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Abstract

Naturally occurring error fields as well as resonant magnetic perturbations applied for stability control
are known to cause magnetic field-line chaos in the scrape-off layer (SOL) region of tokamaks. Here, 2D
simulations are used to investigate the effect of the field-line chaos on the SOL and in particular on its
width and peak particle flux. The chaos enters the SOL dynamics through the connection length, which
is evaluated using a Poincaré map. The variation of experimentally relevant quantities, such as the SOL
gradient length scale and the intermittency of the particle flux in the SOL, is described as a function of the
strength of the magnetic perturbation. It is found that the effect of the chaos is limited to the broadening
of the profile of the sheath-loss coefficient, which is proportional to the inverse connection length. That
is, the SOL transport in a chaotic field is equivalent to that in a model where the sheath-loss coefficient is
replaced by its average over the unperturbed flux surfaces.
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1 Introduction

In diverted tokamaks, the separatrix defines the boundary between open and closed flux surfaces and acts
as a riverbed for the scrape-off layer (SOL). In the SOL, the flow across the magnetic field balances the
parallel streaming along the field towards the plasma-facing components (PFC). A picture of how toka-
mak turbulence and transport in the SOL scale with experimentally controllable parameters is necessary
to minimize peak heat and particle flux loads on the PFC,[25] to minimize introduction of impurities, and
simultaneously maintain conditions that are consistent with global plasma confinement.[18, 29, 26, 12] In
the presence of edge-resonant non-axisymmetric perturbations, however, the separatrix is readily shattered
and replaced by a region exhibiting field-line chaos, or magnetic stochasticity. The effect of stochasticity
effect is manifested by the splitting of the separatrix footprints [46]. Field-line chaos can be introduced by
deliberately applied resonant Magnetic Perturbations (RMPs) [24], ergodic magnetic limiters [31, 22] and
naturally-occurring instabilities. RMPs have been the subject of intense recent interest for their use in con-
trolling edge localized modes by keeping the edge pedestal conditions below some critical threshold and by
effectively replacing impulsive intermittent ELM transport with a series of smaller less disruptive transport
events, or even with full suppression [17].

While the SOL has a complex three dimensional geometry, its physics is dominated by curvature-driven
interchange instabilities characterized by a short extension across but a long extension along the field
lines.[12] Following standard practice, we average vorticity and density equations along the field-aligned
dimension and work in the resulting 2D plane normal to the field-lines. Excluding regimes where full
drift-wave physics has a strong influence on the dynamics [2, 1], this dimensionally-reduced approach has
provided experimentally validated descriptions of turbulent transport, interplay between zonal flows and
turbulence,[36, 43, 47] creation of coherent structures, and SOL density length scales, among other results
[44, 27, 50, 11, 20, 36]. End-losses along the field appear as a damping term in the density equation with
a coefficient inversely proportional to the connection length L‖. In this paper we specify L‖ by a map that
describes chaotic connection lengths in the region spanning the outer portions of the core and the SOL. To
maintain the density in the presence of the end-losses, we include a particle source at the edge of the sim-
ulation domain that faces the core of the plasma. The resulting turbulence is thus flux-driven. The particle
source can be thought of as modeling the injection of particles by neutral beams, pellets and recycling.

It is generally accepted that cross field transport in the region between the plasma edge and the vessel
wall is dominated by intermittent transport [5, 44, 21] mediated by coherent, radially propagating plasma
filaments called blobs.[27, 8, 19, 49] Typically the magnetic-curvature drift combined with the usual E × B
convection will drive a blob radially outward. Continuity and charge conservation equations govern their
dynamics. Blobs provide a mechanism for radial transport of heat and momentum that greatly exceeds
neoclassical predictions.

The usefulness of blobs, as a concept, depends on their ability to survive long enough to affect transport
and demonstrate a clear dependence of their properties on model plasma parameters. Blob lifetimes have
been examined theoretically by Krasheninnikov [27] and other authors [35, 21] and experimentally in [8, 4].
These studies have shown the existence of a most stable blob size. The mechanisms underlying the interplay
between parallel transport, diffusion, convective processes, and spontaneous formation of blobs affects the
width of the SOL layer and the intermittency of transport. These mechanisms have been studied in some
detail [12, 20, 3, 2, 43]. In this paper we examine how magnetic chaos, modeled with a chaotic map that
mimics the application of static RMPs, changes statistical characterization of blobs and the scaling of blob
properties with plasma parameters. As an example of how our current understanding of blob behavior may
be challenged by the presence of chaos, consider the simplest analytic prediction of radial blob velocity -
Vx ∝ L‖/(Rδ2

y). With the addition of a chaotic field, there will be large variations in the L‖ value over
the spatial footprint of the blob - possibly affecting its coherence and thus the mean particle transport and
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Figure 1: A simple blob with key forces, length scales and directions

intermittency of density fluctuations. From previous work we also know that for a constant α there is a
strong selection for a specific blob size [3, 27]. It is natural to ask whether magnetic chaos might seed blobs
of different sizes, or favor hole creation over blob creation. Such effects on blob dynamics would clearly
affect the observed density scaling distance in SOL density profile. The aim of the present paper is to answer
these questions within the framework of the 2D model of SOL transport.

The remainder of this paper is organized as follows. In Sec. 2, we describe the formulation of the prob-
lem and some simple analytic considerations. In Sec. 3, we address the scaling of the density length-scale
and the selection of the dominant blob size. Sec. 3.5 examines the statistics of the turbulence and in par-
ticular the intermittency of particle transport. We conclude by summarizing and discussing our results in
Sec. 4 .

2 Formulation and Analytic considerations

2.1 Formulation

We use a simple two fluid interchange model that nonetheless contains all the important features required;
curvature and density gradient drifts, E × B driven turbulence, blob formation, and a parallel closure
scheme that is able to model both closed and open field lines. Similar models have a been used by many
authors and groups to study SOL turbulence, zonal flows and transport in both mirror machines and toka-
maks edge plasmas [2, 51, 12, 3].

The equations used here have been normalized by the Bohm gyro-radius ρs = cs/Ωi , ion gyro-frequency

Ωi, and ion-acoustic speed cs =
√

kTe/mi. Terms containing coefficient α come from averaging parallel cur-
rent and velocities given by elementary sheath theory. Notice that we assume no scale separation between
some background and a perturbed portion. This is consistent with the observed character of the SOL layer.
External density and momentum sources can be specified with Sn and S̟ respectively. In this work we set
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S̟ = 0. We will discuss the choice of Sn in section 2.4.

∂tn + VE · ∇n − Dn∇2n + αn = Sn, (1a)

∂t̟ + VE · ∇̟ − D̟∇2̟ − αφ − β
(b · ∇x ×∇n)

n
= S̟ , (1b)

̟ = ∇2φ, (1c)

VE = b ×∇φ, (1d)

β =
2ρs

R0
and α =

2ρs

L‖
(1e)

.
We are interested in how the presence of RMPs will influence transport in the region spanning the

plasma edge and the vessel wall that is often dominated by coherent, radially propagating blobs or stream-
ers. In arriving at equation (1) the full three dimensional geometry is reduced to two dimensions by av-
eraging along the field lines, where we take the flute approximation [41] and assume that all introduced
quantities vary weakly along uniform magnetic field lines. The influence of RMPs is thus reflected in the
parallel connection length to the divertor that enters into the α parameter of equation (1).

2.2 Geometry

While BOUT++ is designed primarily for field aligned, non-orthogonal coordinates, it also allows for simu-
lations in slab geometry. A shortcoming of the 2D slab model is that it is unable to account for the variation
of the curvature along the field lines or for the resulting variation in the mode structure. Various estimates
of the parallel wavenumber can be made. [51] Resolving the parallel mode structure requires a full three
dimensional simulation. [40] Recent work [2] indicates substantial qualitative changes in the behavior of
this system when the full three dimensional picture is taken into account. The simplifying nature of the 2D
model, by contrast, enables a greater focus on properties that are independent of the 3D geometry of the
SOL.

2.3 RMPs and the Ullmann Map

Magnetic fields have a field line structure governed by Hamilton‘s equations, with the toroidal angle play-
ing the role of time. The field lines of axisymmetric equilibria lie on nested toroidal surfaces, constituting
integrable Hamiltonian systems, and perturbations of such axisymmetric equilibria are naturally described
by Poincaré sections, the intersection of field lines with a poloidal section. The Ullmann map [39] is a
Poincaré magnetic field line map that was created to study the effects of an ergodic divertor on toroidal
plasmas. Repeated application allows us to assign a parallel connection length value based on the number
of applications necessary for a given field line to hit the divertor. One advantage of this map over some
others is that it is characterized in terms of experimental quantities such as major and minor radius, Iext/Ip

and some safety factor, q(r).
The connection lengths are said to exhibit chaos when two neighboring points are traversed by field lines

that follow very different trajectories. For example, one field line may quickly terminate on the divertor
or the wall while another may stay trapped. A parallel current closure may be assigned based on this
computed chaotic parallel connection length.

The Ullmann map is a composition of a map with good flux surfaces, where

rn+1 =
rn

1 − a1sinθn
, (2a)

θn+1 = θn +
2π

qeq(rn+1)
+ a1cosθn, (2b)
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and a perturbation map, given by

rn = rn+1 +
mCǫb

m − 1

( rn+1

b

)m−1
sin (mθn) , (3a)

θn+1 = θn − Cǫ
( rn+1

b

)m−2
cos (mθn) . (3b)

where q is the safety factor, C is a geometric factor, and ǫ is current in the external coil normalized by the
plasma current

C =
2mla2

R0b2qa
, (4a)

ǫ =
Il

Ip
, (4b)

with m = 2, 3, ....
Given some effective minor radius a we can approximate the field-line length once we know how many

applications of the map connect a given point to the divertor:

(5)L ‖ ≈ q(a)2πaNturns.

Ultimately what enters equation (1) is the inverse of this parallel connection length, α = 2ρs/L‖.
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(a) Contour plot of the inverse connection length, α, associated with magnetic chaos generated
by the Ullmann map. Escape basins appear as darker regions, whereas trapped regions appear
white and have α = 0. Note that the contour values change discretely.

(b) The flux-surface averaged α as a function of the radial position with
its rms values superimposed.

Figure 2: 4
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To fix the parameters used in this study we adopt an NSTX-like geometry, with minor radius = 68 cm,
plasma radius = 60 cm, external coil size =10 cm, R0 = 85 cm, a1 =-.01, and consider Iext/Ip = ǫ = 0, .1, .2, .3.
We use the map to fix α(x, y) for the duration of the run.

From a macroscopic point of view, one of the effects of the magnetic field chaos is to broaden the transi-
tion between closed field lines and open field lines, which appears in an axisymmetric system as a jump in
the connection length L‖. In order to distinguish the effect of the spatial fluctuations of L‖ in a chaotic SOL
field from the effect of the broadening of the transition, it is interesting to consider a model in which the
chaotic inverse connection length is averaged over an unperturbed flux-surface. We will refer to this case
as the “smooth alpha” case, as illustrated in figure 2b.

2.4 Equilibrium

We are interested in characterizing intermittency and global profile sensitivity as a function of the RMP
amplitude. Since we will be driving turbulence by introducing a particle source Sn on the core edge of the
simulation, it is useful to consider how to select Sn in our model.

The primary density sink in our system is loss through the divertor sheaths (the αn term). If we account
for the nonlinear terms through an anomalous diffusivity Da and assume a source localized at the boundary
of the simulation and of the form Sn = S0 Θ(x⋆ − x), the profile of the average density will take the form

n(x) = n0e−x
√

α
Da for x > x⋆, (6)

where S0 = 2n0. This simple result reflects the fact that the source must roughly balance the dominant sink,
represented by the αn term in the density equation.

Note that without a particle source the equations are invariant under a change in the global background
density, n → n + n0. The source strength thus has the effect of setting the background density for given Da.

3 Numerical Simulations

We use the BOUT++([15, 45, 14]) framework to discretize and evolve equation (1). Specifically, a local poly-
nomial approximation is used to compute derivatives along the x coordinate and pseudo-spectral methods
are used to compute derivatives along the y coordinate, and a CVODE([10]) ode solver is used to advance
the fields in time. To assess the reliability of our numerical tools we verify the linear dispersion relation
in section(3.1.1) as well as verify that nonlinear analytic predictions favorably compare to the single blob
dynamics of two other codes ([33], [20]) in section (3.1.2), and finally match published SOL width values [3]
in section (3.1.3).

3.1 Verification

3.1.1 Linear Verification

We compare the growth rate of the SOL interchange mode as deduced from a simulation of a linearized
version of equation (1) with the analytically derived growth rate γ. For the numerical calculation, several
γ−1 time increments may be required to converge on the solution, unless one sets the initial condition such
that u, φ correspond to an eigenvector of the linearized version of equation (1). Expanding equation (1) to
the lowest order in φ, u, n, setting D̟ = Dn, and dropping parallel dissipation in the density equation yields
the analytic result

(7)γ = −
(
α + 2Dk4

⊥
)

2k2
⊥

+

√√√√
(

α

2k2
⊥

)2

+
β

ℓn
.
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Figure 3: Growth rate γ as a function of the poloidal wavenumber ky, where D = µ = 1× 10−2 and 1× 10−3

on left and right charts respectively, β = 6 × 10−4, α = 3 × 10−5. Good agreement between analytic theory
and BOUT++ results is observed.

3.1.2 Single blob dynamics

Comparing numerical solutions of single blob propagation with published results presented by Garcia et
al. (2006) ([20]) shows good agreement. The simulations used initial and boundary conditions as shown
in Table (1). By design, the simulation domain was large enough to keep the blob sufficiently far away
from the boundaries for the duration of the run. In particular, the size of the domain is such that changing
boundary conditions between Dirichlet (nx boundary = 0), and Neumann (∂xnx boundary = 0), only weakly
affects the history of the leading moments describing the blob.

Parameter Value
Nx 1056
Ny 1024
Lx 60
Ly 40

n(t = 0) e
(x2+y2)

2

u(t = 0) 0
BCx ∂xu = ∂xn = 0
BCy periodic
Ra 102,4,6

Table 1: Numerical Blob Parameters

Comparing the evolution of the center of mass,its velocity as well as the maximum amplitude of the
density in the blob shows consistent agreement between BOUT++ generated results and those presented
by E .Garcia et al. (2006) as well recent work by C. Michoski [33] and A. Hakim [23].
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Figure 4: A few scalar blob trajectories are considered. Close agreement is seen with E. Garcia [20], here we
run case with Rayleigh number 104 and 106.

3.1.3 Saturated turbulence

As an additional verification test we considered flux-driven, many-blob interchange turbulence as de-
scribed by A.Y.Aydemir [3]. To clarify, with this test, as with single blob simulations, we use equation
(1), but with a nonzero density source term, Sn, and with radial boundary conditions that allow the profile
to relax. Except for having a constant value of α the simulation setup here is similar to ones described in
section (3.3). We fit a profile of the form n = n0 exp(−x/λSOL), to observed flux-surface averaged density
values and compare values of λSOL to published results. Specifically with β/α fixed at 5, while not shown
here, we see excellent agreement of λSOL with results present by A.Y.Aydemir [3] across a wide range of
parameters.
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3.2 Effect of field-line chaos on a single blob

Figure 5: Evolution of a density blob with Rayleigh number = 104. The pictured blob encounters a re-
gion pierced by chaotic field-lines , demarked here by two equidistant curves. The structure quickly loses
symmetry as it propagates radially outward.

In contrast to cases where α is a constant value or is simplified by averaging over a flux-surface, blobs will
quickly lose symmetry when propagating through a region with chaotic α as pictured in figure (5). Fine
fractal structures of the Poincaré map are not immediately apparent in the single blob response, however
saturated many-blob turbulence is a more appropriate framework to evaluate what if any impact field-line
chaos will have on the overall transport and the width of the SOL.

3.3 Effect of field-line chaos on saturated turbulence and mean blob size

In this section we are interested in examining the effect of field-line chaos on the SOL. Rather than focus on
individual blobs we probe the changes in the mean blob behavior as we consider three scenarios: a) chaotic,
b) smooth, and c) unperturbed flux surfaces.

The parameter space of parallel dissipation, diffusion, and source strength values is large and we opt
to fix key parameters to be consistent with an NSTX tokamak configuration [43], with αmax = 3.0 × 10−3,
β = 1.0 × 10−2, Dn = D̟ = 1.0 × 10−2. Typical mesh size is Nx × Ny = 1024x512, the simulation domain
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represents a quarter of a full torus, and typical radial range is Lx ≈ 300ρs. The large radial range, while not
representative of the physical size of the SOL, is useful in fitting density scaling parameters, see section 3.4.

Simulations are initialized with a smooth density profile that gently peaks at the core edge and a small
driving source term, Sn, as described in section (2.4). We use simple boundary conditions, ∂xn ≈ 0 and
u = 0 on both radial boundaries, that allows the entire density profile to adjust as needed to settle on a
turbulent equilibrium profile. Additionally we fix the potential, φ = 0, on the inner radial boundary to
ensure that radial particle flux is solely set by the source, Sn.

We can better interpret the many-blob turbulence results in terms of single blob theory by extracting
mean blob behavior. To this end we consider fluctuations in the radial convective particle flux,

Γx = ΓE×B,x(x, y, t) = −n∂yφ, (8)

and employ spatial spectral analysis and radially resolved auto-correlation analysis to infer the mean length
scales of the saturated interchange turbulence present in our system. Specifically we considered the auto-
correlation along the poloidal coordinate of the particle flux Γx(x, y, t) at some fixed point x. We extract the
mean periodic scale length and the smallest non-periodic statistically significant length scale, we refer to
these lengths as λblob and δsmall respectively.

5 10

0.1

0.2

0.3

0.4

(a) A hypothetical Γx(y) at a fixed x

5 10 15

0.2

0.4

0.6

0.8

1.0

(b) Autocorrelation reveals the relevant length scales

Figure 6: The mean size of the smallest reoccurring feature in y can be shown to be 〈δsmall〉y ≈
√

2σ, where

σ is determined by a least-squares fit of a Gaussian, e
− y2

2σ2 , around the central peak of R(y)

In processing simulation results of flux Γx, blobs will show up as isolated, generally radially outward
propagating local maxima in Γx − 〈Γx〉y. Consider figure (7), where a snapshot of the particle flux at a point
in time is presented (7a), and more detailed figures follow, where E × B velocity fields are overlaid to give
a sense of flow direction.
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Figure 7: Details of radially outward particle flux Γx with average blob size 〈δblob〉y. The difference in the
values of the α parameter is reflected in the size of the blobs in the two closeups images.

In figure (8) we superimpose the spectral density of fluctuations, analytic predictions, and scale lengths
obtained from auto-correlation onto a single image that summarizes all important length scales as a function
of x. The intensity of the filled contour plot is proportional to a time averaged value of the spectral density.
The spectral density is re-normalized at each radial location to clearly display the spectral density for all x,
even as the amplitude of fluctuations decays exponentially in the radially outward direction. See appendix
(A) for additional details on auto-correlation analysis and background information on spectral density.

Wavenumbers associated with a few analytically predicted length scales are overlaid in figure(8). These
expressions can be extracted from equation (1) using term balancing, see A. Aydemir [3]. As seen in figure(8)
the blob size, for the parameters considered, stays close to inertial scale length, and the mean size of the
finer structures, δsmall, stays close to the most unstable linear scale. Inertial scale is the length scale at which
both inertia and parallel momentum losses are comparable with the curvature drive. Relating operators in
the momentum equation (1a) to some typical blob size a we write

(
φ

a2

)2

+
β

a
− αφ +

D̟φ

a4
= 0, (9)

the desired length scale am must then satisfy the following relations,

(
φ

a2
m

)2

≈ β

am
, αφ ≈ β

am
. (10)

It follows easily that equation (10) is satisfied when a5
m = β/α2. Additionally we observe that spectral

density appears to taper off below the parallel upper limit kα. Modes below this value are dominated by
end-losses, and typically lose mass and decohere quickly. We can derive this length scale similarly to the
preceding example. Rewriting operators in the continuity equation in terms of some scale length aα yields

Dn

a2
+

φ

a2
+ α = 0. (11)

When parallel particle losses roughly balance particle flux in equation (11), and curvature drive is compa-
rable to parallel momentum losses in equation (9) the implied length scale aα must satisfy

φ

a2
α

+ α ≈ 0 αφ ≈ β

aα
. (12)

Again it straightforward to show that

a3
α =

β

α2
. (13)

12



We also note that the curvature drive term gets bigger as a gets smaller, therefore aα must be the small-
est length scale at which parallel dissipation can be comparable to curvature drive. In k-space this will

correspond to some upper wavenumber limit, where kα =
√

2/aα, when we correctly relate periodic and
spatially localized/non-periodic length scales.1
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Parameter Value

inertial lower limit: km =
√

2
(β/α2)1/5

diffusive upper limit: kDn =
√

2(αDn)
β

parallel upper limit: kα =
√

2
(β/α2)1/3

viscous lower limit: kD̟ =
√

2
(D̟/α)1/4

linear scale: klin(γmax) ≈
(

α
Dn

)1/4

mean detected blob size: kλblob
≈ 2π

λblob

width of central peak of RΓx : kσ =
√

2
δsmall

Figure 8: Wavenumbers or length scales present in Γx fluctuations indicate that the inertial scale length,
with a corresponding wavenumber km, provides a good estimate of the mean blob size. Additionally we
observe that the smallest significant scale length corresponds to a length scale for which we expect the

linear growth rate γ to peak, where k = klin ≈ (α/Dn)1/4. The nature of the abrupt jump in α field is clear in
figure (b), the differences between smooth and chaotic cases is not immediately clear. As indicated by the
black curve significant blob break-up is observed in all three cases.

We can see that the mean blob size does not seem to be strongly affected by the fractal character of the
α field but does seem to respond quickly to the local-in-x variations in the y-averaged parallel connection
length, as indicated in figure (8) with curve labeled kλ . We expect the smallest observed, δsmall sized, fluc-
tuation and its corresponding wavenumber kσ, to be most sensitive to the chaotic nature of the field-lines.

While generally kσ closely tracks the most unstable linear wavenumber, klin ≈ (α/Dn)(1/4) , in the region
where α transitions from 0 to αmax wavenumber kσ seems to be consistently smaller in the case with chaotic

1To correctly associate a non-periodic or spatially localized length scale with a wavenumber we consider the auto-correlation
function of the two signal types. Consider an auto-correlation function of a sine wave, and an auto-correlation function of some non-
periodic signal, call them Rsine and Rnoperiod respectively. Note that the non-periodic signal will still have characteristic length scales.

As reviewed in figure(6) the central peak of the auto-correlation function Rnoperiod will have a standard deviation of
√

2σx , where 2σx

can be equated with a diameter a. The auto-correlation of a periodic signal will be another periodic signal with the same period as the
input signal. Using least-squares we can fit a Gaussian around the central peak of Rsine to see that it has a standard deviation of 1/k,
it follows that

1

k
=
√

2σx =
√

2
a

2
⇒ k =

√
2

a
. (14)
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field-lines than in the case with the smooth simplification pictured in figure (8c). The simplest explanation
for this observed difference is that highly spatially localized variations in α, are essentially ignored by the
smallest coherent flux structures, lowering the effective average value of α which determines the unstable
linear scale length. In relation to the Poincaré magnetic field line map this observation implies that highly
localized escape basins, while allowing individual particles to escape toroidal confinement quickly, do not
qualitatively change the character of the average radially propagating coherent structure.

We can see that the mean blob size does not seem to be strongly affected by the fractal character of the
α field but does seem to respond quickly to the local-in-x variations in the y-averaged parallel connection
length. For many machines inertial blobs can be expected to be several multiples of the ion-acoustic gyro-
radius,

am = (
(2πq(R))2R

ρs
)1/5ρs ≈ (2 − 3)ρs.

The simple approach that arrives on a set of characteristic length scales on the non-vanishing α end of
the simulation domain neglects zonal flows which are seen to dominate the α = 0 end of the simulation
domain, and are in fact present throughout. Zonal flows are important in setting the blob creation rate and
have a non-trivial interaction with radial electric field shear, see [43].

3.4 Profile characterization

We fit a simple profile to our simulation results where the gradient of log(n f it) along x smoothly changes
from some λcore to another λSOL with some transition region of width wn linking inner and outer regions,

∂x log(n) = A + B arctan

(
x − x0

∆x

)
= 0, (16a)

A =
λcore + λSOL

2
, (16b)

B =
λSOL − λcore

π
. (16c)

Integrating equation(16) yields a longer analytic expression and introduces a constant of integration.
We minimize the difference of the squares to compute ∆x, λSOL, λcore and some constant of integration. We
find a region of width wn where the derivative of nave is within one standard deviation of maximum value,
this is the value reported on the y-axis in Figure(10).

The width of the density shoulder, wn, appears to scale linearly with the width of the α transition, wα,
chaotic or smooth. The density scale length λSOL in the far SOL does not have a strong dependence on
the character of the α transition. This observation combined with blob size measurements in section (3.3)
indicates that both globally averaged profiles and the mean blob-size, are consistently insensitive to the
finer details of how α transitions from 0 to some maximum αmax. In the next section rather than simply
compute the average profiles and blobs sizes we examine the distribution of fluctuations in greater detail.
A. Aydemir [3] proposed modeling transport in the SOL with a collection of blobs, sized at roughly the
most unstable linear scale length at birth that propagate radially outward. Our observations are consistent
with this approach and explicitly verify that inertial blobs dominate convective particle flux fluctuations.

3.5 Statistics of density and convective flux fluctuations in the SOL

Single point measurements of density fluctuations are possibly the most common way to detect large bursty
events in the SOL and a large body of experimental and theoretical work surrounds this diagnostic in the
context of blobs and many-blob turbulence, [19, 49, 28]. One difference between data-gathering permitted
by numerical work over experiment is that rather than being limited to several locations where probe data
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Figure 9: Typical nave profile (solid) with the detected shoulder region shaded, along with a fit of a smoothly
connected two λ profile model (dashed).
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Figure 10: While for the chaotic cases we see more large deviations from a simple linear relationship be-
tween the width of the α mixing length and the width of the nave shoulder, it seem to lie within the same
scaling range as the smooth α set of values.
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Figure 11: Far SOL width, λ, does not show any clear dependence on the chaotic properties of the α profile
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is available we can consider fluctuations across the entire computational domain. Additionally we can
consider fluctuations in the radial component of the particle flux, Γx . This is a simple way to limit our
attention to density fluctuations that have a nonzero radial velocity component.

To examine how different distributions deviate from an idealized Gaussian we can normalize the bins
enumerating the number of counts of a particular flux amplitude with the Γrms specific to that numerical
experiment. With this approach all Gaussian distributions, regardless of their individual Γrms values would
sit on a single curve.

3.6 Particle flux

One quantity we are ultimately interested in, that our model can provide, is the maximum particle flux. We
can consider a histogram of radial particle flux and density fluctuations; an efficient way to examine the
difference in the number of high particle flux events between the considered cases.
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(a) Histogram of normalized convective particle flux Γx

fluctuations. The manner in which chaotic and smooth α
distributions deviate from a Gaussian is similar.
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(b) Histogram of unnormalized Γx fluctuations. We see
the unperturbed case has a strongly bimodal distribution
and largest absolute deviations from its mean value.

Figure 12: Here we examine the distribution of convective particle flux fluctuations, near the maximum in
the density gradient, in practice this is usually just outside the separatrix. As seen in panel(b), it appears
that a chaotic RMP-like rearrangement shows little affect on the frequency of high flux events, as compared
to the smooth case. The magnetic perturbation is Iext/Ip = .2 for this case.

Looking further away from the shoulder region we see that all three cases appear to have a very similar
distribution of fluctuations.
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nificantly lower values of flux fluctuation for the abruptly
changing α can be reconciled by noticing, that for a given
position outside the separatix, the density field has ex-
perienced more parallel dissipation as it moved radially
outward, due to lack of intermediate values of α between
0 and αmax.

Figure 13: The distribution of convective particle flux fluctuations far from the separatrix.

Histograms of density fluctuations tell a similar story, with little difference between smooth and chaotic
α cases.
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(b) Further away from the separatrix the probability dis-
tributions collapse onto a single curve characterized by
some positive skewness - indicative of intermittent posi-
tive density events.

Figure 14: The case with an unperturbed α, in red, shows the highest relative number of high density events,
and has the most clearly bimodal (two-peak) distribution among the considered cases, implying a region
where blobs and holes tend to have a relatively narrow range of typical respective values, as compared
to the other two cases. When fluctuation counts are normalized as described, the differences between
smoothly varying and chaotic α fields are small and subtle. Only the ǫ = .2 case is illustrated here, however
other values of ǫ yield qualitatively similar results.

While there are no strong differences between the statistics from smoothly varying and chaotic α simu-
lations, in either the overall shape of the fluctuation distribution or maximum values of particle flux, fluc-
tuations associated with an abruptly changing α show a significantly different distribution that is strongly
bi-modal and exhibits a greater number of high intensity events. This observation is qualitatively consistent
with section (3.3) where we note that for the case of abruptly changing α, immediately outside the separa-
trix, the observed blobs, as inferred from auto-correlation of Γx, are smaller and therefore can be expected
to travel faster and generate sharper wave-fronts relative to larger blobs. Whatever initial differences may
have been observed between the three distributions immediately outside the separatrix mostly disappear
when the point of observation moves 1/2 of the total radial domain size away from the separatrix, as pic-
tured in figure (13).

A quantitative treatment examining a couple of leading moments of the density PDF beyond the simple
mean and standard deviation, specifically skewness and kurtosis, can be used to further quantify intermit-
tency and identify the blob birth zones. However, this analysis reveals little systematic difference between
chaotic and smooth α fields. Moreover one could argue that reducing the maximum particle flux is the most
important feature we are interested in and this is well quantified by the observed range in the histograms
presented in figures (12) and (13).

4 Conclusion

We have analyzed turbulent steady state density profiles in the SOL with a simple electrostatic interchange
edge turbulence model applicable to a broad range of devices. Specifically we considered how changing
the character of the transition between zero and strong sheath coupling changes the character of the steady
state profiles. We found that characterization of the scrape off layer by the common metric of an e-folding
density scaling length remains largely unchanged in far scrape-off layer. Closer to the separatrix, in the
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transitional zone between α = 0 and αmax, the mean density profile has a local maximum in the density
gradient whose width , wn,roughly mirrors the width of the α transition, wα. Both flux-surface averaged
and chaotic cases show similar so-called shoulder widths wn. From a practical standpoint this implies that
the fine details of the chaotic structure of α are not necessary to create useful empirical models that relate
state-steady profile shape and persistent magnetic chaos.

We observe that radial transport in this SOL model, considered in a simple slab geometry, is dominated
by blobs of a specific size, regardless of the nature of the interface between the closed flux surfaces and
the far SOL. Furthermore, the observed density scaling length is only weakly affected by the state of the
plasma at the interface where blob birth takes place, once a sheath-connected blob is established. While the
introduction of a chaotic interface, where externally introduced magnetic field deforms or even breaks the
last closed flux surface, does encourage blob and hole formation over a wider radial region, the same effect
can be achieved by running the numerical experiment with smoothly varying connection lengths lacking
any chaotic features.

We compute probability density functions (PDFs) for the observed density and convective radial flux
fluctuations to see that a chaotic magnetic field will generally produce fluctuation statics that differ little
from the smoothly varying case. This again suggest that assuming a smoothly varying parallel connection
length between just inside separatrix and the far SOL is a sufficient description when dealing with physics
that is otherwise well characterized by a simple 2D electrostatic model. Additionally as seen in Figure(12)
application of chaotic magnetic fields does in fact lower the maximum particle flux that can be expected,
suggesting that RMPs may be helpful in limiting divertor damage and impurity contamination.

Ongoing work will extend the presented work by including electron temperature in the system of equa-
tions, will include the full form of the 〈∇‖ j‖〉 and n〈∇‖v‖〉 terms rather than the linearized version as done
here, and will recognize the presence of a core-facing region that is better described with a Hasegawa-
Wakatani system of equations rather than a sheath coupled, interchange dominated system. In the flute
approximation we expect to see the fields making up our system to vary weakly along field lines, in a two-
dimensional model this should manifest itself as strong non-local coupling at every point to every other
point intersected by the same field line, or perhaps approximated by an anomalous diffusion coefficient in
smooth regions, neither is implemented in this work. The most straightforward solution to this geometric
issue is to include the parallel dimension in the simulation domain which we are currently investigating.
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A autocorrelation

We consider auto-correlation along the poloidal coordinate of particle flux Γx(x, y, t), at some fixed point x.
We define auto-correlation as the usual measure of similarity of a signal with itself shifted by some poloidal
displacement,

As shown in figure (6) at least two characteristic length scales can be extracted: the width of the central
peak of R, refered to as 〈δ〉y and some primary period 〈λblob〉y, or in shorthand notation δsmall and λblob.
We anticipate that λblob is a wavelength that can be related to mean blob size, and δsmall is simply the small-
est observed coherent convective density flux structure that is statistically significant. In the subsequent
discussion we show that δsmall and λblob agree well with simple analytic predictions of dominant linear
instability scale length and blob size, respectively.

In addition to computing the auto-correlations of Γx, we can consider a discrete Fourier transform of Γx,
specifically

Γ̃x = Γ̃x(x, ky, t) =
∫ Ly

0
dye−i2πkyy

Γx . (17)

We can go on to compute a time average of the spectral density P(x, ky, t), where

P(x, ky) = P(x, ky, t) =
1

(t1 − t0)

∫ t1

t0

dt Γ̃xΓ̃
⋆
x . (18)

Note that this is simply the absolute value of the Fourier transform Γ̃x, squared and time averaged, or
equivalently a Fourier transform of the auto-correlation R(x, ky) time averaged. Local maxima of P(x, ky)
along ky indicate dominant wavenumbers; important periodic features along the poloidal direction.

B length scales discussion

To illustrate consider the inertial scale length, where auto-correlation analysis indicates where the vast
majority of the blobs we detect reside. We relate operators in our equation to some characteristic spatial
scale length a,

(∂t + VE · ∇) → φ

a2
∂y → 1

a
∇2 → − 1

a2
. (19)

We can tag the inertial term in equation (1) by adding a nominal coefficient Ai. This simple bookkeeping
trick will allow us to examine the scale lengths in the inertially dominated limit, as

−Ai

(
φ

a2

)2

+
β

a
− αφ +

D̟φ

a4
= 0, (20a)

Dn

a2
+

φ

a2
+ α = 0. (20b)

Solving for φ in equation (20a), substituting the result into (20b), yields an equation that will let us
examine length scales associated with the different physics included in this model. Expanding the final
equation in the limit Ai ≫ α, β, D̟, and Dn will give us some idea of the spatial scales required to satisfy
equation (21) when inertia dominates:

√
aβ
√

1
Ai

a
− a2α

2Ai
+ O[

1

Ai
]0 = 0. (21)
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Setting Ai to 1, we solve for a, denoting it am, as

a5
m =

β

α2
. (22)

By inspection from equation (20) we see that in the limit a → ∞ inertia can be neglected. In other words am

must be some lower limit, so we can ignore inertia when a ≫ am.

In addition, other relevant scales can be derived, as discussed in [3, 50, 12]. For reference: km =
√

2
(β/α2)1/5

sets a lower limit on ky for which inertia matters, while kD̟ =
√

2
(D̟/α)1/4 , sets an lower limit on ky for

which viscous diffusion matters, kD =
√

2(αDn)
β sets an upper ky for which particle diffusion matters, and

kα =
√

2
(β/α2)1/3 sets an upper ky where parallel particle dissipation matters.
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