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Abstract

We present a solution to the conservation form (Eulerian form) of the
quantum hydrodynamic equations which arise in chemical dynamics by
implementing a mixed/discontinuous Galerkin (MDG) finite element nu-
merical scheme. We show that this methodology is stable, showing good
accuracy and a remarkable scale invariance in its solution space. In addi-
tion the MDG method is robust, adapting well to various initial-boundary
value problems of particular significance in a range of physical and chemi-
cal applications. We further show explicitly how to recover the Lagrangian
frame (or pathline) solutions.
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§1 Introduction

Quantum hydrodynamics (QHD) has engendered substantial activity in the field
of theoretical chemical dynamics, where one may refer to Wyatt et al.([38]) for
a comprehensive introductory overview of the numerous recent results emerging
from this blossoming field.

The basic idea emerging from quantum chemistry in the context of QHD
is to employ the time-dependent Schrödinger equation (TDSE) to solve for the
dynamical properties (probability densities, “particle” velocities, etc.) of chem-
ical systems. In the same spirit in which the de Broglie-Bohm interpretation
(see [4, 5, 16]) of quantum mechanics may be used to recover “trajectories” of
individual fluid elements along the characteristics of motion of the solution, the
QHD equations of Madelung and Bohm are derived as formally equivalent to
the TDSE and thus comprise an alternative route to solutions which generate
quantum trajectories that follow particles along their respective paths (see [38]
and [18] for a comprehensive overview).

Figure 1: Here we have the intramolecular rearrangement of the aryl radical
2, 4, 6-tri-tert-butylephenyl to 3, 5-di-tert-butylneophyl (see [6] for details).

These solutions hold particular significance, where, in the context of the
QHD formulation, it is possible to resolve the chemical dynamics of a vast
number of reaction mechanisms known to have pathways dominated by quantum
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Figure 2: Here we show an enzymatic catalysis – an aromatic amine dehydro-
genase (AADH) with a tryptophan tryptophyl quinone (TTQ) prosthetic group
catalyzing the oxidative deamination of tryptamine with an electron transfer to
an arsenate reductase enzyme (see [6] and [26] for details, PDB codes: 1nwp
(azurin), 2agy (AADH)).

tunneling regimes. Some of these systems include proton transfer reactions (for
example see figure 1), conformational inversions, biologically important redox
reactions in enzymatic catalysis reactions (see figure 2), and proton-coupled
electron transfer reactions (refer to [27] and [26]). It is not yet clear if these
types of methods may also have application at higher energies, for example in
the halo nuclei tunneling occurring in fusion reactions (as seen, for example, in
[17]).

Substantial research has been done in quantum hydrodynamics to find the
best and fastest computational methodology for solving this system of equations.
In the standard methodology presented using the quantum trajectory method
(QTM), for example, solutions to the QHD equations are found by transforming
the system of equations, which is generally posited in the Eulerian fixed coor-
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dinate framework (see [13, 14, 18, 24]), into the same set of equations in the
Lagrangian coordinate framework, which effectively follows solutions along par-
ticle trajectories; or along so-called “Bohmian trajectories.” The transformation
from the Eulerian to the Lagrangian frame leads to a set of coupled equations
which solve for two unknowns: the quantum action S(t, ~r) and the probability
density or quantum amplitude

√
%(t, ~r) = R(t, ~r) along the trajectories ~r(t,x)

(e.g. see [38] box 1.2). The obvious advantage of the Lagrangian framework
is reduced computational times, since solutions are only computed along a set
of chosen trajectories; while clearly the disadvantage is the possibility of ob-
scuring structure hidden within the continuum of the full solution, which may
only emerge properly in convergent numerical schemes, and also the increased
complications of transposing into more complicated settings: such as with func-
tional or time dependencies on the potential term V , or including dissipative or
rotational vector fields.

In addition, the numerical solutions to the above mentioned Lagrangian for-
mulations have demonstrated characteristic behaviors which introduce certain
technical difficulties at the level of formal analysis. First, the system of equa-
tions are stiff, which is to say, solutions to the system may locally or globally
vary rapidly enough to become numerical unstable without reducing numer-
ically to extremely small timesteps. Furthermore, there exists the so-called
“node problem,” which is characterized by singularity formation (see [38] for
characterization of node types) along particle trajectories. Another issue which
arises is obtaining unique solutions, since there is not a unique choice of tra-
jectories in the Lagrangian formulation (see for example §6 and appendix A).
And finally, boundary data is often treated without regard to the (often sub-
stantial) numerical residuals introduced in the weak entropy case, or taking into
account consistency between the TDSE and the QHD system of equations (see
for example [29] and §3).

We introduce an alternative formulation to the standard solutions described
above in % and S and tracked with respect to the Lagrangian coordinate frame
which is motivated by work of Gardner, Cockburn, et al. (see [7, 14, 15]). In-
stead, we keep the system in its conservation form (instead of in a primitive
variable form) in the Eulerian coordinate system (see [24]), and solve for the
density % = %(t,x) and the particle velocity v = v(t,x) (instead of the quantum
action S). We show that these solutions may be used to easily recover the vari-
ables S and ψ in a single step; and may with little difficulty be transformed into
their Lagrangian coordinate frame counterpart solutions %(t, ~r),v(t, ~r), S(t, ~r)
and ψ(t, ~r), using the conservation equation (continuity equation), or by solving
for pathlines in the sense of classical mechanics, or by any number of alternative
so-called “offset methods.” Additionally, our solutions demonstrate a type of
resolution invariance, which is to say that the behavior of our solutions are qual-
itatively equivalent at varying spatial resolutions, and compare favorably with
solutions to the formally equivalent TDSE. As a consequence, our conservation-
based formulation is computationally competitive with Lagrangian formulations,
up to a type of “formal accuracy” in the trajectory solutions.

Our solutions, as the Lagrangian formulated solutions mentioned above, still
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demonstrate a stiff behavior. However, also as the Lagrangian solutions above,
and similarly to the classical CFL condition in fluid mechanics, we consider this
a prohibitive but not insurmountable computational difficulty. On the other
hand, our solutions to the conservation form of QHD do not demonstrate the
node problem (at least on Gaussian wavepackets) as expected, as the only type
of node our formulation exhibits is for % ≡ 0, which never occurs if we add
a numerical ambient density %A to the initial density ρ|t=0. The solution is
stable when the ambient density is set to ∼ 11 orders of magnitude smaller
than maxΩ(%) over a computational domain Ω. We maintain that the addition
of %A to the initial density does not significantly change the numerical solution
of the system of partial differential equations, while introducing the substantial
benefit of significantly improving its stability. Again, this behavior compares
favorably with solutions to the TDSE, which also do not demonstrate the node
problem. On the other hand, computing solutions in the Lagrangian frame
still offers substantial computational efficiency when compared to those in the
Eulerian frame; due simply to relative density of solutions.

We begin in §2 by presenting the governing equations, then rescaling these
equations in time for substantial improvement of numerical tractability. Next we
present the details of a computationally well-posed finite element discretization
scheme leading to our approximate (numerical) solution. The scheme is based
on a discontinuous Galerkin method for the QHD conservation laws and a mixed
finite element method for the Bohmian quantum potential, which is inspired by
[8]. In §3 we briefly derive the basic equations, and discuss the rather strong
dependence on the formal and numerical equivalencies in the boundary data. In
§4 we derive an analytic test case which allows us to find the relative error in
the discontinuous Galerkin mixed method, which shows that our formulation is
near to numerically exact everywhere but at the boundaries (which is expected).
We proceed in §5 by testing the standard case of a hydrogen atom tunneling
through an Eckart potential barrier, compare these results to a finite difference
scheme for the TDSE, and then show how to use the continuity equation to
recover the Lagrangian, or Bohmian, trajectories. Next, in §6, we show how to
compute pathlines, recover the variables ρ,u, ψ and S in both the Eulerian and
Lagrangian frames, and compare the way in which these solutions relate to each
other. We finish with some concluding remarks in §7.

§2 Conservation Formulation of Quantum
Hydrodynamics

Consider the following system of equations for (s, x) ∈ Ts × Ω, motivated by
[38], where we have transformed the solution space from the usual Lagrangian
coordinate frame into the conservation form of the Eulerian coordinate frame:

∂s%+∇x · (%v) = 0, (2.1)
∂s(%mv) +∇x ·Π + %∇xV = 0, (2.2)
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with initial conditions

%s=0 = %0, and vs=0 = v0

where % = %(s,x) is the probability density corresponding to conservation equa-
tion (2.1), and v = v(s,x) is the volume velocity corresponding to the momen-
tum density %p = %mv in equation (2.2), where the mass m is constant. Here
V corresponds to the potential surface, where in keeping with the usual formu-
lation in chemical applications in one dimension V may be generally thought of
as a model potential (e.g. an Eckart, Lennard-Jones or electrostatic potential).

The quantum stress Π is given to obey,

Π = %mv ⊗ v + %−1

{
~2

4m
(∇x%)2

}
− ~2

4m
∇2
x%,

or alternatively

m−1Π = %v ⊗ v − %~2

4m2
∇2
x log %,

with the Bohmian quantum potential given as Q =
(

~2

2m∆x
√
%
)
/
√
% (note that

this term is only defined up to a sign convention, see for example Ref. [18, 23]
versus Ref. [38]), such that the nonlinear dispersion relation is given by,

%~2

2m
∇x
(

∆x
√
%

√
%

)
=

~2

4m
∇ · (%∇2

x log %), (2.3)

yielding the alternative form of (2.2):

∂t(%mv) +∇x · (%mv ⊗ v)− %∇xQ+ %∇xV = 0. (2.4)

Let us rescale (2.1) and (2.4) by setting s =
√
mt and solving for a rescaled

solution u and ρ in the time variable t, such that u(t, x) =
√
mv(
√
mt, x) and

ρ(t, x) = %(
√
mt, x) such that (2.1) and (2.4) for (t, x) ∈ T × Ω become:

∂tρ+∇x · (ρu) = 0, (2.5)
∂t(ρu) +∇x · (ρu⊗ u)− ρ∇xQ+ ρ∇xV = 0. (2.6)

We solve (2.5)-(2.6) using a mixed discontinuous Galerkin finite element
method. We define the state vector

U = (ρ, ρu)T ,

the inviscid flux vector
f = (ρu, ρu⊗ u)T ,

and the source vector
S = (0, ρ∇x(V −Q))T .

Then we can rewrite (2.1)-(2.2) as

U t + fx + S = 0. (2.7)
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Figure 3: The discretization of Ω, distinguishing nodes, elements and neighbors,
with boundary ∂Ω = {a, b} in dimension N = 1.

Consider the following discretization scheme motivated by [12, 29] (and il-
lustrated in the one dimensional case in Figure 3). Take an open Ω ⊂ R with
boundary ∂Ω = Γ, given T > 0 such that QT = ((0, T ) × Ω) for Ω̂ the closure
of Ω. Let Th denote the partition of the closure Ω, such that taking Ω̂ = [a, b]
provides the partition

a = x0 < x1 . . . < xne = b

comprised of elements Gi = (xi−1, xi) ∈ Th such that Th = {G1,G2, . . . ,Gne}.
The mesh diameter h is given by h = supG∈Th(xi − xi−1) such that a discrete
approximation to Ω is given by the set Ωh = ∪iGi \ {a, b}. Each element of
the partition has a boundary set given by ∂Gi = {xi−1, xi}, where elements
sharing a boundary point ∂Gi ∩ ∂Gj 6= ∅ are characterized as neighbors and
generate the set Kij = ∂Gi ∩ ∂Gj of interfaces between neighboring elements.
The boundary ∂Ω = {a, b} is characterized in the mesh as ∂Ω = {x0, xne}
and indexed by elements Bj ∈ ∂Ω such that Ω̂ = Th ∪ Kij ∪ ∂Ω. Now for
I ⊂ Z+ = {1, 2, . . .} define the indexing set r(i) = {j ∈ I : Gj is a neighbor of
Gi}, and for IB ⊂ Z− = {−1,−2, . . .} define s(i) = {j ∈ IB : Gi contains Bj}.
Then for Si = r(i)∪ s(i), we have ∂Gi = ∪j∈S(i)Kij and ∂Gi ∩ ∂Ω = ∪j∈s(i)Kij .

We define the broken Sobolev space over the partition Th as

W k,2(Ωh,Th) = {v : v|Gi ∈W
k,2(Gi) ∀Gi ∈ Th}.

Further, approximate solutions to (2.1)-(2.2) will exist in the space of discon-
tinuous piecewise polynomial functions over Ω restricted to Th, given as

Sdh(Ωh,Th) = {v : v|Gi ∈Pd(Gi) ∀Gi ∈ Th}

for Pd(Gi) the space of degree ≤ d polynomials on Gi.
Choosing a set of degree d polynomial basis functions N` ∈ Pd(Gi) for

` = 0, . . . , d we can denote the state vector at the time t over Ωh, by

Uh(t, x) =
d∑
`=0

U i
`(t)N

i
`(x), ∀x ∈ Gi, (2.8)
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where the N i
` ’s are the finite element shape functions in the DG setting, and the

U i
`’s correspond to the nodal unknowns. We characterize the finite dimensional

test functions

ϕh ∈W 2,2(Ωh,Th), by ϕh(x) =
d∑
`=0

ϕi
`N

i
`(x)

where ϕi
` are the nodal values of the test functions in each Gi.

Assuming that the source term S is sufficiently smooth, we let U be a
classical solution to (2.7) and multiply through by ϕh and integrating such
that:

d

dt

∫
Gi

U ·ϕhdx+
∫
Gi

fx ·ϕhdx = −
∫
Gi

S ·ϕhdx. (2.9)

Integrating (2.9) by parts gives

d

dt

∫
Gi

Uh·ϕhdx+
∫
Gi

(f ·ϕh)xdx−
∫
Gi

f ·ϕh
xdx = −

∫
Gi

S ·ϕhdx. (2.10)

Let ϕ|Kij and ϕ|Kji denote the values of ϕ on Kij considered from the interior
and the exterior of Gi, respectively. It should be noted that for Kij ∈ Γ, the
restricted functions ϕh|Kji are determined up to a choice of boundary condition,
which we will discuss in more detail in §3. We approximate the first term in
(2.10) by,

d

dt

∫
Gi

Uh ·ϕhdx ≈
d

dt

∫
Gi

U ·ϕhdx, (2.11)

the second term using an inviscid numerical flux Φi, by

Φ̃i(Uh|Kij ,Uh|Kji ,ϕh) =
∑
j∈S(i)

∫
Kij

Φ(Uh|Kij ,Uh|Kji , nij) ·ϕh|KijdK

≈
∫
Kij

N∑
l=1

(fh)l · (nij)lϕh|KijdK,
(2.12)

for nij the unit outward pointing normal and where l is the dimension, and the
third term on the left in (2.10) by:

Θi(Uh,ϕh) = −
∫
Gi

fh · (ϕh)xdx ≈ −
∫
Gi

f · (ϕh)xdx. (2.13)

Using (2.11)-(2.13), taking the convention that

X =
∑
Gi∈Th

Xi,

and setting the inner product

(ah, bh)ΩG =
∑
Gi∈Th

∫
Gi

ah · bhdx,
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we define an approximate solution to (2.9)-(2.17) as Uh for all t ∈ (0, T ) satis-
fying:

Discontinuous Galerkin Method for the QHD Conservation Laws

1) Uh ∈ C0([0, T ];Sdh),

2)
d

dt
(Uh,ϕh)ΩG + Φ̃(Uh,ϕh) + Θ(Uh,ϕh) + (Sh, ϕh)ΩG = 0,

3) Uh(0) = U0.

(2.14)

To compute the source term S, we approximate the Bohmian quantum po-
tential using a mixed finite element method. In particular, we know that at
each time t, the quantum potential Q satisfies the equations:

Q =
~2

2m
∇x · q√

ρ
and q = ∇x

√
ρ. (2.15)

Let ϑ ∈ L2(Ω) and ς ∈ H(div,Ω). Then multiplying (2.15) by ϑ and ς, respec-
tively, and integrating by parts over Ω results in:∫

Ω

Qϑdx =
∫

Ω

~2

2m
∇x · q√

ρ
ϑdx, (2.16)∫

Ω

q · ςdx = −
∫

Ω

√
ρ∇xςdx+

∫
Γ

√
ρς · ndΓ. (2.17)

Choosing finite dimensional subspaces L h ⊂ L2(Ω) and H h ⊂ H(div,Ω), a
mixed finite element method for the Bohmian quantum potential is then: find
Qh : [0, T ]×Ω→ R, qh : [0, T ]×Ω→ R3 such that for all t ∈ [0, T ], Qh(t) ∈ L h

and qh ∈H h satisfy:

Mixed Method for the Bohmian Quantum Potential

1) (Qh, ϑh)Ω =
~2

m

(
∇x · qh√

ρh
, ϑh

)
Ω

,

2) (qh, ςh)Ω = −(
√
ρh,∇xςh)Ω + (

√
ρh, ςhn)Γ.

(2.18)

Since we wish S ∈ L2(Ω), we choose L h to be a continuous finite element space,
and we choose H h to be an H(div)-conforming space (e.g. Raviart-Thomas
elements [33], such that in one dimension, Raviart-Thomas elements collapse to
be standard continuous finite elements). Equations (2.14) and (2.18) define our
mixed/discontinuous Galerkin method in semi-discrete form. Computationally,
we must also discretize time, as shown in §4 and §5.

It is worth noting that in the Lagrangian formulation the primitive variables
(ρ,u) are accompanied by the quantum action S and the quantum wave func-
tion ψ. We will explicitly derive these terms in section §5 from the solution
(2.14). It is also worth noting that a pure discontinuous Galerkin method was
implemented as an alternative approach to the MDG method solution shown
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in (2.14). This treatment used a dispersive flux formulation as shown in [22].
We found that this formulation depended nonlinearly on the sign of the advec-
tive flux term, leading in the naive implementation to the formation of soli-
ton/compacton type behavior; solutions which are well-known in the ‘formally’
equivalent formulation of Korteweg fluids (see [3, 11, 20, 21]) – up to turbu-
lence effects etc., as explained in §3 – which model diffuse fluid interfaces as
well as having phenomenological interpretation in the context of the nonlinear
Schrödinger equation (see [35]) and the Gross-Pitaevskii equation (see [1, 19])
given nearly identical initial conditions to the ones we use in §5. However, in
the context of chemical dynamics it is not clear that these types of solutions
carry physical significance, and so we have isolated our analysis to the MDG
method formulation presented in (2.14).

§3 Boundary Treatment

A recurring difficulty in constructing numerical methods for initial-boundary
value systems of partial differential equations for physical systems is the issue
of how to prescribe mathematically consistent boundary conditions which ac-
commodate dynamic (physical) boundary data. It turns out that this issue is
a cause of both numerical and mathematical difficulties in establishing the for-
mal equivalencies between the TDSE and the QHD system of equations. We
show this behavior explicitly in an example in §5, but let us first examine the
mathematical source of this difficulty.

Recall that the system presented in (2.1)-(2.2) is derived explicitly from the
TDSE. That is, we have set ψ = ReiS/~, and want to expand the solution
of the Schrödinger equation in one unknown and one equation in ψ = ψ(t, x)
into a system of partial differential equations in the unknowns R = R(t, x) and
S = S(t, x). To make this a well-posed system we of course need a system
of two equations, where both unknowns must be assigned distinct boundary
conditions. First take the following form of the Schrödinger equation:(

−∆x +
2m
~2

V

)
ψ =

2mi
~
∂tψ, (3.1)

and plug in ψ = ReiS/~ such that expanding gives for the time derivative,
2mi
~
∂tψ =

2mi
~

∂

∂t

(
ReiS/~

)
=

2mi
~
eiS/~∂tR−

2m
~2

ReiS/~∂tS,

(3.2)

and for the spatial component

∆xψ = ∆x(ReiS/~) = ∇x · ∇x(ReiS/~)

= ∇x ·
(
eiS/~∇xR+

i

~
ReiS/~∇xS

)
= eiS/~

(
∆xR+

2i
~
∇xS∇xR−

R

~2
(∇xS)2 +

i

~
R∆xS

)
.

(3.3)
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Putting (3.2) and (3.3) back into (3.1) and canceling a factor of eiS/~ we
obtain:

R
2m
~2

V = ∆xR+
2i
~
∇xS∇xR−

R

~2
(∇xS)2 +

i

~
R∆xS +

2mi
~
∂tR−

2m
~2

R∂tS,

(3.4)
Now, collecting the imaginary parts of (3.4),

−2mi
~
∂tR−

2i
~
∇xS∇xR−

i

~
R∆xS = 0,

and multiplying through by ~2/2m provides:

−∂tR−
1
m
∇xR∇xS −

1
2m

R∆xS = 0.

Additionally multiplying through by −2mR gives,

m∂tR
2 +∇xR2∇xS +R2∆xS = 0,

where applying the product rule yields the conservation form:

m∂tR
2 +∇x · (R2∇xS) = 0. (3.5)

Clearly setting R =
√
% and using the Madelung relation v = 1

m∇xS for m a
constant m ∈ R leads to the usual conservation of mass equation:

∂t%+∇x · (%v) = 0. (3.6)

Similarly putting together the real parts of (3.4) gives:

2mR
~2

∂tS −∆xR+
R

~2
(∇xS)2 +

2m
~2

RV = 0,

such that upon multiplication through by ~2/2m2R we have:

1
m
∂tS −

~2

2m2R
∆xR+

1
2m2

(∇xS)2 +
1
m
V = 0.

Taking a derivation in x then yields

1
m
∂t∇xS −∇x

(
~2

2m2R
∆xR

)
+∇x ·

(
1

2m2
(∇xS)2

)
+

1
m
∇xV = 0.

Now again we substitute the important Madelung relation v = 1
m∇xS giving

the form:

∂tv +
1
2
∇x(v · v)− ~2

2m2
∇x(R−1∆xR) +

1
m
∇xV = 0. (3.7)

The Madelung relation, v = 1
m∇xS, is of course equivalent to setting v to be an

irrotational field, since for any field S, ∇x ×∇xS = 0. Thus for an irrotational
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vector field v, using that ∇x(v ·v) = 2((v ·∇x)v + v×∇x×v), we may rewrite
(3.7) as,

∂tv + (v · ∇x)v − ~2

2m2
∇x(R−1∆xR) +

1
m
∇xV = 0,

so that multiplying by %m yields,

%∂tmv + (%mv · ∇x)v − % ~2

2m
∇x(R−1∆xR) + %∇xV = 0.

Combining this equation with (3.6) yields:

∂t(%mv) +∇x · (%mv ⊗ v)− %∇xQ+ %∇xV = 0, (3.8)

for Q the Bohmian quantum potential given as Q =
(

~2

2m∆x
√
%
)
/
√
%. It is

important to see that the formal equivalence between 3.1 and 3.8 is entirely
dependent on Madelung’s irrotational condition, which makes turbulent effects,
for example, vanish. In the alternative derivation of the QHD regime, using
moment expansions (see for example [18, 38]) this restriction is not necessary.

Thus we have arrived at our system of quantum hydrodynamic equations:

∂t%+∇x · (%v) = 0,
∂t(%mv) +∇x · (%mv ⊗ v)− %∇xQ+ %∇xV = 0,

(3.9)

requiring initial conditions

ρ|t=0 = ρ0 and u|t=0 = u0,

and numerically requiring explicit boundary conditions ρb and ub on an irro-
tational vector field v. Additionally, and as an important aside, the formal
equivalence we have derived is constructed without mention of boundary con-
ditions, which is satisfied over (0, T )× R3, but on a discrete domain Ω ⊂ R3 is
a bit over optimistic, and as we will see below, does not in general hold.

That is, the TDSE code (see §5) sets the initial data ψi,b on the boundary as
a time-independent condition, so the boundary value ψb ≡ ψb = ψi,b is enforced
for all t ∈ [0, T ). Since ψi,b must be decomposed into Ri,b and Si,b to make
sense for the QHD formulation (3.9), these give Dirichlet conditions which can
be implemented, but are unstable in the QHD regime, since Ri,b exponentially
decays on the boundary and as a consequence is not numerically invertible; as
it must be in the QHD formulation. These may however be approximated by
setting ρi,b = ρA, the ambient density, and ui,b = − 1

m

∫
Gb ∇Sdx for Gb the

boundary element.
However, these BCs still are not well-posed in the QHD regime for the fol-

lowing reason. First we compute the entropy inequality for the rescaled ver-
sion of (3.9) shown in (2.5) and (2.6). We may compute the important classi-
cal/quantum entropy satisfying for non-boundary terms that:

d

dt

∫
Ω

(
ρ
|v|2

2
+

~2(∇x
√
ρ)2

4m
+ ρV

)
dx ≤ 0. (3.10)



§3 Boundary Treatment 13

We arrive at this system by multiplying the momentum equation from (3.9)
by v and integrating in space (e.g. the domain is some Ω ⊆ R3), such that
rearranging we find∫

Ω

v∂t(ρv) + v∇x · (ρv ⊗ v)dx−
∫

Ω

ρv∇xQdx+
∫

Ω

ρv∇xV dx = 0. (3.11)

The product rule allows us to expand the first term on the LHS as:∫
Ω

|v|2(∂tρ+∇x · (ρv)) + ρv∂tv + ρ|v|2∇x · v dx,

where |v|2 = v · v. Using the mass conservation equation twice from (3.9) and
applying the divergence theorem we find that,∫

Ω

v (∂t(ρv) +∇ · (ρv ⊗ v)) dx =
d

dt

∫
Ω

ρ
|v|2

2
dx+

1
2

∫
Ω

∇x · (ρv3)dx. (3.12)

Next, using the dispersion relation from the Bohm quantum potential the third
term on the left yields:∫

Ω

ρv∇xQ =
~2

2m

∫
Ω

ρv∇x
(

∆x
√
ρ

√
ρ

)
dx

= − ~2

2m

∫
Ω

1
√
ρ
∇x · (ρv)∆x

√
ρdx+

~2

2m

∫
Ω

∇x · (
√
ρv∆x

√
ρ) dx

=
~2

2m

∫
Ω

{
∇x
(

1
√
ρ
∇x · (ρv)

)
∇x
√
ρ+∇x · (

√
ρv∆x

√
ρ)
}
dx

− ~2

2m

∫
Ω

∇x
(

1
√
ρ
∇x · (ρv)∇x

√
ρ

)
dx

=
~2

2m

∫
Ω

∇x
√
ρ ∂t∇x

√
ρdx+ boundary terms.

(3.13)
Finally the source term V = V (x) upon integrating by parts gives∫

Ω

ρv · ∇xV dx = −
∫

Ω

V∇x · (ρv)dx+
∫

Ω

∇x · (V ρu)dx

=
d

dt

∫
Ω

ρV dx+
∫

Ω

∇x · (V ρv)dx.
(3.14)

Then we have recovered (3.10) as an equality up to the boundary terms in
(3.12), (3.13) and (3.14). To recover the mathematical well-posedness of the
system these boundary terms must either vanish or be bounded and positive (or
negative) definite. One such choice of boundary data is, for example, vb ≡ 0.
Another is the pair of conditions ∇x

√
ρb ≡ 0 and Vb ≡ 0 for all t ∈ [0, T ), and

so forth.
The first set of boundary data, with vb ≡ 0, may be set with ρb ≡ ρA. Since

the action behaves as a phase, this seems a reasonable approximation, since it
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effectively assumes that up to a constant of integration that the phase is constant
over boundary elements ∇Sb ≡ 0. These conditions are then mathematically
consistent with the system of equations (3.9), but have the physical effect of
generating “inlet/outlet” boundary layers, caused by the value of ρb.

Perhaps a more natural boundary condition is given by setting,

Un
h|Kji = Un

h|Kij ,

where Un
h is the numerical solution at timestep tn, as explained in detail in

§4, and Kij ∈ ∂Ω. This boundary type is a first order approximation to a
transmissive or radiative condition that treats the boundary like a “ghost cell,”
and allows density and momentum to leave the domain as though falling into
vacuum, while allowing no density or momentum to enter. This condition ap-
proximates to the first order, the effect of “not setting boundary conditions
at all,” and thus not badly perturbing the system (3.9) away from its natu-
ral behavior, nor generating reflecting behavior, which in some contexts – such
as a chemical reaction occurring in a solvent bath – are difficult to physically
interpret.

§4 A Numerical Test Case

We wish to test the accuracy of our MDG method formulation by solving an
analytic test solution. In order to do this we choose a numerical flux for (2.14)
and restrict to spatial dimension l = 1. For the inviscid flux Φ we implement
the local Lax-Friedrich’s flux ΦlLF satisfying∫
Kij

ΦlLF ·ϕhdK =
1
2

∫
Kij

(f(Uh)|Kij + f(Uh)|Kji) · nijϕh|KijdK

− 1
2

∫
Kij

(Specr(Γ0))((Uh)|Kij − (Uh)|Kji) · nijϕh|KijdK,

for nij the outward unit normal and Specr(Γ0) the spectral radius of Γ0; the
Jacobian matrix of the inviscid flux JUf(U) = Γ0(U) which may be represented
by the following 2× 2 matrix,

Γ0(U) =
(

0 1
−u2 2u

)
. (4.1)

Summing over the elements of the mesh this term satisfies:

2Φ̃lLF (Uh,ϕh) =
∑
Gi∈Th

∑
j∈S(i)

∫
Kij

(f(Uh)|Kij + f(Uh)|Kji) · nijϕh|KijdK

−
∑
Gi∈Th

∑
j∈S(i)

∫
Kij

(Specr(Γ0))((Uh)|Kij − (Uh)|Kji) · nijϕh|KijdK.

(4.2)
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Figure 4: Here we show the relative error introduced by the weak entropy bound-
ary conditions for a = 0 and both b = 10 and b = 50. The boundary data (the
graphs on the right) show only the relative error on element b of ∂Ω for b = 10
and b = 50, respectively.

Next we discretize in time. That is, we denote a partition of [0,T] by

0 = t0 < t1 . . . < tT = T,

for a timestep given as ∆tn = tn+1 − tn., and let Un
h denote the solution at

timestep tn. Thus we implement the following forward Euler scheme:

∂Uh

∂t
≈ Un+1

h −Un
h

∆tn
,

which, along with the implementation of a slope limiter in the conservation
variables (ρ, ρu) given by van Leer’s MUSCL scheme (as shown in [36] and
[37]), allows us to explicitly solve (2.14). That is, we define an approximate
solution as Un

h for all tn such that n = 0, . . . , T satisfying:

1) Un
h ∈ Sdh, Qnh ∈ Lh and qnh ∈Hh,

2)
(

Un+1
h −Un

h

∆tn
,ϕh

)
ΩG

+ Φ̃(Un
h,ϕh) + Θ(Un

h,ϕh) + (Sn
h, ϕh)ΩG = 0,

3) (Qnh, ϑh)Ω =
~2

m

(
∇x · qnh√

ρnh
, ϑh

)
Ω

,

4) (qnh, ςh)Ω = −
(√

ρnh,∇xςh
)

Ω
+
(√

ρnh, ςhn
)

Γ
,

5) Uh
0 = Uh(0).

(4.3)
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The above formulation lends itself naturally to a staggered scheme. First, given
Un
h one solves step 3 and 4 for Qnh and qnh, which provides Sn

h, allowing us to
solve for Un+1

h in step 2.
Now we construct an appropriate test case. Consider the dimension N = 1

case and let u ≡ 0 on Ω for (2.5)-(2.6), such that ∂sρ = 0. Up to a choice of
boundary conditions, upon integration we have for (2.6) that

Q = C − V,

such that choosing a C ≡ V we find the following second order ordinary differ-
ential equation:

ρ′′ − ρ−1(ρ′)2 = 0,

whose solution is ρ = ex. We solve for the approximate solution of (2.14) using
the above scheme, with initial conditions ρ0 = ex, u = 0, V = C and m = 1836
the mass of a proton in Hartree atomic units (au). The boundaries are set to
the weak entropy boundary condition formulation as presented in [2, 9, 25] and
[29]. We graph the relative error of our approximate solution ρh to the exact
numerical representation ρa in Figure (4). We see that the two solutions are
numerically exact in the interior of the domain, and error accumulates in the
boundary ∂Ω, as expected due to the weak entropy boundary conditions. We
note that the error on the boundary may be reduced by increasing the absolute
size of the interval [a, b].

§5 Tunneling in TDSE and QHD

We proceed by testing a relatively standard example in quantum chemistry,
given by a propagating Gaussian packet in the direction of a model Eckart
potential barrier. We solve the following one dimensional system:

∂tρ+ ∂x(ρu) = 0, (5.1)

∂t(ρu) + ∂x(ρu2)− ρ∂xQ+ ρ∂xV = 0. (5.2)

with initial conditions

ρ0 = ρA +
(

1√
2πµ

)
e
−(x−x0)2

2µ and u0 = (αV0)1/2
, (5.3)

where the Eckart potential is given by

V (x) = V0 sech2

(
1
2

(x− x1)
)
. (5.4)

As is conventional in quantum hydrodynamics, the mass is set to approx-
imate the hydrogen (proton) mass m ∼ 2000 au (in Hartree atomic units),
ρA ∼ 10−10 is a numerical background density for division, x0 centers the Gaus-
sian packet, x1 centers the potential, µ is the variance of the distribution, α
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Figure 5: The top graphs compare solutions to the TDSE and QHD system in
the so-called “eyeball norm,” for the forward Euler scheme. The bottom solution
shows the nontrivial formal difference. Here x refers to the x-th meshpoint.

is a constant α ∈ R and V0 is the barrier height (which we may vary, so some
constant V0 ∈ R). In the quantum regime (when classical barrier transmission
is not present), the initial velocity u0 is often chosen to satisfy the following
condition on the initial kinetic energy K0 = 1

2u
2
0 = 1

4V0.
The background ambient value ρA is required in order to satisfied the math-

ematical and numerical well-posedness of the system such that the behavior of
the system is not perturbed away from its proper character by compounding
residual behavior, as shown in §3. Furthermore, from a phenomenological point
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Figure 6: We show the diffusive noise profile min(ρQHD, 10−3) in the QHD
solution, and the difference min(ρTDSE, 10−3)−min(ρQHD, 10−3). Here x refers
to the x-th meshpoint.

of view, this value is nonrestrictive and physically easily justified – for example,
for a chemical reaction occurring in a solvent bath, or, similarly, any process
occurring away from vacuum.

The discretization proceeds as in section §2 and §4, where we adopt the local
Lax-Friedrich’s inviscid flux with van Leer’s MUSCL slope limiting scheme.
Next we implement a standard explicit Runge-Kutta time discretization (see
[9, 34] and [29], or [28] for explicit details).

Now we solve the resultant system using for our initial data (5.3)-(5.4) ex-
plicitly that µ = 0.16, α = 2, x0 = 3 and x1 = 6, such that,

ρ0 = 10−10 +
(

1√
2πµ

)
e
−(x−3)2

0.32 and u0 = (2V0)1/2
,

with potential:

V (x) = V0 sech2

(
1
2

(x− 6)
)
.

It is worth noting that we have thus chosen a kinetic energy which is in the
context of a mixed classical-quantum regime; which is just to say that some
classical trajectories trasmit over the barrier, in addition to those that tunnel
quantum mechanically. For boundary data we use the approximate well-posed
Dirichlet conditions discussed in §3:

ρb = ρA = 10−10 and ub = 0.

We compare our solution to a finite difference scheme for the TDSE provided
by Prof. Robert E. Wyatt [38] in order to test the accuracy of our formulation.
The TDSE has equivalent initial settings, while the boundary conditions are
given naturally via ψb = ψi,b as discussed in §3.

In Figure 5 these two solutions are compared. Is is clear that the two solu-
tions have the same qualitative behavior. However they do show fundamentally
different quantitative behaviors. Analysis has shown that the two most preva-
lent sources of error between these two solutions are diffusion and boundary
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Figure 7: We show the absolute difference between the QHD solution using
the approximate boundary data from Figure 5 denoted ρψ with the transmis-
sive boundary formulation from (5.8) denoted ρT . Here x refers to the x-th
meshpoint.

oscillations. The boundary oscillations clearly occur due to the approximations
discussed in §3. The diffusion, on the other hand, is a signature of the slope
limiter in the QHD formulation and is shown in greater detail in Figure 6. Here
we confirm that the MUSCL slope limiting scheme is adding a type of “artificial
diffusion” to the QHD solutions. We have found that choosing a less restrictive
slope limiter, such as the flux limiter of Osher presented in [31], does stably
reduce the diffusion in our solutions.

We may now recover trajectories, or characteristics, of the solution by using
the fact that (2.1) is satisfied at every time step (note that we show the alter-
native method of integrating velocity “pathlines” in §6). We may think of this
equation as a kind of “conservation of density” here, and thus we simply employ
Reynold’s transport theorem (RTT):

∂

∂t

∫
Ω̃(t)

ρdx+
∫

Γ̃(t)

ρurel · ndx = 0, (5.5)

where urel is the relative velocity of the fluid with respect to the moving bound-
ary Γ̃(t). First consider the case when u(a) ≈ 0 such that we may choose
Ω̃(t) = (a, y(t)) where y(t) is the moving boundary treated as an unknown. By
assumption and construction, urel(a) = 0, whereas for a trajectory we require
urel(y) = 0. Then integrating (5.5) in t we find∫ y(t)

a

ρdx =
∫ y(0)

a

ρdx. (5.6)
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Figure 8: We solve the accumulated density trajectories from (5.6) using the
transmissive solutions from ρT in Figure 7.

Let us define for each trajectory y(t) with y(0) = y0 the “locally accumulated
mass” M by:

M(y0, t) =
∫ y(t)

a

ρ(x, t)dx.

Approximating each trajectory then directly follows from the equationM(y0, t) =
M(y0, 0).

To continue let us denote Mi(t) = M(xi, t), where xi is the i-th meshpoint.
To compute y(t), we compare M(y0, t) to the increasing sequence {Mi(t)}i=0...N

and find j such that Mj−1(t) ≤ M(y0, t) < Mj(t), which gives us that y(t) ∈
[xj−1, xj). Then to find y(t) recall that we have from (2.8) an expansion

ρh(t, x) =
d∑
l=0

cl(t)N
j
l (x), for x ∈ (xj−1, xj)

where the cl = cl(t) are constants for every fixed t and the shape functions
N j
l (x) in our implementation are translated versions of polynomials {Pl}dl=0 on

[−1, 1]. That is using fj : [xj−1, xj ] 7→ [−1, 1] where

fj(x) = 2
(
x− xj−1

xj − xj−1

)
− 1,

we find, N j
l (x) = Pl(fj(x)). Then solving for y(t), formulated via

M(y0, t) = Mj−1(t) +
∫ y(t)

xj−1

ρh(x, t)dx = Mj−1(t) +
∫ y(t)

xj−1

d∑
l=0

clPl(fj(x))dx,

can be recast by a change of variables, as solving for X in

M(y0, t) = Mj−1(t) +
(

2
xj − xj−1

)∫ X

−1

d∑
l=0

clPl(z)dz, (5.7)
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Figure 9: Here we show mass conservation in the QHD regime given transmissive
boundaries, where bf =

∫
[0,T )

∫
∂Ω
ρdxdt is the boundary flux.

after substituting z = fj(x). But that just corresponds by the change of vari-
ables, to

X = 2
(
y(t)− xj−1

xj − xj−1

)
− 1.

Then a solution to X exists by the intermediate value theorem, and since the
integrand is positive it is uniquely determined as the only solution on [−1, 1] to
the polynomial equation of degree d + 1 arising from (5.7). We my then, for
example, in the piecewise linear case (i.e. d = 1) use the quadratic formula to
recover X and hence the position of y(t) within Gj .

Similarly, we also work in the other direction, with the balance of the mass
in [y(t), xj ] such that the analogous integral equation becomes:

∫ 1

Y

d∑
l=0

clPl(z)dz,

which provides for a consistency check on the accumulated density in either
direction. Consequently we have that the sequence {y(t)}t=1,...,T provides a
numerical approximation to the position of a particle initially at y0 when t = 0
at our given set of later times.

This formulation holds as long as our hypothesis, u(a) ≈ 0, is satisfied.
However, we can immediately extend this result to include the case u(a) 6= 0.
That is, after integrating in t we note that (5.5) becomes:∫ y(t)

a

ρdx =
∫ y(0)

a

ρdx+
∫ t

0

ρu(a)dt.
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Figure 10: Here we show the remarkable spatial invariance of the solution. These
represent the same solution as that given in Figure 5, except the left graph is
with 25 meshpoints and 100 timesteps, and the right at 50 meshpoints and 200
timesteps.

This gives us an alternative equation to find y(t), where we must only add∫ t
0
ρu(a)dt to the accumulated density M at every t. We further note that this

basic framework may also be adapted to higher dimensions (see [32]).
Now, we again solve our system with (5.6) using for (5.3)-(5.4) that µ =

0.16, α = 2, x0 = 3, x1 = 6, however now we introduce the transmissive bound-
ary condition:

Un
h|Kji = Un

h|Kij , (5.8)

as discussed in §3. In Figure 7 it is clear that the behavior between the solutions
with transmissive and approximate solutions is quite distinct, and that bound-
aries are, so to speak, felt in the interior solution even before significant density
has reached ∂Ω. We use the transmissive boundary conditions to construct the
accumulated mass trajectories derived above, as they seem to represent more
physically cogent boundaries. The results are shown in Figure 8, where the
the “Gaussian centered trajectories” are simply the trajectories containing the
majority of the initial density; that is, those trajectories whose initial positions
are ±1 au from the center of ρ0.

We further show that the MDG method is a conservative scheme. That is,
in Figure 9 we show that the density is effectively (numerically) normalized to
one on the domain, when taking into account the boundary flux. That is, we see
linear error growth at machine precision over 10,000 timesteps. Another feature
of the solution which is attractive in the sense of practical applications, is that
the spatial invariance demonstrated by the solutions. In Figure 10 we show
the this feature, where the same calculation from Figure 5 is graphed, where
there 400 meshpoints and 10,000 timesteps were used in order to compare with
the TDSE. However, as is clear from Figure 10, with only 25 meshpoints the
solution provides the same qualitative answer. This is an important feature in
chemical applications where computations must scale in 3N dimensions, for N
the number of atoms in the molecular system of interest (see for example [30]).
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§6 Recovering ψ and S in both frames

Now that we have solutions in the Eulerian and Lagrangian coordinate frames as
given in §4 we may recover the important variables ψ and S in either frame. First
we note that we may alternatively recover the trajectories using the solution U
from §4 to solve the initial value problem:

d~r

dt
= u(t, ~r) with ~r|t=0 = ~r0. (6.1)

We recover these ~r by direct integration, and compare them to those computed
via (5.6) (see figure 11), where we refer to the ~r trajectories computed in (6.1)
as the “velocity pathlines.”

Figure 11: We graph the quantum trajectories using (6.1) to solve for ~r, which
can be compared with the accumulated mass trajectories shown in Figure 8.

The trajectories computed using the velocity field (6.1) are shown in Figure
11 and show qualitatively similar behavior to the trajectories computed using
the accumulated mass formulation in (5.6). There is no necessarily unique
way of arriving at the trajectories one chooses to represent the solution in the
Lagrangian frame. For example, one may utilize a method which weights the
solutions between (5.6) and (6.1). That is, we may compute the trajectory
positions via (6.1) and then offset these by a weighted average of the density

Figure 12: The Eulerian solution ρ(t, x) and the corresponding Lagrangian so-
lution ρ(t, ~r) for the same initial condition settings as in figure 8 using the
conservation form of the trajectories (5.6)..
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Figure 13: A graph of the Eulerian solution S(t, x) and the corresponding La-
grangian solution S(t, ~r) for the same initial condition settings as in figure 12
using the conservation form of the trajectories (5.6).

conservation in (5.6). We provide details on particular alternative in appendix
A and show an example case.

It is now possible to solve for a number of derived variables in either the
Lagrangian or Eulerian frames in order to recover the phase information of
the quantum wave-packet associated to each characteristic pathline. First we
recover the trajectory-wise solutions ρ(s, ~r) and u(s, ~r), and then compute the
variables:

∇xS =
√
mu and ψ =

√
ρeiS/~, (6.2)

where S(s, ~r) is the quantum action and ψ(s, ~r) is the quantum wavefunction.
Recall that R(s, ~r) =

√
ρ(s, ~r) as shown in §3, such that using v for the velocity

from §2 we recover from (6.2) the more familiar formulation:

∇xS = mv and ψ = ReiS/~. (6.3)

It is important to note that up to a constant of integration, S and ψ are
completely determined by the solution (2.14). Also, (6.3) is satisfied in both
reference frames, so we now have the following solutions:

ρ(s, x), ρ(s, ~r),v(s, x),v(s, ~r), ψ(s, x), ψ(s, ~r), S(s, x), and S(s, ~r). (6.4)

These solutions are graphed in figures 12–13, where it is interesting to note that
the two frames draw out different aspects of the solution. While the Lagrangian
frame tracks individual “particle” trajectories across the function profiles, it
misses some of the nuance in the continuous structure of the surface; which
is naturally recovered by the Eulerian frame solution. Furthermore, as lower
resolution, we find that the conservation based trajectories from (5.6) are more
well-behaved than the velocity based trajectories from (6.1).

§7 Conclusion

We have presented a numerical solution to the quantum hydrodynamic equations
of motion as posited in the context of quantum hydrodynamics with chemical
applications. Our approximate solution is a rescaled (in time) version of the
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standard QHD equations and is the first model of its type presented in a mixed
discontinous Galerkin framework in the context in which it arises in chemical
applications. Our solution further shows good stability, up to a stiffness of
the system of equations which is a well-known feature of the QHD system of
equations, and a scale invariance behavior which makes it very appealing for
the so-called “fast and dirty computations” often needed in realistic chemistry
applications. Additionally we have shown in a rigorous and consistent way
how to prescribe proper boundary data, which is often bypassed in the usual
Lagrangian formulations of the system. We have further demonstrated that in
the conservation formulation of this system, the quantum wavefunction ψ and
quantum action S, which are used as motivation for the derivation of QHD
systems to begin with (e.g. [5, 24, 38]), are in fact completely determined (up
to a constant of integration) by the solutions % and v.

Finally, it is worth mentioning that these solutions are very closely related to
quantum hydrodynamic solutions which have been extensively studied in other
fields (see [10, 13, 14, 18, 23]), but still maintain some important differences.
One of the most important and prohibitive aspects of the quantum chemical
formulation of QHD, is that the potential surface V arises from a multiple of
3N degrees of freedom of each quantum subsystem, for N the number of atoms
in each molecular subsystem (for example in an intramolecular rearrangement).
This arises from the interpretation of the wavefunction ψ as being the foun-
dational variable in the dynamics of the quantum subsystem in the chemical
models. Clearly, even for relatively small molecules, this immediately leads to
extremely difficult numerical problems. In this sense it is important to have
a numerical scheme which is easily parallelizable, fast, robust and accurately
reflects the mathematical character of the solution. The MDG formulation pre-
sented herein is a numerical method that fulfills these requirements, and offers
a viable solution to some of the many difficulties which arise in the complicated
solution space of chemical quantum hydrodynamics. The scale invariance of the
solution makes it even an alternative approach to the Lagrangian formulation;
up to the “formal” accuracy of solutions.
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§ Appendix A

The conservation method of recovering trajectories in (5.6) and the velocity
integration method of recovering trajectories in (6.1) in no way exhaust the
number of ways of representing solutions in the Lagrangian frame. In fact,
there are an infinite number of ways of choosing trajectories. We introduce a
way of computing a subset of these, and refer to these as “offset methods.”

Figure 14: On the top we show the quantum trajectories using the offset method
solution of the same problem in Figure 11 with r = 1; and on the bottom we
show the same trajectories using r = 2.

The offset solution relies mainly on velocity integration but includes some
information from mass conservation as follows: velocity integration provides an
estimated position for each particle at the following time-step. Then one works
through particle by particle, starting at the new estimated position and using
mass conservation to estimate the new positions of its neighbors (a tunable
number of consecutive elements on either side) offset from the velocity estimate
of the ‘current’ particle. We set our tuning parameter to r here on both sides,
though there is no reason a priori to choose a symmetric (with respect to ei-
ther side) tuning parameter. Generically this provides a set of estimates for
the position of each particle: one directly from integration, and others via the
relationship of that estimated position to the relative estimated position of its
nearest neighbors.

That is, if Pmm is the velocity estimated position, and Pmm−r and Pmm+r are
the positions of the particles on either side that density conservation requires,
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and applying our symmetry constraint gives for the new position that:

Pnew = w0P
m
m +

r∑
i=1

(
wiP

m−i
m + wiP

m+i
m

)
,

where the wi’s are the weights for each component, in our examples computed
with a Gaussian weighting functions ωi = e−(ln(2)/r2)i2 such that:

wi = ωi

/ r∑
i=0

ωi for i = 0, . . . , r.

Then for r = 1 we have w0 = 1/2 and w1 = 1/4. We show two examples of
obtained offset trajectories in Figure 14, which are located at distinct locations
in the solution space. Also note that these trajectories behave substantially
different than those in Figures 8 and 11.
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