ}:

µ̂j =
2b̂jω0

b̂j−1

, ν̂j =
−b̂j
b̂j−2

, µ̃j =
2b̂jω1

b̂j−1

γ̃j = aj−1µ̃j ,

where aj = 1− bjTj(ω0), b̂0 = b̂2, b̂1 = ω−1
0 b̂j = T ′′j (ω0)T ′j(ω0)−2, for j ∈ {2, . . . , χ},

with ω0 = 1 + εχ−2, ω1 = T ′χ(ω0)T ′′χ (ω0)−1,

where the Tj are the Chebyshev polynomials of the first kind, and Uj the Chebyshev polynomials of the second
kind which define the derivatives, given by the recursion relations:

T0(x) = 1, T1(x) = x, Tj(x) = 2xTj−1(x)− Tj−2(x) for j ∈ {2, . . . , χ},
U0(x) = 1, U1(x) = 2x, Uj(x) = 2xUj−1(x)− Uj−2(x) for j ∈ {2, . . . , χ},

T ′j(x) = jUj−1, T ′′j (x) =

(
j

(n+ 1)Tj − Uj
x2 − 1

)
for j ∈ {2, . . . , χ}.

Finally the operator Lj is evaluated at time Lj(tn + c̃j∆t
n), where the c̃j are given by:

c0 = 0, c1 = 1
4c2ω

−1
0 , cj =

T ′χ(ω0)T ′′j (ω0)

T ′′χ (ω0)T ′j(ω0)
≈ j2 − 1

χ2 − 1
for j ∈ {2, . . . , χ− 1}, cχ = 1.

Notice that in contrast to the SSPRK schemes where the stage expansion is used to thicken the stability
region along the admissible imaginary axis while reducing the number of stable negative real eigenvalues along
the real axis, in the RKC methods the stage expansion is used to lengthen the stability region along the real
axis, as discussed at length in [83].

Such temporal discretizations can always be performed, but in the explicit methodology the timestep restric-
tion often becomes too severe to efficiently model realistic systems. To recover these restrictive stiff reactions, we
implement an implicit/explicit (IMEX) splitting strategy along the reaction modes of the system and maintain
either the SSPRK or the RKC strategy in the more easily stabilized diffusion modes.

The discrete split IMEX discontinuous Galerkin scheme
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a) ρhp(0) = Πhpρ0,

b) ρ
nf

hp = ρhp(0),

cd)
(
ρns+1
hp , ςhp

)
ΩG

=
(
ρ

(χ)
hp , ςhp

)
ΩG
, L (χ−1) = 0,

dc)
(
ρns+1
hp ,ϕhp

)
ΩG

=
(
ρns

hp,ϕhp

)
ΩG

+ ∆tnsZ
(
Ahp(n̊),ϕhp

)
.

e) YT = YT(D,R, tns+1).

(2.41)

Here the implicit timestepping in (2.41-dc) is chosen such that we implement the usual back differentiation
formulas (BDF(k)) of order k. Hence at first and second order, the Z = Z (Ahp(n̊),ϕhp) in (2.41-dc) become
the backward Euler and Crank-Nicolson methods, respectively. In either case (2.41) is set using Newton–Krylov
methods with low accuracy tolerances (as in [71]) such that the explicit diffusion step stability is taken as the
stability limiting step. By default the Krylov method used is GMRES, while the Newton iteration is based on
standard Jacobian line search methods, where background discussions can be found in [16, 24, 55].

Note that in [71] recent numerical stability analysis has been done on a closely related reaction-diffusion
scheme, which amounts to (2.41) where the explicit diffusion step is replaced with an implicit scheme, in
particular, in the first order with backward Euler and in the second order with the implicit trapezoidal rule.
Since we are contextualized in the setting of DG methods, and since we are interested in “pre-convective”
schemes, it is of interest to know how well the IMEX splitting performs relative to these fully implicit methods,
where the timestep restriction in its most admissible formulation is restricted by the C-stability bounds (see
[71] for the theorem).

Such operator splitting schemes have been recently studied in [29, 30] for reaction-diffusion problems. For
example, in [30] the fully implicit scheme is shown to lead to a well-posed system of reaction-diffusion equations,
providing the existence of an entropic structure and a partial equilibrium manifold. In this context some
important results are obtained on controlling the splitting error of the method (as previously mentioned in §2.3).
Nevertheless, the partial equilibrium structure discussed in [30, 41] is quite a strong assumption leading to highly
“relaxed” dynamical systems. These assumptions seem necessary in order to recovered well-posedness features
of a C∞ solution, since the associated nFANODE arising from the mass action in §2.4 display rudimentary
discontinuities even in (relatively) simple systems. Moreover the prevalence of traveling wave front solutions
indicate further singular behavior [69]. In fact, recent work has shown that even for weak solutions with at
most a quadratic mass action [13, 44], when N > 2 singular neighborhoods are not only expected, but as shown
in [44], the Hausdorff dimension of the singularity set V of the global solution has computable upper bound,
dimHV ≤ N2 − 4/N .

Thus, in order to further stabilize our (non-filtered) variational solutions we utilize an exact entropic restric-
tion as outlined in §3 below, based on the regularity results of A. Vasseur, T. Goudon and C. Caputo [18, 44],
which depends strongly on an explicit analytic entropy functional SR. These results extend the sensitivity
analysis around the equilibrium solutions of [30, 41] to include global L∞ solutions for N ≤ 2. As noted above,
when N > 2, no such global regularity is expected, and as a result, it is important to develop numerical methods
that can filter out these singular sets.

As a step in this direction, we enforce numerical entropy consistency on our solution by way of an a posteriori
calculation, which provides a variational bound on the systems entropy, but we further expand this entropic
structure to serve as the foundation for a dynamic hp-adaptive strategy as derived in detail in §3. The basic idea,
as we will discuss in some detail, is to refine/coarsen and enrich/de-enrich in areas displaying either “singular
behavior” or “excessive regularity” in order to average out the local behavior over the integral element.

§3 Entropy enriched hp-adaptivity and stability

§3.1 Bounded entropy in quiescent reactors

Let us derive the entropy of the system SR over each reaction r ∈ R in the quiescent regime. First notice that
mi∂tni = mini∂t(lnni). Now we will make use of the following positive species-dependent constant κ̊i, which



20 Quiescent Reactors

is written in terms of each reactions equilibrium constant Keq,r = kfrk
−1
br such that,

κ̊i =

[ ∏
r∈R

Keq,r

]−1/n(
∑

r∈R(νb
ir−ν

f
ir))

.

Now multiplying (2.11) by κ̊i and then another copy of (2.11) by ln(̊κini), dividing by a constant, summing the
equations together and integrating by parts we obtain the relation:

d

dt

n∑
i=0

∫
Ω

ni (ln(̊κini) + κ̊i) dx−
∫

Ω

n∑
i=0

ln (niκ̊i)∇x · (Di∇xni)dx =

∫
Ω

n∑
i=0

m−1
i Ai(̊n)�r∈R ln (niκ̊i) dx,

where it is important to recall the conservation principle from (2.16). The product �r∈R is simply the standard
scalar product with respect to the r of R, such that for any two functions wr and yr the term

∑
r∈R yr �r∈R∑

r∈R wr =
∑
r∈R yrwr. Then integrating by parts again we arrive with,

d

dt

n∑
i=0

∫
Ω

ni (ln(̊κini) + κ̊i) dx+

n∑
i=0

∫
Ω

n−1
i Di∇xni · ∇xnidx =

n∑
i=0

∫
Ω

m−1
i Ai(̊n)�r∈R ln(niκ̊i)dx. (3.1)

For Ω bounded — which corresponds to the interesting case numerically — then using the fact that a ln a ≤
2e−1

√
a for 0 ≤ a ≤ 1, we find that

∑
i=1

∫
Ω

ni| ln κ̊ini|dx =

n∑
i=1

∫
Ω

ni ln(̊κini)dx− 2

n∑
i=1

∫
Ω

ni ln(̊κini)10≤κ̊ini≤1dx

≤
n∑
i=1

∫
Ω

ni ln(̊κini)dx+ 2(e̊κi)
−1|Ω|.

providing the weak form for (3.1):

d

dt

n∑
i=1

∫
Ω

ni (| ln κ̊ini|+ κ̊i) dx+

n∑
i=1

∫
Ω

n−1
i Di|∇xni|2 · ∇xnidx+

n∑
i=1

∫
Ω

m−1
i D(̊n)dx ≤

n∑
i=1

2(eκi)
−1|Ω|,

where |∇xni|2 = ∇xni · ∇xni.
The reaction term

∑
im
−1
i D(̊n) = −∆G behaves — up to a reference prefactor — as a scaled Gibbs free

energy of the reactor system, since

n∑
i=1

m−1
i D(̊n) = −

n∑
i=1

m−1
i Ai(̊n)�r∈R ln

ni[ ∏
r∈R

Keq,r

]−1/n(
∑

r∈R(νb
ir−ν

f
ir))


= −
n∑
i=1

m−1
i Ai(̊n)�r∈R

(
1∑

r∈R(νbir − ν
f
ir)

)(
lnn

∑
r∈R(νb

ir−ν
f
ir)

i − n−1 ln
∏
r∈R

Keq,r

)

= −ξr �r∈R
∑
r∈R

lnKeq,r −
∑
r∈R

(
kfr

n∏
i=1

n
νf
ir
i − kbr

n∏
i=1

n
νb
ir
i

)
�r∈R lnQ(̊n)

= ξr �r∈R
(
lnQ(̊n) + ∆G	

)
,

(3.2)

where the reactor quotient Qr (̊n) is given by:

Q(̊n) =

(
n∏
i=1

n̊
∑

r∈R νb
ir

i

/ n∏
i=1

n̊
∑

r∈R νf
ir

i

)
, (3.3)
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and where ξr = ξr(t,x) is a reactor-scaled prefactor coefficient, and ∆G	 the reference value. Thus, for
spontaneous reactions it follows that ∆G ≤ 0. To make this precise notice that we may rewrite (3.2) as:

n∑
i=1

m−1
i D(̊n) = −

n∑
i=1

m−1
i Ai(̊n)�r∈R ln

ni(∏
r∈R

Keq,r

)−1/n(
∑

r∈R(νb
ir−ν

f
ir))


= −
∑
r∈R

kfr

(
n∏
i=1

n
νf
ir
i −K

−1
eq,r

n∏
i=1

n
νb
ir
i

)

�r∈R ln

(∏
r∈R

Keq,r

)−1 n∏
i=1

n̊
∑

r∈R νb
ir

i

/ n∏
i=1

n̊
∑

r∈R νf
ir

i


≥ 0.

(3.4)

After some algebra it is clear that for each r ∈ R we have a term of the form (A − B)(lnA − lnB) such that
the product is always positive.

As a consequence we obtain the scalar entropy SR = SR(̊n) over the reaction space R. That is, given
bounded initial reaction state density P0|r∈R satisfying

P0|∀r∈R =

n∑
i=1

∫
Ω

κ̊in
0
i (| lnn0

i |+ 1 + |x|)dx <∞,

where n0
i = ni|t=0 is the initial condition, summing over reactions r ∈ R we obtain the following inequality on

the system for any fixed n number of constituents over a bounded domain:

SR = sup
0≤t≤T

{
n∑
i=1

∫
Ω

ni(| ln κ̊ini|+ κ̊i)dx+

n∑
i=1

∫ t

0

∫
Ω

m−1
i D(̊n)dxds

+

n∑
i=1

∫ t

0

∫
Ω

n−1
i Di|∇xni|2dxds

}
≤ P0|∀r∈R +

n∑
i=1

2(e̊κi)
−1|Ω|+ C(T ).

(3.5)

where the first term on the left corresponds to the entropy contribution from the density of states, the second
term on the left to the contribution from chemical energy production in the reactor, and the third on the left to
the scattering entropy of the system. The constant C(T ) depends on the final state, unless reactor equilibrium
is established for some Teq < T , in which case C is a function of the equilibrium time C(Teq).

§3.2 Consistent entropy and p-enrichment
The entropy relation derived above may be used to generate a local smoothness estimator on the solution of
each cell’s interior. Moreover, the entropy SR is a particularly attractive functional due to the fact that first, it
globally couples the n-components of the system, and also that it is a functional which approximates the local
physical entropy of the solution, up to (2.10). In this way SR provides for a natural way to test whether the
full approximate solution (2.37) is entropy consistent (i.e. demonstrates bounded variation and dissipates at
equilibrium). If it is entropy consistent, then it also may be used to determine where in Ω (i.e. which elements
of Ω ) the entropy demonstrates the most local variation.

In order to derive the global discrete total entropy S k+1
R at any particular timestep tk+1, we integrate in

time such that for any discrete t` ∈ (0, tk+1] we have:

S k+1
R = sup

0≤t`≤tk+1

{ n∑
i=1

∫
ΩG

n`i(| ln κ̊in`|i + κ̊i)dx

+

n∑
i=1

∫ tk+1

0

∫
ΩG

(ni)
−1Di|∇xni|2dxds

+

n∑
i=1

∫ tk+1

0

∫
ΩG

m−1
i D(̊n)dxds

}
≤ P0|∀r∈R +

n∑
i=1

2(e̊κi)
−1|Ω|+ C(T ),

(3.6)
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where as above α`i = αi|t=t` .
For vanishing molar concentration the diffusivity coefficient may not vanish at a rate that captures the

analytic behavior, so (3.6) in its implementational form becomes:

S k+1
R = sup

0≤t`≤tk+1

(
n∑
i=1

∫
ΩG

n`i(| ln κ̊in`i |+ κ̊i)dx

)

+

n∑
i=1

∫ tk+1

0

∫
ΩG

1{ni≥L}

(
Di

ni

)
|∇xni|2dxds

+

n∑
i=1

∫ tk+1

0

∫
ΩG

m−1
i D(̊n)dxds ≤ P0|∀r∈R +

n∑
i=1

2(e̊κi)
−1|Ω|+ C(T ),

(3.7)

given some small positive constant L ∈ R+ where again 1{ni≥L} is the indicator function over the set containing
ni ≥ L.

Similarly, we define the discrete local in (t,x) entropy S k+1
R,Ωei

by integrating over an element Ωei restricted
to tk+1 such that we obtain:

S k+1
R,Ωei

=

n∑
i=1

∫
Ωei

nk+1
i (| ln κ̊ink+1

i |+ κ̊i)dx+

n∑
i=1

∫ tk+1

tk

∫
Ωei

m−1
i D(̊n)dxds

+

n∑
i=1

∫ tk+1

tk

∫
Ωei

1{ni≥L}

(
Di

ni

)
|∇xni|2dxds,

(3.8)

such that nk+1
i = ni|t=tk+1 . Then we proceed by defining the local in time change in entropy density ∆ρ̂S k+1

R,Ωei

over int(Ωei) as satisfying:

∆ρ̂S k+1
R,Ωei

= ρ̂
(
S k+1

R,Ωei
−S k

R,Ωei

)
, (3.9)

where the cell density is taken as ρ̂ = |Ωei |−1.
We use equation (3.9) as an approximate measure of the variation in the local entropy with respect to a fixed

volume elements (at timestep tk+1) interior, int(Ωei). More explicitly, we use (3.9) as a local regularity estimator
over the interior of Ωei in order to develop a p-enrichment functional Ek+1

i = Ek+1
i (Ps(Ωk+1

ei )), which estimates
the local internal energy of the element as an approximate measure of the local regularity of the solution. For
Ppmax(Ωei) the maximum polynomial order allowed on any Ωei , and Ps(Ωkei) the present polynomial order, we
define:

Ek+1
i =

Ps+1(Ωk+1
ei ) if

(∣∣∆ρ̂S k+1
R,Ωei

−∆%S k+1
R,Ωei

∣∣ ons+1 µs+1

)
∧ (s+ 1 ≤ pmax) ∧ (τ0 ≥ tw) ,

Ps−1(Ωk+1
ei ) if

(∣∣∆ρ̂S k+1
R,Ωei

−∆%S k+1
R,Ωei

∣∣ ons−1 µs−1

)
∧ (s− 1 ≥ pmin) ∧ (τ0 ≥ tw) ,

(3.10)

where the change in the average global entropy density ∆%S k+1
R at tk+1 is given by

∆%S k+1
R = %

(
S k+1

R −S k
R

)
.

The notation on{·} is simply a pair from the indefinite binary relations on{·}∈ {<,>,≤,≥} where the choice
determines the difference between a Type I and and Type II enrichment scheme (see [60] for more details).
Finally τ0 is a counter that restricts the enriching/de-enriching so that it only occurs every tw ∈ N timesteps.

The global entropy S k+1
R at timestep tk+1 is defined fully in §3.3, and the global density is simply taken as

% = |ΩG |−1. The adjustable parameter µs = µ(ιs) is a composite of the range of the entropy change at time
tk+1 and a weight ιs ∈ (0, 1). That is the function may be written µs+1 = ιs+1δ over the midpoint of the range
δ = δ(ρ̂,S k

R,Ωei
,S k+1

R,Ωei
) of the change in entropy density

δ = max
i

∆ρ̂S k+1
R,Ωei

−min
i

∆ρ̂S k+1
R,Ωei

.
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Clearly (3.10) has the effect of using the variation in the entropy change locally to weight some fraction of the
cells for p-enrichment and the rest for p-de-enrichment, depending only on how far their relative local change
in entropy lies from the median of the range.

In contrast to alternative choices for p-enrichment, this scheme provides for a cogent physical interpretation
that serves as support for the enrichment strategy. Namely, we see that in areas in which the relative disorder
(i.e. the relative entropy) of a cell exceeds a specified allowed variation within the cell itself, then we de-
enrich/enrich our solution, thus avoiding potential instabilities, while drawing out relevant physical features of
the solution. Likewise in areas of relative order (or stable smoother regions) we may readily enrich/de-enrich
our solution, up to the type of scheme we implement.

More precisely, this choice of enrichment and de-enrichment occurs while maintaining the “stabilizing center”
of dioristic schemes. In this sense (3.10) is a dioristic entropy scheme (for a general introduction to Type I and
Type II dioristic schemes and their stability properties see [60]). To make this explicit, denoting the global
average change in entropy density by AvgΩG∆ρ̂S k+1

R,Ωei
, the “stabilizing center” at timestep k+ 1 is the discrete

subdomain c ⊆ Ωhp comprised of the union of elements over which the change in entropy density satisfies the
condition,

c =

{ ⋃
1≤j≤ne

Ωej :
∣∣∆ρ̂S k+1

R,Ωei
−AvgΩG∆ρ̂S k+1

R,Ωei

∣∣ ons µs, ∀i}. (3.11)

Note that µs in (3.10) can itself represent a range when µs+1 6= µs−1, in which case c can become disjoint. As
discussed in [60], this stabilizing center is the minimal set over which the stability setting of the solution should
be chosen, in order to expect convergent behavior. It turns out that understanding this relationship between
the stabilizing center c and the restriction τ0 ultimately exemplifies the central nuance at play in both practical
applications as well as convergence studies (see §4 for more details).

We have also tested enrichment strategies based on slightly more abstract principles. For example, one
may simply choose a fraction of elements with respect to the magnitude of their relative change in entropy
density, or with respect to |∆ρ̂S k+1

R,Ωei
−∆%S k+1

R,Ωei
| by cell. Likewise, when using a hierarchical basis one may

use the scheme described in [60] to measure the perturbative variation in the higher terms with respect to the
Lq–norm. Many of these alternative strategies can lead to stable schemes that effectively “sense” relative energy
fluctuations with respect the ∆t. However, it should be noted as a word of caution that (3.10) is particularly
well-suited for naturally avoiding the observed phenomenon of bunching in the local variational space. This
bunching of the solution often leads to a flickering of enrichment/coarsening of a substantial number of elements
taking values close to the “center” of the chosen discriminating parameter (e.g. |∆ρS k+1

R,Ωei
− ∆%S k+1

R,Ωei
| in

(3.10)). This behavior is a potential source of debilitating inefficiency in the scheme, and can be difficult to
isolate without recourse to an entropy-type formalism.

§3.3 The entropic jump and hp-adaptivity

As already discussed, the global entropy formulation from §3.1 is predicated over a compact space Ω, while
in general we are interested in more complicated boundary formulations, in particular any boundary condition
satisfying (2.12). In this more general setting we see that equation (3.5) by way of the divergence theorem
becomes,

SR = sup
0≤t≤T

{ n∑
i=1

∫
Ω

ni(| ln κ̊ini|+ κ̊i)dx+

n∑
i=1

∫ t

0

∫
Ω

m−1
i D(̊n)dxds

n∑
i=1

∫ t

0

∫
Ω

n−1
i Di|∇xni|2dxds

}

≤ P0|∀r∈R +

n∑
i=1

2(e̊κi)
−1|Ω|+ C(T ) +

n∑
i=1

∫ t

0

∫
∂Ω

(ln(niκ̊i) + κ̊i + 1)Di∇xni · ndSds.

(3.12)
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Thus, as before, the discrete approximation to (3.12) simply yields,

S k+1
R = sup

0≤t`≤tk+1

(
n∑
i=1

∫
ΩG

n`i(| ln κ̊in`i |+ κ̊i)dx

)

+

n∑
i=1

∫ tk+1

0

∫
ΩG

1{ni≥L}

(
Di

ni

)
|∇xni|2dxds

+

n∑
i=1

∫ tk+1

0

∫
ΩG

m−1
i D(̊n)dxds ≤ P0|∀r∈R +

n∑
i=1

2(e̊κi)
−1|Ω|+ C(T )

+

n∑
i=1

∫ tk+1

0

∫
∂ΩG

1{ni≥L}(ln(niκ̊i) + κ̊i + 1)Di∇xni · ndSds.

(3.13)

Now, in the local approximation it is clear enough how to reformulate (3.13) over cells such that we obtain a
local approximation to the entropy in the neighborhood of a particular cell. However, for the case of h-adaptivity
we are more directly concerned with the local jump in entropy across the face of neighboring cells, since it is
these jumps that serve as a proper diagnostic probe for stable hp-adaptivity (e.g. see [7, 25, 26, 54]). Thus we
define the local entropic jump J k+1

R,Ωei
at time tk+1 by

J k+1
R,Ωei

=

n∑
i=1

∫ tk+1

0

∫
∂Ωei

1{ni≥L}(ln(niκ̊i) + κ̊i + 1)Di∇xni · ndSds, (3.14)

such that the density of the variation in the entropic jump ρ∆J k+1
R,Ωei

is given to satisfy

ρ̂∆J k+1
R,Ωei

= ρ̂
(
J k+1

R,Ωei
−J k

R,Ωei

)
. (3.15)

We proceed by estimating the approximate flux of the internal energy of the system by constructing the
h-adaptivity functional A = A(Th′(Ω

k+1
ei )) where the mesh triangulation Th at time tk given by h = h(tk,x)

is refined to level h′ = h(tk+1,x) — that is, we isotropically refine to h/2 in each spatial dimension — over
cell Ωei at time tk+1. Similarly we may unrefine Ak+1

i = A(Th0
(Ωk+1

ei )) to level h0 = h(tk+1,x), which is to
isotropically coarsen to 2h in each spatial dimension.

For example, in dimension N = 2 the refinement would take a quadrilateral parent cell Ωei and split it into
four child cells Cj , while a coarsening would take four child cells denoted Cj and merge them into a single parent
element Ωei . Thus depending on the evaluation of A, we obtain the full h-adaptivity functional:

Ak+1
i =

Th′(Ω
k+1
ei ) if

(∣∣ρ̂∆J k+1
R,Ωei

− %∆J k+1
R

∣∣ onh′ ηh′) ∧ (s+ 1 ≤ hmax) ∧ (τ0 ≥ tw) ,

Th0
(Ωk+1

ei ) if
(∣∣ρ̂∆J k+1

R,Ωei
− %∆̄J k+1

R

∣∣ onh′ ηh0

)
∧ (s− 1 ≥ hmin) ∧ (τ0 ≥ tw) ∀Cj ,

(3.16)

where hmax and hmin correspond to the maximum and minimum refinement levels, respectively. Here again, the
density of the global change in the entropic jump is given such that:

%∆J k+1
R = %

(
J k+1

R −J k
R

)
,

where % is the same as in §3.2. Also as in §3.2, the adjustable parameter ηh = η(υh) is again defined over the
range of the change in the entropic jump ψ = ψ(ρ,J k

R,Ωei
,J k+1

R,Ωei
), and is given by ηh = υhψ such that

ψ = max
i
ρ∆J k+1

R,Ωei
−min

i
ρJ k+1

R,Ωei
,

and υh ∈ (0, 1). The remaining notation on{·}, τ0, and tw are given as in §3.2.
It is further interesting to note that the local change in the entropic jump ∆J k+1

R,Ωei
is independent of the

reaction entropy at time level tk, and ends up depending only on the reaction coupling from the earlier timesteps
as well as on the present states effective local scattering. That being said, it is clear that just as (3.10) in §3.2



§4 Example Applications 25

effectively p-enriches the solution based on the local physics of the system, here, we find that (3.16) has the
effect of flagging elements with a high/low relative change in their entropic jumps for h-refinement, and those
with low/high relative change in their entropic jumps for h-coarsening. That is, in areas where the entropy is
changing dramatically across the elements boundary, we may, depending on our regime, either refine or coarsen.
However, we are also presented with the additional constraint denoted: ∀Cj . The meaning of ∀Cj here is that
in order to actually coarsen a parent element Ωei comprised of j children elements ∪jCj = Ωei , each child Cj
must be independently flagged for coarsening. In other words, all children of an isotropically refined element
Ωei must contain a coarsen flag at time level k + 1 in order for the parent cell to ultimately be refined at time
level k + 1. For more details on this isotropic refinement strategy we direct the reader to [7].

Finally, we couple the h-adaptivity functional Ak+1
i to the p-enrichment functional Ek+1

i such that h-
adaptivity is always preferentially chosen over p-enrichment. That is, clearly the cell localized entropy S k+1

R,Ωei

and its corresponding entropic jump J k+1
R,Ωei

are strongly coupled by virtue of (2.11), but in order to avoid
numerical instabilities caused by erroneously p-enriching relatively inert cells experiencing high entropic fluxes
entering through neighboring faces, we evaluate the simple kinetic switch functional Kk+1

i = Kk+1
i (Ak+1

i ,Ek+1
i )

determined by evaluating:

Kk+1
i =


Ak+1
i ∧ Ek+1

i if Th′(Ω
k+1
ei ) ∧Ps(Ωk+1

ei ) ∧S k+1
R ,

Ak+1
i if Th′(Ω

k+1
ei ) ∧Ps+1(Ωk+1

ei ) ∧S k+1
R ,

Ak+1
i ∧ Ek+1

i if Th0
(Ωk+1

ei ) ∧Ps(Ωk+1
ei ) ∧S k+1

R ,

Ak+1
i ∧ Ek+1

i if Th0(Ωk+1
ei ) ∧Ps+1(Ωk+1

ei ) ∧S k+1
R ,

0 otherwise,

(3.17)

whereby we are able to stabilize these spurious quiescent instabilities, and yet still enforce the entropy consistency
of the scheme.

§4 Example Applications

§4.1 Error behavior at equilibrium
Let us now consider a simple equilibrium problem with vanishing mass diffusivity coefficient Di comprised of the
two chemical species M1 and M2, and constructed in such a way as to allow for complete decoupling between
the constituents in the mass action.

That is, consider the elementary equilibrium reaction satisfying:

νf1 M1

kf

kb
νb2M2 (4.1)

such that the coupled system of differential equations is comprised of,

ρ′1 = m1ν
f
1 (kbn

νb
1

2 − kfn
νf
1

1 ), ρ′2 = m2ν
b
2(kfn

νf
1

1 − kbn
νb
1

2 ), so that m2ν
b
2ρ
′
1 = −m1ν

f
1 ρ
′
2. (4.2)

Integrating for any t ∈ [0, Teq) with Teq the equilibrium time (which exists a priori for min{kb, kf} 6= 0) and
letting the initial concentration n2,0 = 0, then we further notice that at each t we have

n1(t) = n1,0 −

(
m1ν

f
1

m2νb2

)
n2(t), and at equilibrium that n1(Teq) = n1,0 −

(
m1ν

f
1

m2νb2

)
n2(Teq). (4.3)

By mass conservation m1ν
b
2 = m2ν

b
2 and assuming the ideal behavior Keq = kf/kb = n2(Teq)/n1(Teq),

where (4.3) provide that n2 = n1,0 − n1(t), and also yields for the equilibrium constant that Keq = (n1,0 −
n1(Teq))/n1(Teq). Using these relations, we then rewrite n′1 in the first equation of (4.2) as

n′1 = kbn2 − kfn1

= kbn1,0 − (kb + kf )n1

= (kf + kb)(n1(Teq)− n1).

(4.4)
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Figure 3: On the left, the type I dioristic entropy p-enrichment scheme for h = 10/128, ∆t = 0.1, RKC(2,2),
ε = 2/13, ιs+1 = ιs−1 = 0.15, fstep = 5 plow = 1 and phigh = 5 after six timesteps with tw = 0. On the right,
the Gibbs free energy of the reaction, ∆t = 0.05, T = 75 seconds, p = 1.

Recall that for an ODE in $ of the form $′ = C1$ + C2 we can write the general solution over ∆t by,

$(tn+1) = exp
∫
∆t
C1dt

(
$(tn) +

C2

C1

)
− C2

C1
. (4.5)

Thus for (4.4) we can write that

n1 = exp−
∫
X

(kf+kb)ds (n1,0 − n1(Teq)) + n1(Teq). (4.6)

for any X ⊂ [0, Teq) containing the initial state and any t ≥ Teq, which is just to say the solution only depends
upon the initial and equilibrium concentration of α1 — hence fully independent of α2.

Then to test our p-enrichment method from §3.2 we compare the error behavior of (4.6) against p using
our approximate strategy from §2.4. We set this up by solving for (4.6) at an endtime that is within machine
precision to the equilibrium asymptotics, which we denote as the approximate equilibrium state Teq,h. Since
this equilibrium state is arrived at by way of (4.2), we must compare our results to the top order solution, which
here is determined at polynomial degree p = 5.

Given our initial state, we find that Teq,h ≤ T ≥ 4.17 minutes is sufficient for convergence to approximate
equilibrium. Here we have a stable equilibrium solution (for example, see definition 11.21 in [76]), using the
following initial conditions:

n1,0 = 1 + 4
5e
−15(x− 1

2 )2/4, and n2,0 = 0,

which can be physically motivated as projecting a localized chemical plume in some solvent. We test each
time-stepping regime separately, as shown in Table 1. It is worth noting that the time it takes the RKC solution
to reach Teq,h is longer than the time it takes the SSP solution to reach Teq,h. This observation is in agreement
with previous work [83, 85], where the expanded stability region recovers real eigenmodes of the solutions that
fluctuate about the equilibrium state more readily, while the SSP scheme rapidly dampens them. Similar effects
are seen in the implicit (IMEX) solution depending on the solver controls set in the Newton-Krylov method,
which in our cases are quite low, where both the GMRES and Newton tolerances are set to 10−10. In figure 3
we show the basic behavior of the p–enrichment algorithm when employing the type I dioristic strategy. As is
clear from the spatial graph, the p level is highest in areas of greatest curvature, and lowest in areas of lowest
curvature along the reacting gaussian conditions. Moreover, as discussed in §3, figure 3 demonstrates that while
performing p-enrichment on (4.2) the solution smoothly preserves the second law of thermodynamics.
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IMEX RKC, ε = 2/13 RKSSP(2,2)

p L2-error ιs−1 tw L2-error ιs−1 tw L2-error ιs−1 tw

5 – – – – – – – – –

4 1.1653× 10−6 – – 1.2095× 10−6 – – 1.1653× 10−6 – –

3 2.39862× 10−5 – – 2.48957× 10−5 – – 2.39862× 10−5 – –

2 0.0004464014 – – 0.0004633258 – – 0.0004464013 – –

1 0.0073297268 – – 0.0076076191 – – 0.0073297269 – –

1–2 0.0035749629 0.8 50 0.0040011919 0.8 50 0.0034345233 0.8 50

2–3 8.89191× 10−5 0.8 50 0.0001170498 0.8 50 8.89190× 10−5 0.8 50

3–4 1.29605× 10−5 0.8 50 1.25154× 10−5 0.8 50 1.08873× 10−5 0.8 50

4–5 2.75041× 10−7 0.8 50 3.662× 10−7 0.8 50 2.75040× 10−7 0.8 50

Table 1: We give the L2-errors for the p-enrichment scheme, as discussed in §3.2. Here we have set ιs+1 = 0.0,
with ∆t = .3 seconds, h = 1/32 and T = 30 seconds.

§4.2 Three-dimensional Lotka-Volterra reaction–diffusion
§4.2.1 An exact solution

Though the generalized Lotka-Volterra system frequently finds application in population dynamics, the general
mathematical form of the system actually admits all chemical reactions with mass action of the form Ai from
(2.11). For a generalized Lotka-Volterra (GLV) system [14, 15] with mass diffusion corresponding to (2.11), we
mean a solution to any system obeying the following general equation:

∂tρi −∇x · (Di∇xρi)−Li(̊n) = 0

Li(̊n) = λ̆ini + ni
∑n
j=1Aij

∏n
k=1 n

Bjk

k

}
GLV system, (4.7)

where λ̆i is a real or complex parameter and B and A are real or complex valued square matrices. Clearly
any equation satisfying (2.11) satisfies (4.7), as Ai is a special form of Li. In particular we can restrict to the
standard Lotka–Volterra (LV) [17, 46] system of order n wherein Li reduces to Li(̊n) = λ̆ini + ni

∑n
j=1Aijnj ,

which is then a formal subsystem of the mass action from (2.11).
Then we first consider an exact case when n = 3 corresponds to three chemical species, and the mass

diffusion vanishes. It turns out that any chemical equation satisfying (2.13) that splits over the mass action in
its components to satisfy,

dρ1

dt
= N1n1 + U1n

2
1 + O12n1n2 + O13n1n3,

dρ2

dt
= N2n2 + O21n2n1 + U2n

2
2 + O23n2n3,

dρ3

dt
= N3n3 + O31n3n1 + O32n3n2 + U3n

2
3,

(4.8)

where the constants are given by,

Ni = mi

∑
r∈R

(νbir − ν
f
ir)
(
1{νf

ir>0}kfr − 1{νb
ir>0}kbr

)
,Ui = mi

∑
r∈R

(νbir − ν
f
ir)
(
1{νf

ir>1}kfr − 1{νb
ir>1}kbr

)
,

Oij = mi

∑
r∈R

(νbir − ν
f
ir)
(
1{νf

ir,ν
f
jr>0}kfr − 1{νb

ir,ν
b
jr>0}kbr

)
,

is nothing but a three-dimensional standard Lotka-Volterra (LV) chemical system (note that swapping out a
chemical species ni for a population density xi recovers the corresponding biological models).

Now, in order to restrict to a subsystem that is directly solvable by way of the Prelle-Singer algorithm, we
choose that: U1m

−1
1 = O21m

−1
2 = O31m

−1
3 , O12m

−1
1 = U2m

−1
2 = O32m

−1
3 , and O13m

−1
1 = O23m

−1
2 = U3m

−1
3 ,



28 Quiescent Reactors

Figure 4: We plot the p-convergence of ρ1, where in N = 2 we set h/10 = 1/32 and for N = 3 we have
h/10 = 1/16.

p L2-error for N = 2, h/10 = 32 L2-error for N = 3, h/10 = 16

0 0.390926632369 0.720254910486

1 0.035884566508 0.047256483871

2 0.002221513109 0.001666469980

3 0.000132690544 7.8824913× 10−5

4 1.1521953× 10−5 5.001097× 10−6

5 5.38640× 10−7 1.88819× 10−7

6 7.1314× 10−8 2.2219× 10−8

7 2.749× 10−9 6.49× 10−10

Table 2: We give the L2-errors for ρ1 shown in Figure 4.

Figure 5: The h-convergence of ρ1 with N = 2, where the h-levels are defined as the h/10 values here and below.

so that the Ni’s are the remaining parameters in (4.8). As a consequence we arrive at a directly solvable
solution. Then for the Ni’s being any excess/bulk/bath constituents, a reactor system comprised of ten coupled
reactions that satisfies this equation is:

M1 + M2

kf1 2M2, M1 + M3

kf2 3M3, 2M1 + N1

kf3 3M1,

M2 + M3 + N2

kf4 2M2, 2M2 + N3

kf5 M2 + N4, M1 + M3

kf6 3M1,

2M3 + N5

kf7 3M3, νf18M1

kf8 N4, νf29M2

kf9 N5, νf310M3

kf10 N6.

(4.9)

Since the bulk concentrations [Ni] are treated as constant, this just means that the system is constrained by,
[N1]kf3

= kf1
= 2kf2

− kf6
, kf1

= −[N3]kf5
= −[N2]kf4

, and 2kf6
− kf2

= [N2]kf4
= [N5]kf7

.
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p = 1 p = 2

h/10 L2-error Convergence Rate L2-error Convergence Rate

1/8 0.303458180745 – 0.133322131328 –

1/16 0.141502142646 1.10∗ 0.012682532556 3.39∗

1/32 0.035884566508 1.98 0.002221513109 2.51∗

1/64 0.009246598384 1.96 0.000261196771 3.08

1/128 0.002327152982 1.99 3.2121273×10−5 3.02

1/256 0.000582524118 2.00 3.991183×10−6 3.00

1/512 0.0001456459723 2.00 4.97756×10−7 3.00

Table 3: We give the L2-errors and convergence rates shown in Figures 6 for N = 2, where ∗ indicates preasymp-
totic behavior.

Figure 6: Here we show the h-convergence of the equilibrium solution, where p = 1 and p = 2 in N = 3. Again
the h-levels are the h/10 values.

p = 1 p = 2

h/10 L2-error Convergence Rate L2-error Convergence Rate

1/8 0.171572963681 — 0.011957122768 —

1/16 0.047256483871 1.78 0.001666469980 2.72

1/32 0.012136203507 1.94 0.000190814465829426 2.93

1/64 0.00305803251442433 1.98 2.33630735758859e-05 2.98

1/128 0.000766609126530302 2.00 2.90899193162474e-06 3.00

Table 4: We give the L2-errors and convergence rates shown in Figure 5 for N = 3.

The modified Prelle-Singer algorithm applied to this system provides the following integrals of motion Ij (as
explicitly derived in [20]):

I1 =

(
n3e

(N2m
−1
2 −N3m

−1
3 )t

n2

)
, I2 =

(
n3e

(N1m
−1
1 −N3m

−1
3 )t

n1

)
,

I3 =

(
(m1m2m3)−1eN1m

−1
1 t(N1N2N3 + n1N2N3U1 + n2N1N3U2 + n3N1N2U3)

n1

)
.

This leads to a fully coupled locally integrable mass action along the splitting discussed in §2, which is the



30 Quiescent Reactors

following time-dependent solution to (4.8):

n1 =

(
I1N1N2N3e

N1m
−1
1 t

I3I1 − (I1U1N2N3eN1m
−1
1 t + I2U2N1N3eN2m

−1
2 t + I1I2U3N1N2eN3m

−1
3 t)

)
,

n2 =

(
I2N1N2N3e

N2m
−1
2 t

I3I1 − (I1U1N2N3eN1m
−1
1 t + I2U2N1N3eN2m

−1
2 t + I1I2U3N1N2eN3m

−1
3 t)

)
,

n3 =

(
I1I2N1N2N3e

N3m
−1
3 t

I3I1 − (I1U1N2N3eN1m
−1
1 t + I2U2N1N3eN2m

−1
2 t + I1I2U3N1N2eN3m

−1
3 t)

)
.

(4.10)

In the spirit of transparency, observe that we have just set:

N1m
−1
1 = −νf18kf8

, N2m
−1
2 = −νf29kf9

, N3m
−1
3 = −νf310kf10

,

U1m
−1
1 = kf3

[N1], O21m
−1
2 = kf1

, O31m
−1
3 = (2kf2

− kf6
),

O12m
−1
1 = −kf1 , U2m

−1
2 = −kf5 [N3], O32m

−1
3 = −kf4 [N2],

O13m
−1
1 = (2kf6

− kf2
), O23m

−1
2 = kf4

[N2], U3m
−1
3 = kf7

[N5],

where to satisfy the first set of constraints we set, kf1
= 1/2, kf2

= 1, kf3
= 1/2, kf6

= 3/2 and [N1] = 1.
The second set of constraints are satisfied by setting, kf5 = 1/2, kf4 = 1/2, [N3] = 1, and [N2] = 1. And by
consistency the third set of constraints then become, kf7 = 1/2 and [N5] = 1, which yields for the first set that:
N1 = −νf18kf8

,N2 = −νf29kf9
,N3 = −νf310kf10

. We choose the remaining variables as νf18 = νf29 = νf310 = 1, and
kf8

= 1
2n1,0, kf9

= 1
2n2,0, and kf10

= 1
2n3,0.

Finally we set the initial state of the coupled system. Consider the function,

χ = β + sinx+ sin(βN−2y) + cos(βN−2x),

letting β ∈ R and where x = (xy) when N = 2 and x = (xyz) when N = 3. Then the initial conditions are
simply chosen to satisfy ρi = β−3χ3, where for simplicity we fix β = 10. The timestepping is chosen in each
case to avoid stability related errors, such that ∆t = 0.01 seconds.

Let us briefly discuss the convergence results here, as shown in Figures 4–6, and Tables 2–4. As prescribed
we achieve the expected convergence rates in h, which converge rapidly to p + 1 in any N (we do not show
dimension one for the sake of space). Similarly we see the linear behavior of the p-convergence in the proper
norm, though at a faster rate than the h convergence. It is interesting to note that this seems to indicate that
p-enrichment might be more suitable than h-refinement, when one must be chosen over the other. However, we
caution that this behavior seems to be fairly problem dependent and may not easily generalize.

§4.2.2 Mass diffusion and hp-adaptivity

Finally let us consider the full system (4.7), with nonzero mass diffusion. In this case, the nonzero diffusive
fluxes drive entropic jumps across the cell boundaries which, as discussed in §3.3, can be used to elicit an h-
adaptivity strategy. Here we take the same system as presented in §4.2.1 yet couple to it a diagonal matrix Di

with homogeneous entries of 1 × 10−4 m2/s. We choose this representation to avoid the complications arising
in §2.5 for a choice of nonconstant mass diffusivity, since this choice does not very strongly affect the behavior
in the coupled entropy functions.

Here again, we set the same initial conditions from §4.2.1, given the same timestepping, yet we find because
the coefficients in the first integrals of the exact solution (4.10) depend on our choice of initial conditions (by
construction), then we no longer have a decoupled time-dependent solution to the mass action. Namely, (4.10)
is not a solution to the initial value nFANODE problem with the mass diffusion turned on in this instance, as
the diffusion alters the subsequent initial state of the system at each subsequent timestep.

As a consequence we arrive at a system that has no exact representation, and thus we measure the relative
error with respect to a top degree polynomial at maximum refinement. The mass diffusion here leads to
substantial boundary layer formation along ∂Ωhp. These boundary layers, it turns out, end up dominating the
entropy formation in the solution, particularly the entropic jumps (see the large boundary layer behavior in the
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Figure 7: Here we show the derived variables of our solutions from §4.2.2, as well as an example of the h-
refinement scheme that emerges. The upper left is the density of the entropic jump (with prevalent boundary
layer), the top right is the gradient of the solution, and the bottom left is the entropy density, each evaluated at
timestep five using ∆t = 0.01 with hp-adaptation turned off, and h = 1/256. On the bottom right is an example
of the h-refinement scheme that emerges from §4.2.2 after eleven timesteps of ∆t = 0.01, where we have a Type
I refinement scheme for h and a Type II enrichment scheme for p. The limits are ιs = 0.2 and ιh = 0.05, with
h ∈ {1/16, 1/32, 1/64, 1/128, 1/256} and p = {1, 2, 3}.

IMEX L2-error RKC, ε = 2/13, L2-error RKSSP(2,2), L2-error

h p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

1
256 0.00287 0.00021 – 0.00190 0.00024 – 0.00217 0.00067 –
1

128 0.01147 0.00049 0.00022 0.00759 0.00042 0.00027 0.00748 0.00139 0.00076
1
64 0.04564 0.00315 0.00036 0.03029 0.00186 0.00037 0.02973 0.00277 0.00151
1
32 0.17519 0.02513 0.00285 0.11865 0.01412 0.00149 0.11723 0.01422 0.00261
1
16 0.70421 0.14438 0.04851 0.46633 0.09193 0.02279 0.46165 0.09129 0.02281

Table 5: We give the L2-errors for the h and p ramping along the LV solution with homogeneous diffusion added
(i.e. substantial boundary layers present). Here we have set ∆t = 0.01 seconds, and T = 0.5 s.

entropic jumps, which is not present in the gradient in 7) that drive the h-adaptation. Though this layer is not
in general of definite sign (in the entropic flux), one might surmise that switching simply between Type I and
Type II methods, as discussed in §3, should appropriately solve this issue, selecting the lower center cells for
refinement, while letting the boundary layer “smear out.” However, this point broaches the central nuance of
hp-adaptive dioristic schemes.

This system, which is inherently more physical than our previous cases, now demonstrates a complicated
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IMEX L2-error RKC, ε = 2/13, L2-error RKSSP(2,2), L2-error

h p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 p = 1 p = 2 p = 3

1/64 0.00026 4.6e-06 – 0.00033 5.4e-06 – 0.00026 4.6e-06 –

1/32 0.00084 3.1e-05 1.4e-06 0.00106 3.9e-05 1.4e-06 0.00084 3.1e-05 1.4e-06

1/16 0.00173 0.00031 1.9e-05 0.00219 0.00039 2.4e-05 0.00173 0.00031 1.9e-05
hp ιs = ιh = 0.5, 2.7e-06 ιs = ιh = 0.5, 3.3e-06 ιs = ιh = 0.5, 2.7e-06

Table 6: We give the L2-errors for the h and p ramping of the equilibrium solution with homogeneous diffusion
added. Here we have set ∆t = 0.01 seconds, and T = 0.5 s. The p-enrichment scheme is of Type II and the
h-adaptive scheme is of Type I, and both span all h and p levels (i.e. p ∈ {1, 2, 3} h ∈ {1/16, 1/32, 1/64}).

entropic response surface that can not only drive the hp-adaptivity, but reveals a number of subtle characteristics
in the physics of the solutions space. Notice for example in Figure 7 that the entropy behavior is substantially
different than that of the solution gradient, which is what most standard hp-adaptive schemes use to drive the
adaptivity.

Let us emphasize this numerical observation for the interested reader. In a dioristic scheme — in fact, in
any hp-adaptation scheme that does not rely on an a posteriori minimization technique — one sees a spike
in the entropy around the points (i.e. quadrature points) of adaptation, whether they be points that have
been p-adapted or h-adapted (in either direction, e.g. higher or lower levels). These spikes are easily observed
by the highly nonlinear entropy functionals, but are only very small oscillatory perturbations in the solution
itself. This behavior is seen in Figure 7, where one cannot see the spikes in the solution and its gradient, but
the nonlinear entropic jump clearly show the anomalous behavior at the domain boundary. Moreover, these
spikes in the entropy will in general equilibrate over some characteristic time tw, depending on the dynamics
of the solutions space. However, if tw is not achieved, then the local perturbations get amplified by the h or
p adaptations, and lead to either cascading instabilities or a slow increase in the total energy of the solution
(which can be quantified in the error). This behavior has been observed before [58, 60] in different contexts. In
general identifying tw is, at this point, simply an empirical process that can be informed by CFL-type stability
relations for reaction-diffusion problems.

However, in the presence of strong boundary layers these local perturbations are also amplified by the bound-
ary layer effects, leading to rather stringent restrictions on the tw, which substantially reduce the robustness
of the dioristic entropy scheme in the presence of dominating boundary layers for reaction–diffusion problems,
as demonstrated in Table 5. On the other hand, when this is not the case and the domain boundary entropy
does not dictate the behavior of the entropic growth of the solution, then the hp-adaptation scheme from §3
is extremely robust. For example, consider our equilibrium problem from §4.1, where we again add a simple
homogeneous diffusion Di of 1× 10−4 m2/s. Then, as seen in Table 6, the convergence in the hp setting is very
robust and remarkably easy to achieve.

§5 Conclusion

We have developed from first principles a family of reaction–diffusion equations that obey equation ordering.
We denote this restricted family as quiescent reactors, in order to elicit the concept of “quiescent reactors”
from the experimental sciences where “dampened stirring effects” are the subject of study. In section §2 we
derive the system from the species Boltzmann equations, where a number of approximate constraints dictate
the relevance and appropriateness of the model regime to a particular application model. Operator splitting
strategies between the mass diffusion component and a mass action component lead to a nonlinear system of
ODEs coupled to parabolic PDEs, allowing the utilization of powerful mathematical tools in approaching the
numerical solution methods.

In §2.6–2.7 we discuss in detail the numerical methods at play in the paper. Generally this reduces to a
mixed form discontinuous Galerkin spatial discretization approach with mixed form (implicit and/or explicit)
temporal discretization strategies that recover multiscale effects. This discretization couples in §3 to a novel
entropy/stability result that emerges from the regularity analysis of the base equations (2.11). The entropy
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functional is then used as a consistency measure on the numerics of the solution, as well as a driving parameter
for a dioristic entropy hp-adaptivity strategy.

This mixed-form discontinuous Galerkin local IMEX stability preserving split operator dioristic-entropic hp-
adaptive scheme is applied to a number of numerical examples in §4. These methods achieve optimal convergence
results in both h and p, and further recover exponential convergence results of general hp-adaptive strategies
as long as domain boundary layers do not dominate the entropy formation. This is remarkable in that the
usual observation of mixing error polluting convergence rates seems to be largely absent when perfoming the
hp-adaptivity using the mathematically rigorous entropic formulation.

Our future directions are to extend the quiescent reactors to include fluid reactors where density ρ = ρ(t,x)
and temperature (energy) E = E(ϑ) = E(ϑ(t,x)) are fully coupled, in addition to adding turbulence mod-
els and electromagnetic fields for weakly ionized and plasma reactors. This includes extending the results
similar to herein to convection dominated multicomponent systems of convection–reaction–diffusion equations
Such systems include the multicomponent reactive Euler equations, the multicomponent reactive Navier–Stokes
equations, and the multicomponent reactive magnetohydrodynamic equations, as well as more general multi-
component reactive magnetofluid systems.
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