
Lecture Notes on
NON-SELF ADJOINT OPERATORS AND

RELATED TOPICS

Leszek F. Demkowicz

March 25, 2024



2



Contents

Preface v

1 Preliminaries 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Polar Representation of a Bounded Operator . . . . . . . . . . . . . . . . . 4
1.3 Regular Eigenvalues of a Bounded Operator . . . . . . . . . . . . . . . . . 7
1.4 Compact operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Weyl’s Results 11
2.1 Weyl’s Lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Weyl’s Majorant Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Nuclear Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Elements of Theory of Entire Functions 23
3.1 Jensen’s Formula and the Counting Function . . . . . . . . . . . . . . . . . 23
3.2 Convergence Exponent of Sequence of Zeros . . . . . . . . . . . . . . . . 26
3.3 Weierstrass Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Phragmén and Lindelöf Result . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Macaev’s Results 35
4.1 Additional Properties of Singular Values . . . . . . . . . . . . . . . . . . . 35
4.2 Determinant of an Operator . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 A Resolvent Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Macaev’s Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Keldyš’ Results 41
5.1 Keldyš’ Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Keldyš’ Theorems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Non-orthogonal Bases 49
6.1 Introduction to Non-orthogonal Bases . . . . . . . . . . . . . . . . . . . . 49
6.2 Riesz Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3 Bari Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.4 Glazman’s Criterion for Eigenvectors of a Dissipative Operator to Form a

Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 73

i



ii Contents



List of Figures

1 Model acoustical waveguide problem. . . . . . . . . . . . . . . . . . . . . . v

5.1 Proof of Lemma 5.1: Sector F and its image F ′ under z → 1
z transformation.

The shaded set illustrates subsector Fϵ for a small ϵ. . . . . . . . . . . . . . . 42

iii



iv List of Figures



Preface
The reported studies on non-self adjoint operators have been motivated with a model acous-

tical waveguide problem illustrated in Fig 1. We are looking for pressure p satisfying the
Helmholtz equation, hard boundary condition (BC) at x = 0, initial condition at z = 0, nonlocal
Dirichlet-to-Neumann (DtN) BC at z = L, and an impedance BC at x = a with d being the
impedance constant. The nonlocal DtN BC is formulated in terms of decomposition of the solu-
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Figure 1: Model acoustical waveguide problem.

tion into the waveguide modes and it implies the separation of variables as a method of choice.
Assuming p = X(x)Z(z), we arrive at the eigenvalue problem in x,

−X ′′ − ω2X = λX x ∈ (0, a)

X ′ = 0 x = 0

X ′ − iωdX = 0 x = a .

The corresponding standard variational formulation looks as follows.{
X ∈ H1(0, a)

(X ′, Y ′) + (X,Y )− iωdX(a)Y (a) = (1 + λ+ ω2)(X,Y ) Y ∈ H1(0, a) .

What makes the problem non-standard is the fact that the operator on the left is not self-adjoint1.
The standard Sturm-Liouville spectral theory does not apply and we even do not know whether
the system of eigenvectors is complete in H1(0, a) (the energy space). However, we can rewrite
the variational formulation in the operator form:

RX + CX = (1 + λ+ ω2)MX

1The adjoint has a flipped sign in front of the impedance term.

v



vi Preface

where R is the Riesz operator in H1(0, a), C is a compact operator representing the boundary
term and M represents the compact embedding of H1(0, a) into L2(0, a). Upon applying the
inverse R−1 to both sides, we obtain:

X +R−1CX = (1 + λ+ ω2)R−1MX .

The left-hand side represents a compact perturbation of the identity operator in H1(0, a), and
the operator on the right represents a compact and self-adjoint operator in H1(0, a). As we
will learn, the completeness of the system of eigenvectors (modes) in H1(0, a) follows from the
Second Keldyš Theorem 5.5 concluding these notes.

The notes have been extracted from the book of Gohberg and Krein [2] and the book of Levin
[3]. As a starting point, we assume that the reader is familiar with our textbook [4]. Otherwise,
the notes are self-contained and simply represent my reading of the two books. Many thanks to
Peter Monk for making us aware of these results.

Acknowledgment. The work has been supported with AFOSR Grant FA9550-23-1-0103.

Leszek F. Demkowicz
Austin, March 25, 2024



Chapter 1

Preliminaries

Throughout these notes, X will denote a separable Hilbert space and all considered operators A
go from X into itself, and are bounded,

A ∈ L(X) := {A ∈ L(X,X) : A is bounded } .

A subspace V ⊂ X is always assumed to be closed.

1.1 Introduction
Invariant subspaces of an operator. A subspace V ⊂ X is an invariant subpace of A ∈
L(X) if

v ∈ V ⇒ Av ∈ V .

Lemma 1.1.
Let P ∈ L(X) be a projection, i.e., P 2 = P , and Q = I − P be the corresponding projection
onto N (P ).

(i) PX is invariant with respect to A iff PAP = AP .

(ii) Assume that PX is invariant wrt A. Then QX is invariant wrt A iff PA = AP .

(iii) Let A = A∗, and P be an orthogonal projection. Then

PAP = AP ⇔ PA = AP .

In other words, PX is invariant wrt A = A∗ iff P and A commute.

Proof.

(i) (⇒)
y ∈ PX ⇒ Ay ∈ PX ⇒ PAy = Ay

so, PAPx = APx, x ∈ X .
(⇐) Assume

PAPx = APx, x ∈ X .

Consequently,
y ∈ PX ⇒ PAy = Ay ⇒ Ay ∈ PX .

1



2 Chapter 1. Preliminaries

(ii) (⇒) By (i),
(I − P )A(I − P ) = A(I − P ) implies

A−AP − PA+ PAP︸ ︷︷ ︸
=AP

= A−AP and, so

−PA = −AP .

(⇐) Reverse the argument.

(iii) (⇒)

PAP = AP ⇒ (PAP )∗ = (AP )∗ ⇒ PAP = PA ⇒ AP = PA .

(⇐)
AP = PA ⇒ PAP = PPA = PA .

QED

Lemma 1.2.
V be an invariant subspace of A ∈ L(X). Then V ⊥ is an invariant subspace of A∗.

Proof. Let P be the orthogonal projection of X onto V , and Q := I − P . We have,

PAP = AP ⇒ (I − P )︸ ︷︷ ︸
=Q

AP = 0

⇒ P︸︷︷︸
I−Q

A∗Q = 0

⇒ QA∗Q = A∗Q ,

i.e., QX = V ⊥ is invariant subspace of A∗. QED

Lemma 1.3.
Let V be an invariant subspace of A ∈ L(X), P : X → V the orthogonal projection, and
Q = I − P .

(a) If two of the operators:
A, PAP +Q, P +QAQ

are invertible, then so is the third, and

(b)
(PAP +Q)−1 = PA−1P +Q

(QAQ+ P )−1 = QA−1Q+ P .

Proof. QAP = QPAP = 0 implies

A = (P +Q)A(P +Q) = PAP + PAQ+QAQ .

Direct computation shows now that

A = (QAQ+ P )(I + PAQ)(Q+ PAP ) . (1.1.1)
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Also,
(PAQ)2 = PA QP︸︷︷︸

=0

AQ = 0

implies that (I+PAQ)−1 exists and equals I−PAQ. Consequently, invertibility of two remain-
ing operators in (1.1.1) implies the invertibility of the third. Once all operators are invertible,

A−1 = (Q+ PAP )−1(I − PAQ)(QAQ+ P )−1‘ ⇒

A−1(QAQ+ P ) = (Q+ PAP )−1(I − PAQ) ⇒

PA−1 (QAQ+ P )P︸ ︷︷ ︸
=0+P

= P (Q+ PAP )−1 (I − PAQ)P︸ ︷︷ ︸
=P

.

and so,
PA−1P = P (Q+ PAP )−1P .

Similarly,
(Q+ PAP )A−1 = (I − PAQ)(QAQ+ P )−1 ⇒

Q(Q+ PAP )︸ ︷︷ ︸
=Q+0

A−1Q = Q(I − PAQ)︸ ︷︷ ︸
=Q

(QAQ+ P )−1Q ⇒

QA−1Q = Q(QAQ+ P )−1Q .

Now,
Q(Q+ PAP )1 = Q since Q = Q(Q+ PAP ) = Q , and

(Q+ PAP )−1Q = Q since Q = (Q+ PAP )Q = Q .

Therefore,

P (Q+ PAP )−1P = P (Q+ PAP )−1 − P (Q+ PAP )−1Q︸ ︷︷ ︸
=Q︸ ︷︷ ︸

=0

= (Q+ PAP−1 −Q(Q+ PAP )−1︸ ︷︷ ︸
=Q

= (Q+ PAP )1 −Q

which implies
PA−1P = (Q+ PAP )−1 −Q

and, so,
(Q+ PAP )−1 = PA−1P +Q .

Proof of the other identity in b) is fully analogous. QED

Resolvents. Let A ∈ L(X). The inverse (if it exists and is continuous):

R(λ) := (A− λI)−1 ∈ L(X) ,

is called the resolvent of operator A at λ. The collection of all λ’s for which R(λ) exists and is
continuous, denote ρ(A) is called the resolvent set of operator A. Complement of the resolvent
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set is called the spectrum of operator A. The resolvent set ρ(A) is an open subset of complex
plane C. Indeed, let λ0 ∈ ρ(A). We have:

A− λI = A− λ0I + (λ0 − λ)I = (A− λ0I)(I + (λ0 − λ)R(λ0))

where, by the Neumann series argument,

(I + (λ0 − λ)R(λ0))
−1 =

∞∑
k=0

(λ− λ0)
kRk(λ0) ,

for all |λ0 − λ| < ∥R(λ0)∥−1. Consequently, R(λ) exists, and

R(λ) = (I + (λ0 − λ)R(λ0))
−1R(λ0) =

∞∑
k=0

(λ− λ0)
kRk+1(λ0) ,

which proves that R(λ) is a holomorphic (analytic) operator-valued function.

The Riesz integral. Let Γ be a counterclockwise oriented (ccw) contour enclosing a region
GΓ and lying in the interior of the resolvent set of operator A ∈ L(X). We define the Riesz
integral as:

PΓ := − 1

2πi

∫
Γ

R(λ) dλ . (1.1.2)

Theorem 1.4 (Riesz).
The following properties hold:

(i) PΓ is a projection commuting with A and, therefore,

X = Y ⊕ Z, Y = R(PΓ) = PΓX

Z = N (PΓ) = R(I − PΓ) = (I − PΓ)X ,

and Y, Z are invariant subspaces of A;

• spectrum of A
∣∣
Y

is contained in GΓ;

• spectrum of A
∣∣
Z

lies outside of GΓ,

• if GΓ1
∩GΓ2

= ∅ then PΓ1
, PΓ2

are mutually orthogonal in the sense that:

PΓ1
PΓ2

= PΓ2
PΓ1

= 0 .

1.2 Polar Representation of a Bounded Operator

Lemma 1.5.
Let A ∈ L(X) and A∗ denote its adjoint. The following orthogonal decompositions hold:

X = R(A)
⊥
⊕ N (A∗) = R(A∗)

⊥
⊕ N (A) . (1.2.3)
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Proof. Let C := R(A)
⊥

.
C ⊂ N (A∗). Let z ∈ C. Then

(x,A∗z) = (Ax, z) = 0 ∀x ∈ X ⇒ A∗z = 0 .

N (A∗) ⊂ C. Let z ∈ N (A∗) and y ∈ R(A), i.e., y = limn→∞Axn, xn ∈ X . Then

0 = (xn, A
∗z) = (Axn, z) → (y, z)

and, therefore, z ∈ C. The proof of the second decomposition is analogous. QED

Partially isometric operators. OperatorB ∈ L(X) is partially isometric if it maps N (B)⊥ =
R(B∗) isometrically onto R(B). This proves that range R(B) is also closed. By the Closed
Range Theorem, range R(B∗) must be closed as well (and equal N (B)⊥), so

R(B∗)
B−→ R(B)

is an isometry. One can show, comp. Exercise 1.2.1, that if B is partially isometric then so is
adjoint B∗. Moreover, B∗B is the orthogonal projection of X onto range R(B∗), and BB∗ is
the orthogonal projection of X onto range R(B).

Polar decomposition. Let A be a bounded operator. Then composition A∗A is self-adjoint,
and we can use2 the Spectral Theorem for Self-Adjoint Operators (see [4], Theorem 6.11.1) to
define the square root of A∗A, i.e., a bounded, self-adjoint operator H such that H2 = A∗A. We
have,

∥Au∥2 = (Au,Au) = (A∗Au, u) = (H2u, u) = (Hu,Hu) = ∥Hu∥2

which shows that operator

U : R(H) → R(A), Hx→ Ax ,

is an isometric isomorphism. Extending U to R(H) by continuity and setting U = 0 on null
space N (H∗) = N (H), we obtain a partially isometric operator:

U : X → R(A) .

Lemma 1.6.
The following equalities hold:

R(H) = R(H2) = R(A∗A) = R(A∗) .

Proof. We need to prove only the last equality. The second one is trivial and the first one follows
from the last with A replaced by H . One inclusion is immediate,

R(A∗A) ⊂ R(A∗) ⇒ R(A∗A) ⊂ R(A∗) .

To prove the reverse inclusion, pick an x ∈ R(A∗). By Lemma 1.5,

x = lim
n→∞

A∗yn yn = X = R(A)
⊥
⊕ N (A∗)

yn = lim
k→∞

Azkn + y0n zkn ∈ X, y0n ∈ N (A∗)

A∗yn = A∗( lim
k→∞

Azkn) = lim
k→∞

A∗Azkn

2Is there a more elementary argument, we could use ?
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and, so,
x = lim

n→∞
lim
k→∞

A∗Azkn .

The double limit presents no problem. Let ϵ = 1
l . It follows from the definition of the limit that

there exists yn such that ∥x−A∗yn∥ < ϵ
2 . In turn, there exists zkn such that ∥A∗yn−A∗Azkn∥ <

ϵ
2 . Set xl := zkn. Then

∥x−A∗Axl∥ ≤ ∥x−A∗yn∥+ ∥A∗yn −A∗Azkn∥ < ϵ =
1

l
.

Consequently,
x = lim

l→∞
A∗Axl ⇒ x ∈ R(A∗A) .

QED

We arrive at the following result.

Theorem 1.7.
For every A ∈ L(X), there exist unique U,H ∈ L(X) such that:

A = UH, H = H∗, and

U maps R(A∗) = R(H) isometrically onto R(A) .

Corollary 1.8.
Let A = UH be the spectral decomposition of a bounded operator A. The following identities
hold:

(i) U∗A = H ,

(ii) H1 = UHU∗, H = U∗H1U where H1 := (AA∗)
1
2 ,

(iii) A = H1U, H1 = AU∗ .

We leave the proof for Exercise 1.2.2.

Rank (dimension) of a bounded operator. We define the rank 3 of a bounded operator A
as:

r(A) := dimR(A) .

One can show that (Exercise 1.2.3):

r(A) = r((A∗A)
1
2 ) = r((AA∗)

1
2 ) = r(A∗) . (1.2.4)

Every finite rank operator A can be represented in the form:

Au =

n∑
j=1

(u, ϕj)ψj

where ψj , j = 1, . . . , n, is a basis for R(A), and ϕj ∈ X . Indeed, let βj ∈ R(A) be a cobasis
of ψj in the range R(A). Then,

Au =

n∑
j=1

(Au, βj)ψj =

n∑
j=1

(u,A∗βj︸ ︷︷ ︸
=:ϕj

)ψj .

3Gohberg calls it the dimension of operator.
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Exercises
1.2.1. Let A ∈ L(X). Show that the following conditions are equivalent to each other.

(i) A is partially isometric.

(ii) A∗ is partially isometric.

(iii) A∗A is the orthogonal projection of X onto R(A∗).

(iv) AA∗ is the orthogonal projection of X onto R(A).

(5 points)
1.2.2. Prove Corollary 1.8.

(5 points)
1.2.3. Prove relation (1.2.4).

(5 points)

1.3 Regular Eigenvalues of a Bounded Operator
Regular eigenvalue of a bounded operator. An eigenvalue of λ0 of operator A ∈ L(X) is
said to be regular4 iff, by definition,

(i) the algebraic multiplicity r of λ0, i.e., the dimension of its generalized eigenspace Xλ0 is
finite;

(ii) we have the decomposition:
X = Xλ0

⊕ Yλ0

where Yλ0 is invariant subspace of A in which A− λ0I has a bounded inverse.

Note that decomposition above must be unique, i.e., space Yλ0 is unique. Indeed, let r be an
integer for which operator (A− λ0I)

∣∣
Xλ0

is nilpotent. Then,

(A− λoI)
rX = (A− λ0I)

rXλ0︸ ︷︷ ︸
=0

+(A− λ0I)
rYλ0 ,

and invertibility of A− λ0I on Yλ0 implies that (A− λ0I)
rYλ0 = Yλ0 . Consequently,

Yλ0
= (A− λ0I)

rX .

Theorem 1.9.
The following conditions are equivalent to each other.

(i) λ0 is a regular eigenvalue of operator A.

(ii) λ0 is an isolated point of spectrum of A, and projector

Pλ0
: X → Xλ0

Pλ0
:= − 1

2πi

∫
|λ−λ0|=δ

R(λ) dλ

has finite rank.

4Gohberg calls them normal.
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If λ0 is regular then the projector Pλ0
is surjective, i.e., rank of Pλ0

equals the algebraic multi-
plicity of λ0.

Proof. (i) ⇒ (ii) Define:
A1 := A

∣∣
Xλ0

, A2 := A
∣∣
Yλ0

.

Let n be the smallest integer for which (A1 − λ0I)
n = 0. Set B1 = A1 − λ0I . We have:

−(λ− λ0)
nI = Bn1︸︷︷︸

=0

−(λ− λ0)
nI

= (A1 − λI)
[
(λ− λ0)

n−1I + (λ− λ0)
n−1B1 + . . .+Bn−1

1

]
Hence,

−(A1 − λI)−1 = (λ− λ0)
−1I +

n−1∑
j=1

(λ− λ0)
−j−1Bj1 .

On the other hand, as A2 − λ0I is invertible in Yλ0
, we know5 that for all λ such that

|λ− λ0| <
1

∥(A2 − λ0I)−1∥
,

the inverse (A2 − λI)−1 exists and it can be represented by the convergent series:

(A2 − λI)−1 = R0 + (λ− λ0)R
2
0 + . . .+ (λ− λ0)

nRn−1
0 + . . . .

We thus obtain the following representation for the resolvent of operator A,

R(λ) = (A− λI)−1

= −
[
(λ− λ0)

−nBn−1
1 + . . .+ (λ− λ0)

−2B1 + (λ− λ0)
−1I

]
P

+

∞∑
k=0

(λ− λ0)
kRk−1

0 (I − P )

where P : X → Xλ0 is the linear projection in the direction of Yλ0 . The Riesz integral defines
the desired projection:

− 1

2πi

∫
|λ−λ0|=δ

R(λ) dλ =: Pλ0

where δ is sufficiently small.
(ii) ⇒ (i) Define:

Xλ0
:= Pλ0

X, Yλ0
:= (I − Pλ0

)X .

By the Riesz Theorem 1.4,

• X = Xλ0
⊕ Yλ0

,

• A
∣∣
Xλ0

: Xλ0 → Xλ0 has a unique eigenvalue λ = λ0 and its algebraic multiplicity is
bounded by dimXλ0

,

• (A− λ0I) is invertible in Yλ0
.

5A standard result for resolvents.
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Finally, if the generalized subspace corresponding to λ0 were only a proper subspace of Xλ0

then restriction of A to Xλ0
would have an eigenvalue different form λ0, a contradiction. QED

Corollary 1.10. If λ0 is a regular eigenvalue of operator A then λ̄0 is a regular eigenvalue of
adjoint A∗ with the same algebraic multiplicity.

1.4 Compact operators
By Lc(X) we denote the space of compact operators forming a closed subspace of L(X). Recall
some fundamental properties of compact operators.

• Composition of a bounded and a compact operator (in any order) is compact,

K ∈ Lc(X), A ∈ L(X) ⇒ KA,AK ∈ Lc(X) .

• A compact operator has at most a countable set of non-zero eigenvalues. If the number is
infinite, they sequence converges to zero, 0 ̸= λn → 0 ([4], Theorem 6.10.1).

• Each eigenvalue λ ̸= 0 has a finite algebraic multiplicity defined as the dimension of the
generalized eigenspace Xλ,

Xλ := dimN ((A− λI)r) ,

for sufficiently large r. Elements of the generalized eigenspace are called generalized
eigenvectors6. The actual eigenspace is a subspace of the generalized eigenspace. By
ν(A) we will denote the sum of the algebraic multiplicities for all non-zero eigenvalues
(may be infinite).

Volterra operator. A compact operator A is a Volterra operator if it does not have non-zero
eigenvalues.

Lemma 1.11.
Let A be a compact operator. Assume that

XA := span{generalized eigenvectors of A} ≠ X ,

and let
QA : X → X⊥

A

be the orthogonal projection. Then QAAQA is a Volterra operator.

Proof. LetXλ̄j
(A∗) denote the generalized eigenspace for adjointA∗ corresponding to an eigen-

value λ̄j . Let
X = Xλ̄j

(A∗)⊕ Yj Yj = X⊥
λj
(A)

be the unique decomposition of X reducing operator A. Define

Y =
⋂
j

Yj .

6Gohberg calls them root vectors.
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And so,
f ∈ Y ⇔ f ⊥ Xλj

(A) ∀ j .

In other words,

X = Y
⊥
⊕ XA .

Each subspace Yj is invariant wrt A∗ and, therefore, so is subspace Y . Any eigenvector of
A∗
∣∣
Y
: Y → Y corresponding to a non-zero eigenvalue would also have to be an eigenvector for

A∗ which is impossible. In other words, A∗
∣∣
Y

is Volterra. But then operator QAAQA is Volterra
as well. Indeed,

QAAQAv = λv ⇒ AQAv = QAAQAv = λQAv

implies that QAv is an eigenvector for A∗
∣∣
Y

, a contradiction. Finally,

QAAQA (= (QAA
∗QA)

∗)

is Volterra as well. QED



Chapter 2

Weyl’s Results

2.1 Weyl’s Lemmas
The first Weyl lemma is purely algebraic.

Lemma 2.1 (First Weyl Lemma). Let A be a compact operator, and sj , j = 1, . . . denote its
singular values in the decreasing order. Let ϕ1, . . . , ϕn be arbitrary elements of X . Then

det(Aϕj , Aϕk) ≤ s21 . . . s
2
n det(ϕj , ϕk) 1 ≤ j, k ≤ n . (2.1.1)

Proof. Let ej , j = 1, 2, . . . be a complete orthonormal system of eigenvectors of A∗A. Expand-
ing ϕj into ei’s, we obtain:

ϕj =

∞∑
i=1

(ϕj , ei)ei ,

A∗Aϕj =

∞∑
i=1

s2i (ϕj , ei) ei .

Consequently,

(Aϕj , Aϕk)︸ ︷︷ ︸
=:Ajk

= (A∗Aϕj , ϕk) =

∞∑
i=1

s2i (ϕj , ei) (ei, ϕk) =

∞∑
i=1

s2i (ϕj , ei) (ϕk, ei) ,

or,

Ajk =

∞∑
i=1

BjiBki =

∞∑
i=1

BjiB
∗
ik

where
Bji = si (ϕj , ei)︸ ︷︷ ︸

=:Φji

.

By the Binet-Cauchy Theorem (comp. Exercise 2.1.1),

detA =
∑

1≤r1<r2<...,rn<∞
det

 B1r1 B1,r2 . . . B1rn

...
...

Bnr1 Bn,r2 . . . Bnrn

 det


B∗

r11
B∗

r21
. . . Bastrn,1

...
...

B∗
r1n

B∗
r2n

. . . B∗
rnn


11
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By the multilinearity of determinant and the monotonicity of sj ,

det

 B1r1 B1,r2 . . . B1rn

...
...

Bnr1 Bn,r2 . . . Bnrn

 = det

 sr1Φ1r1 sr2Φ1,r2 . . . srnΦ1rn

...
...

sr1Φnr1 sr2Φn,r2 . . . srnΦnrn



= sr1sr2 . . . srn det

 Φ1r1 Φ1,r2 . . . Φ1rn

...
...

Φnr1 Φn,r2 . . . Φnrn



≤ s1s2 . . . sn det

 Φ1r1 Φ1,r2 . . . Φ1rn

...
...

Φnr1 Φn,r2 . . . Φnrn

 .

Note that, by semipositive definitness of Ajk and the Sylvester criterion, all involved determi-
nants are non-negative. Consequently, by the Binet-Cauchy Theorem again,

detA ≤ s21 . . . s
2
n

∑
1≤r1<r2<...,rn<∞

det

 Φ1r1 Φ1,r2 . . . Φ1rn

...
...

Φnr1 Φn,r2 . . . Φnrn

 det


Φ∗

r11
Φ∗

r21
. . . Φ∗

rn1

...
...

Φ∗
r1n

Φ∗
r2n

. . . Φ∗
rnn



= s21 . . . s
2
n det

( ∞∑
i=1

ΦjiΦ
∗
ik

)
.

QED.

Recall Spectral Theorem for Compact and Normal Operators ([4], Theorems 6.10.2 and
6.10.3). If λn denote the eigenvalues of a compact and normal operator A (λn → 0 if the
operator is of infinite rank), the corresponding finite-dimensional eigenspacesXn are orthogonal
to each other, and the operator can be represented in the form:

Au =

∞∑
n=1

λnPnu (convergence in operator norm)

where Pn : X → Xn are the orthogonal projections onto the eigenspaces. In other words, one
can always select (unit) eigenvectors ei in such a way that

Au =

∞∑
i=1

λi(u, ei)ei .

If we complement the eigenvectors ei with an an additional orthonormal basis for null space
N (A), we obtain an orthonormal basis for space X (Resolution of Identity). Recall that or-
thogonal projections and self-adjoint operators are examples of normal operators. The spectral
theorem says that every compact and normal operator is in fact a sum of orthogonal projections.
The spectral representation for the adjoint A∗ shares the same eigenvectors with the correspond-
ing eigenvalues being the complex conjugates of λi,

A∗u =

∞∑
i=1

λi(u, ei)ei .

It follows immediately that

A∗Au =

∞∑
i=1

|λi|2(u, ei)ei ,
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i.e., vectors ei are also the eigenvectors of A∗A, and the singular values of A are

si(A) = |λi| = |(Aei, ei)| .

The next lemma establishes the uniqueness of the relation above. If an orthonormal system is
related to the singular values by the relation above then the operator is normal and ei’s must be
its eigenvectors.

Lemma 2.2. Let A be a compact operator, and sj denote its singular values in the decreasing
order. Let r(A) denote the rank of operator A (possibly infinite). Let ϕj , j = 1, . . . , r(A) be an
arbitrary orthonormal system in X such that

|(Aϕj , ϕj)| = sj(A) j = 1, . . . , r(A) .

Then operator A is normal, and ϕj are eigenvectors of A forming a complete system in R(A).

Proof. We first use the min-max properties of eigenvalues of a self-adjoint operator to establish
that ϕj’s are eigenvectors of A∗A corresponding to its eigenvalues s2j . We start with the first
eigenvalue,

s21(A) = |(Aϕ1, ϕ1)|2 ≤ ∥Aϕ1∥2 = (A∗Aϕ1, ϕ1) ≤ max
∥ϕ∥=1

(A∗Aϕ, ϕ) = s21(A) .

Consequently, all inequalities are actually equalities which proves that

A∗Aϕ1 = s21(A)ϕ1 .

Similarly,

s22(A) = |(Aϕ2, ϕ2)|2 ≤ ∥Aϕ2∥2 = (A∗Aϕ2, ϕ2) ≤ max
∥ϕ∥=1, (ϕ,ϕ1)=0

(A∗Aϕ, ϕ) = s22(A)

which shows that
A∗Aϕ2 = s22(A)ϕ2 .

By induction,
A∗Aϕj = s2j (A)ϕj j = 1, 2, . . . r(A) ,

and, by the same argument,

AA∗ϕj = s2j (A)ϕj j = 1, 2, . . . r(A) .

Let now
X0 := {u ∈ X : (u, ϕj) = 0 j = 1, . . . , r(A)}

denote the subspace of vectors orthogonal to all eigenvectors ϕj . Resolution of identity for the
compact self-adjoint operator A∗A (see [4], Theorem 6.10.3) implies that X0 = N (A∗A) and,
therefore, X0 = N (A∗A) = N (A) (Exercise 2.1.2). Repeating the argument for adjoint A∗, we
learn that also X0 = N (A∗).

We claim that any f ∈ R(A) can be decomposed into vectors ϕj , i.e.,

f =

r(A)∑
j=1

(f, ϕj)ϕj .
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Indeed,

(f −
r(A)∑
j=1

(f, ϕj)ϕj , ϕi) = (f, ϕi)−
r(A)∑
j=1

(f, ϕj)δji = 0 ,

and, at the same time,

(f −
r(A)∑
j=1

(f, ϕj)ϕj , v) = (f, v) = 0 ∀ v ∈ X0 = N (A∗) ,

since R(A) = N (A∗)⊥. As X0 = N (A∗A), and (resolution of identity)

X = span{ej} ⊕ N (A∗A) ,

there must be f −
∑r(A)
j=1 (f, ϕj)ϕj = 0, the claim has been proved. In particular, for f = Aϕj ,

Aϕj =

r(A)∑
k=1

(Aϕj , ϕk)ϕk

and, consequently,

∥Aϕj∥2 = (Aϕj , Aϕj) =

r(A)∑
k=1

|(Aϕj , ϕk)|2 .

But,
|(Aϕj , ϕj)|2 = s2j (A) = (Aϕj , Aϕj)

and, therefore,
(Aϕj , ϕk) = 0 ∀ k ̸= j .

In conclusion,
Aϕj = (Aϕj , ϕj)ϕj j = 1, . . . , r(A)

and, by the same token,

A∗ϕj = (A∗ϕj , ϕj)ϕj j = 1, . . . , r(A) .

Consequently,

Au =

r(A)∑
j=1

(Au, ϕj)ϕj =

r(A)∑
j=1

(u,A∗ϕj)ϕj

=

r(A)∑
j=1

(u, (A∗ϕj , ϕj)ϕj)ϕj =

r(A)∑
j=1

(A∗ϕj , ϕj)(u, ϕj)ϕj

=

r(A)∑
j=1

(Aϕj , ϕj)(u, ϕj)ϕj .

The operator A is thus normal, and ((Aϕj , ϕj)︸ ︷︷ ︸
=:λj

, ϕj) are its eigenpairs. QED.
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LetA be a compact operator. Recall that ν(A) denotes the sum of the algebraic multiplicities
of eigenvalues λj of operator A, i.e.,

ν(A) =
∑
j

dimXj

where Xj denote the generalized eigenspaces of operator A corresponding to eigenvalues λj ,
i.e., Xj = N ((A− λj)

rj ), for some (finite) rj .
Define now7:

XA := span{generalized eigenspaces of A}

and let Â denote the reduction of operator A to XA,

Â := A|XA
: XA → XA .

The following very useful result holds.

Lemma 2.3 (Schur’s lemma).
Let A be a compact operator. There exists an orthonormal basis ωj , j = 1, . . . , ν(A), for
subspace XA in which the reduced operator Â has an upper triangular matrix representation,

Aωj = αj1ω1 + αj2ω2 + . . .+ ajjωj j = 1, 2, . . . , ν(A) (2.1.2)

where αjj = (Aωj , ωj) = λj(A) .

Proof. Let λ be an eigenvalue of A with the corresponding generalized eigenspace Xλ. Choose
Jordan chains for a basis for Xλ,

Aϕ1 = λϕ1

Aϕk = λϕk + ϕk−1 k = 2, . . .

Orthonormalize now the (collective) basis ϕj using the Gram-Schmidt orthonormalization to
obtain system ωj . It follows from the Gram-Schmidt procedure that each vector ωj is a linear
combination of vectors ϕ1, . . . , ϕj and, conversely, each vector ϕj is a linear combination of
vectors ω1, . . . , ωj ,

ϕj = βjjωj +

j−1∑
k=1

βkjωk βjj ̸= 0 .

The relation,
Aϕj = λjϕj (+ϕj−1)︸ ︷︷ ︸

possible extra term

translates into:

βjjAωj +

j−1∑
k=1

βkjAωk = λjβjjωj + λj

j−1∑
k=1

βkjωk (+

j−1∑
k=1

βkj−1ωk) .

As, for each k < j, Aωk is a linear combination of vectors ωl, l ≤ k < j, multiplying both sides
with ωj yields,

βjj(Aωj , ωj) = λjβjj (ωj , ωj)︸ ︷︷ ︸
=1

7Kohberg calls generalized subspaces root subspaces.
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from which the equality (Aωj , ωj) = λj follows. QED

As we may have multiple Jordan chains for an eigenvalue, and we do not attempt to order
them, the Schur orthonormal system may not be unique.

Lemma 2.4 (Second Weyl Lemma).
Let A be a compact operator. Then

|λ1(A)λ2(A) . . . λn(A)| ≤ s1(A) s2(A) . . . sn(A) ∀n = 1, . . . , ν(A) . (2.1.3)

If ν(A) = r(A)(≤ ∞) then inequality in (2.1.3) turns into equality for all n, if and only if
operator A is normal.

Proof. Let ωj , j = 1, . . . , ν(A) denote an orthornomal Schur system for operator A, i.e.,

Aωj = αj1ω1 + αj2ω2 + . . .+ αjjωj j = 1, . . . , ν(A)

where
αjj = (Aωj , ωj) = λj(A) .

By the First Weyl Lemma,

det ((AωjAωk)
n
1 ) ≤ s21(A)s

2
2(A) . . . s

2
n(A) n = 1, 2, . . . , ν(A) . (2.1.4)

The Schur representation and the orthonormality of ωj imply that

(Aωj , Aωk) =

min{j,k}∑
l=1

(Aωj , ωl)(Aωk, ωl).

Consequently, by the Cauchy theorem for determinants,

det ((Aωj , Aωk)
n
1 ) = det ((Aωj , ωl)

n
1 ) det

(
(Aωk, ωl)

n

1

)
= |det ((Aωj , ωl)n1 ) |2 .

The upper triangular Schur representation implies now that

det ((Aωj , Aωk)
n
1 ) = |λ1(A)|2 . . . |λn(A)|2

which, along with inequality (2.1.4), proves the first assertion of the lemma.
To prove the second assertion, it is sufficient to notice that the equalities in (2.1.3) imply that

sj(A) = |λj(A)| = |(Aωj , ωj)|

and apply Lemma 2.2. QED.

Exercises
2.1.1. Formulate and prove the Binet Cauchy Theorem. (5 points)
2.1.2. Show that N (A∗A) = N (A). (1 point)
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2.2 Weyl’s Majorant Theorem

Lemma 2.5 (Weyl, Hardy, Littlewood, Polya).
Let

Φ : [−∞,∞) → R, Φ(−∞) = 0

be a convex function.

(i) Let aj , bj ∈ R, j = 1, . . . , ω(≤ ∞) be two (weakly) decreasing sequences such that

k∑
j=1

aj ≤
k∑
j=1

bj k = 1, . . . , ω .

Then,
k∑
j=1

Φ(aj) ≤
k∑
j=1

Φ(bj) k = 1, . . . , ω .

(ii) If, additionally, Φ is strictly convex, then

ω∑
j=1

Φ(aj) =

ω∑
j=1

Φ(bj) ⇔ aj = bj j = 1, . . . , ω .

Proof. Let Φ′(x), x ∈ (−∞,∞) denote the left derivative of Φ. Recall its standard properties:

• the derivative Φ′(x) exists everywhere,

• Φ′(x) ≥ 0,

• the derivative is (weakly) increasing in x.

We claim the following relation between Φ(x) and its derivative:

Φ(x) =

∫ ∞

−∞
(x− µ)+ dΦ

′(µ) =

∫ x

−∞
(x− µ) dΦ′(µ) .

Let N > 0. Integration by parts,

0 ≤
∫ x

−N
(x− µ) dΦ′(µ) =

∫ N

−N
Φ′(µ) dµ− (x+N)Φ′(−N)

implies

(x+N)Φ′(−N) ≤
∫ N

−N
Φ′(µ) dµ = Φ′(x)− Φ(−N) ≤ Φ(x)

and, in turn,

Φ′(−N) ≤ Φ(x)

x+N
.

Consequently,
lim
N→∞

Φ′(−N) = 0 .

Similarly,
NΦ′(−N) ≤ Φ(x)− xΦ′(−N)
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implies

lim supN→∞NΦ′(−N) ≤ Φ(x) (<∞) .

Passing with x→ −∞, we obtain:

lim supN→∞NΦ′(−N)︸ ︷︷ ︸
≥0

≤ 0

and, therefore,

lim
N→∞

NΦ′(−N) = 0 .

We can conclude that

lim
N→∞

(x+N)Φ′(−N) = 0 .

Finally, passing with N → ∞ in∫ x

−N
(x− µ) dΦ′(µ) =

∫ N

−N
Φ′(µ) dµ︸ ︷︷ ︸

=Φ(x)−Φ(−N)

−(x+N)Φ′(−N)

we obtain the desired representation result.
The representation for Φ(x) implies :

k∑
j=1

Φ(aj) =

∫ ∞

−∞

k∑
j=1

(aj − x)+︸ ︷︷ ︸
=:Ak(x)

dΦ′(x) ,

k∑
j=1

Φ(bj) =

∫ ∞

−∞

k∑
j=1

(bj − x)+︸ ︷︷ ︸
=:Bk(x)

dΦ′(x) .

We claim that

Ak(x) ≤ Bk(x) −∞ < x <∞, k = 1, 2, . . . .

We proceed by considering three cases.
Case: x ≤ min{ak, bk} follows directly from aj ≤ bj .
Case: bk ≤ x is satisfied trivially, both sides are zero.
Case:

aq+1 ≤ x < aq and bp+1 ≤ x < bp for some p, q ≤ k .

For p ≥ q we have:

Ak(x) =

q∑
j=1

(aj − x) =

q∑
j=1

aj − qx

≤
q∑
j=1

bj − qx+ (bq+1 − x)︸ ︷︷ ︸
≥0

+ . . .+ (bp − x)︸ ︷︷ ︸
≥0

= Bk(x)
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whereas for p < q,

Ak(x) =

q∑
j=1

aj − qx

≤
q∑
j=1

bj − qx− (bp+1 − x)︸ ︷︷ ︸
≤0

− . . .− (bq − x)︸ ︷︷ ︸
≤0

=

p∑
j=1

bj − px = Bk(x) .

We have proved the first part of the lemma. We prove the second part for the more difficult case
ω = ∞. We have:

A∞(x) =

∞∑
j=1

(aj − x)+ ≤ b∞(x) =

∞∑
j=1

(bj − x)+

in the sense that, if the right-hand side is finite then so its the left-hand side, and the inequality
holds. Consequently,

∞∑
j=1

Φ(aj) =

∫ ∞

−∞
A∞(x) dΦ′(x) ≤

∫ ∞

−∞
B∞(x) dΦ′(x) =

∞∑
j=1

Φ(bj) .

If the extreme sides are equal then∫ ∞

−∞
(B∞ −A∞) dΦ′(x)︸ ︷︷ ︸

>0

= 0

implies A∞ = B∞ and, therefore, aj = bj for all j. QED

We arrive at the main result of this section.
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Theorem 2.6 (Weyl’s Majorant Theorem).
Let A be a compact operator, and λj , sj denote its eigen- and singular values, resp.

(i) Let f(x), x ∈ [0,∞), f(0) = 0 be a real-valued function such that

Φ(t) := f(et), t ∈ (−∞,∞)

is a convex function. Then

k∑
j=1

f(|λj |) ≤
k∑
j=1

f(sj) k = 1, . . . , ν(A) .

(ii) If function Φ(t) is strictly convex then equality:

ν(A)∑
j=1

f(|λj |) =
∞∑
j=1

f(sj) (<∞)

holds if and only if operator A is normal.

Proof. Second Weyl lemma implies that

k∑
j=1

ln |λj | ≤
k∑
j=1

ln sj .

Use Lemma 2.5 for aj = ln |λj |, bj = ln sj , j = 1, . . . , ν(A), to conclude that

k∑
j=1

f(|λj |) ≤
k∑
j=1

f(sj) .

If the inequality above turns into equality then |λj | = sj , and the second Weyl lemma implies
the result. QED

Corollary 2.7. Choosing f(x) = xp, p > 0 in Theorem 2.6, we obtain

k∑
j=1

|λj(A)|p ≤
k∑
j=1

spj (A) k = 1, . . . , ν(A) .

Choosing f(x) = ln(1 + rx), r > 0 in Theorem 2.6, we obtain

k∏
j=1

(1 + r|λj(A)|) ≤
k∏
j=1

(1 + rsj(A)) k = 1, . . . , ν(A) .

2.3 Nuclear Operators
Operator A is called nuclear if A ∈ C1, i.e., A is compact and∑

j

sj(A) <∞ .
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We say that operator A has a finite trace if the series

∞∑
j=1

(Aχj , χj)

converges to a finite value for any orthormal basis χj . Since a permutation of an orthonormal
basis is also an orthonormal basis, the operator has a finite trace if and only if the series above
converges absolutely for any orthonormal basis χj .

Lemma 2.8. Let H be a bounded linear and nonnegative operator. Then the sum

∞∑
j=1

(Hχj , χj)

has the same (finite or infinite) value for any orthonormal basis χj of space X .
The operator H belongs to C1 if and only if the sum above is finite.

Proof. Let ϕk be another orthonormal basis. We have,

∞∑
j=1

(Hχj , χj) =

∞∑
j=1

∥H 1
2χj∥2 =

∞∑
j=1

∞∑
k=1

|(H 1
2χj , ϕk)|2

=

∞∑
k=1

∞∑
j=1

|(H 1
2ϕk, χj)|2 =

∞∑
k=1

∥H 1
2ϕk∥2 =

∞∑
k=1

(Hϕk, ϕk) .

Note that the sums above may be finite or infinite.
Assume now that the sum above is finite for an orthonormal basis χj . We claim first that the

operator must be compact. Indeed, define a series of finite rank operators

Knx :=

n∑
j=1

(x, χj)H
1
2χj .

Then

∥H 1
2x−Knx∥ = ∥

∞∑
j=n+1

(x, χj)H
1
2χj∥ ≤

∞∑
j=n+1

∥H 1
2χj∥|(x, χj)|

≤ (

∞∑
j=n+1

∥H 1
2χj∥2)

1
2 ∥x∥ = (

∞∑
j=n+1

(Hχj , χj))
1
2 ∥x∥

which proves that Kn converge to H
1
2 in the operator norm. Thus, H

1
2 and, therefore H as well,

are compact. Choosing for χj the complete system of eigenvectors of H ,

∞ >

∞∑
j=1

(Hχj , χj) =

∞∑
j=1

λj(H)

we learn that H ∈ C1. Vice versa, if H ∈ C1 then the sum above is finite for the eigensystem.
QED.

We generalize now the result to arbitrary bounded operators.
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Theorem 2.9.
A bounded linear operator A has a finite matrix trace if and only it is nuclear, i.e., A ∈ C1. Then
the sum

∞∑
j=1

(Aχj , χj) (2.3.5)

takes the same value for any orthonormal basis χj .

Proof. QED.

Matrix trace of an operator. Let A ∈ C1. The sum (2.3.5) is called the matrix trace of
operator A, denoted spA.

The following two properties follow immediately from the definition.

sp(αA+ βB) = α spA+ β spB . (2.3.6)

spA∗ = spA . (2.3.7)

Hilbert-Schmidt Operators. A bounded linear operator A is a Hilbert-Schmidt operator iff

sp(A∗A) <∞ .

Note that

sp(A∗A) =

r(A)∑
j=1

λj(A
∗A) =

∞∑
j=1

s2j (A)

and

sp(A∗A) =

∞∑
j=1

∥Aχj∥2 =

∞∑
j,k=1

|(Aχj , χk)|2 ,

for any ortonormal basis χj . The number

∥A∥2 := (sp(A∗A))
1
2

is identified as the Hilbert-Schmidt norm of operator A.
Note that

sp((QA)∗QA) = sp(A∗Q∗QA) = sp(A∗A) ,

for any unitary operator Q. The composition QA of a Hilbert-Schmidt operator A with a unitary
operator Q is a Hilbert-Schmidt operator with equal Hilbert-Schmidt norm.



Chapter 3

Elements of Theory of
Entire Functions

In this chapter, we study the Weierstrass infinite product:

Π(z) :=

∞∏
n=1

(1− z

an
)

and its relation with the sequence 0 ̸= an → ∞ of its zeros8. We will study relations between
growth order ρ of the product:

MΠ(r) := sup
|z|=r

|f(z)| ρ := lim supr→∞
ln lnMΠ(r)

ln r
,

convergence exponent λ of the sequence,

λ := inf{µ :

∞∑
n=1

1

|an|µ
<∞} ,

and the order ρ1 of its counting function n(r),

n(r) := #{n : |an| ≤ r} ρ1 := lim supr→∞
lnn(r)

ln r
.

It turns out that λ = ρ1, and ρ equals the two constants in the range (0, 1].
The results in this chapter are reproduced from the book of Levin [3].

3.1 Jensen’s Formula and the Counting Function
We begin by recalling the Poisson formula for harmonic functions (comp. Exercise 3.1.1),

u(z) =
1

2π

∫ 2π

0

|ζ|2 − |z|2

|ζ − z|2
u(ζ) dψ (3.1.1)

where ζ = Reiψ , u is a function harmonic in ball B(0, R) and continuous in B̄(0, R), and point
z ∈ B(0, R). Direct computation shows that

|ζ|2 − |z|2

|ζ − z|2
= ℜ

(
ζ + z

ζ − z

)
.

8We will assume once and for ever that |an| is (weakly) increasing.

23
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Lemma 3.1 (Schwarz’s formula).
Let f be an analytic function in a domain D containing B̄(0, R), and |z| < R. Then

f(z) =
1

2π

∫ 2π

0

ζ + z

ζ − z
u(ζ) dψ + iv(0) (3.1.2)

where f = u+ iv and ζ = Reiψ .

Proof. Both sides of the equality are analytic in z. The real parts are equal by the Poisson
formula. If a real part of an analytic function is known then one can integrate the Cauchy-
Riemann equations for the imaginary part which is unique up to a constant. It is sufficient thus
to notice that the imaginary parts of both sides of the formula coincide at z = 0.

Poisson-Jensen formula. Let f be analytic in a domain D containing B̄(0, R).
Case : f(z) ̸= 0 in B̄(0, R).
Applying the Schwarz formula to analytic function ln f(z) (with a predefined branch of ln), we
obtain

ln f(z) =
1

2π

∫ 2π

0

ζ + z

ζ − z
ln |f(ζ)|︸ ︷︷ ︸
=ℜ ln f(ζ)

dψ + iC ζ = Reiψ ,

and taking the real part of both sides,

ln |f(z)| = 1

2π

∫ 2π

0

|ζ|2 − |z|2

|ζ − z|2
ln |f(ζ)| dψ ζ = Reiψ . (3.1.3)

Case : f vanishes at a1, . . . , an ∈ B(0, R), f(z) ̸= 0 for |z| = R. Assume

|a1| ≤ |a2| ≤ . . . ≤ |an| .

Introduce an auxiliary function

φ(z) = f(z)

n∏
m=1

R2 − amz

R(z − am)
φ(z) ̸= 0 in B̄(0, R) .

Check that |φ(ζ)| = |f(ζ)| and apply formula (3.1.3) to function φ to obtain:

lnφ(z) =
1

2π

∫ 2π

0

|ζ|2 − |z|2

|ζ − z|2
ln |f(ζ)| dψ + iC

and the final formula expressed in f(z) alone:

ln f(z) =
1

2π

∫ 2π

0

|ζ|2 − |z|2

|ζ − z|2
ln |f(ζ)| dψ +

∑
|am|<R

ln
R2 − amz

R(z − am)
+ iC

with properly adjusted brunch cut for the ln function to avoid collision with the roots am. Taking
real part of both sides we obtain the Poisson-Jensen formula9:

ln |f(z)| = 1

2π

∫ 2π

0

|ζ|2 − |z|2

|ζ − z|2
ln |f(ζ)| dψ +

∑
|am|<R

ln

∣∣∣∣ R2 − amz

R(z − am)

∣∣∣∣ . (3.1.4)

9The formula was derived by the Finnish mathematician Rolf Nevanlinna [1895 – 1980] who named it after Poisson
and Jensen.
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Jensen’s formula. Case: f(0) ̸= 0.
Setting z = 0 in the Poisson-Jensen formula, we obtain:

ln |f(0)| = 1

2π

∫ 2π

0

ln |f(Reiψ)| dψ +
∑

|am|<R

ln
|am|
R

. (3.1.5)

Let an ∈ C be now a growing in modulus sequence of complex numbers converging to ∞,

|an+1| ≥ |an|, |an| → ∞ .

We define the counting function for sequence an by:

n(r) := #{n : |an| ≤ r}, r ∈ [0,∞) .

It is easy to see that n(r) is integer-valued, piece-wise constant, increasing and right-continuous.
The Riemann-Stieljes integral allows us to relate the discrete sum on the right of (3.1.5) to an
integral of the counting function for the sequence of roots an,∑

|am|<R

ln
R

|am|
=

∫ R

0

ln
R

t
dn(t) = n(t) ln

R

t
|R0︸ ︷︷ ︸

=0

+

∫ R

0

n(t)

t
dt .

Combining the result above with (3.1.5) we obtain the Jensen formula:∫ R

0

n(t)

t
dt =

1

2π

∫ 2π

0

ln |f(Reiψ| dψ − ln |f(0)| . (3.1.6)

Case: f(0) = 0 with multiplicity k.
Applying (3.1.6) to f(z)/zk, we obtain a modified version of the Jensen formula,∫ R

0

n(t)− n(0)

t
dt+ n(0) lnR =

1

2π

∫ 2π

0

ln |f(Reiψ| dψ − ln

∣∣∣∣f (k)(0)k!

∣∣∣∣ . (3.1.7)

Recall that the growth of an entire function f is measured with function

Mf (r) = max
|z|=r

|f(z)| = max
|z|≤r

|f(z)| .

Corollary 3.2. Assume additionally |f(0)| = 1. It follows from the Jensen formula that∫ er

0

n(t)

t
dt ≤ 1

2π

∫ 2π

0

lnMf (er) dψ = lnMf (er) .

But, ∫ er

0

n(t)

t
dt ≥

∫ er

r

n(t)

t
dt ≥ n(r)

∫ er

0

1

t
dt = n(r) ln t|err = n(r) .

We obtain thus a bound for the counting function for roots of f(z) in terms of its growth function,

n(r) ≤ lnMf (er) . (3.1.8)

Exercises
3.1.1. Prove Poisson formula (3.1.1). (5 points)
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3.2 Convergence Exponent of Sequence of Zeros
Convergence exponent of a sequence. Let 0 ̸= an → ∞ be a (weakly) increasing in
modulus sequence converging to infinity. Number

λ =: inf{µ :

∞∑
n=1

1

|an|µ
<∞} (3.2.9)

is called the convergence exponent of the sequence an. Record a few simple observations:

• If
∑∞
n=1

1
|an|µ <∞ for some µ > 0, then

∑∞
n=1

1
|an|ν <∞ for any ν > µ. Indeed,

∞∑
n=1

1

|an|ν
=

∞∑
n=1

1

|an|µ
1

|an|ν−µ
≤ C

∞∑
n=1

1

|an|µ
<∞

where C is a bound for sequence 1/|an|ν−µ converging to zero.

• The convergence exponent may be infinite. Recall that

an := lnn
as
< nϵ

for any ϵ > 0. Assume that the series (3.2.9) converges for some µ <∞. Then

1

(lnn)µ
>

1

nϵµ

and, for any finite µ, we can find ϵ > 0 such that ϵµ ≤ 1 for which the series on the right
diverges.

• The infimum in (3.2.9) may or may not be attained. For instance, for an = n, λ = 1, but
for µ = 1 we have the harmonic series which diverges. But for an = n ln2 n, the series
does converge for µ = 1 but it does not for any µ < 1 (comp. Exercise 3.2.3).

Let n(r) be the counting function of sequence an. We define the order ρ1 of n(r) as:

ρ1 := lim supr→∞
lnn(r)

ln r
= lim
N→∞

sup
r≥N

lnn(r)

ln r
.

It follows that, for any ϵ > 0, there exists N such that

sup
r≥N

lnn(r)

ln r
≤ ρ1 + ϵ

and, so,

lnn(r) ≤ (ρ1 + ϵ) ln r r ≥ N ⇒ n(r) ≤ rρ1+ϵ r ≥ N ,

i.e.,
n(r)

as
≤ rρ1+ϵ for any ϵ > 0 ,

At the same time, there exists a sequence rn → ∞ such that

lim
n→∞

lnn(rn)

ln rn
= ρ1
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which implies that, for any ϵ > 0, there exists N such that for n > N ,

ρ1 − ϵ <
lnn(rn)

ln rn
⇒ rρ1−ϵn < n(rn) .

We denote this fact as:
rρ1−ϵ

n
≤ n(r) .

Lemma 3.3.
Assume

∞∑
n=1

1

|an|λ
<∞ .

Then ∫ ∞

0

n(t)

tλ+1
dt <∞ and lim

t→∞

n(t)

tλ
= 0 .

Proof. We have:
∞∑
n=1

1

|an|λ
=

∫ ∞

0

dn(t)

tλ
.

At the same time, ∫ r

0

dn(t)

tλ
=
n(t)

tλ
∣∣r
0︸ ︷︷ ︸

=
n(r)

rλ

+λ

∫ r

0

n(t)

tλ+1
dt .

As the left-nad side converges to a number as r → ∞, both non-negative terms on the right must
remain bounded. Since,

r →
∫ r

0

n(t)

tλ+1
dt

is increasing (and bounded), it must converge to a number, i.e.,∫ ∞

0

n(t)

tλ+1
dt <∞ .

Consequently,

n(r)

rλ
= n(r)λ

∫ ∞

r

dt

tλ+1
≤ λ

∫ ∞

r

n(t)

tλ+1
dt→ 0 as r → ∞ .

QED

Lemma 3.4.
Convergence exponent λ of a sequence an is equal to the order ρ1 of its counting function n(r).

Proof. Let λ be the convergence exponent of an. Let µ > λ. Then

∞∑
n=1

1

|an|µ
<∞ ,
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and, by Lemma 3.3,
n(r)

rµ
→ 0 as r → ∞ ,

which implies that the order of counting function ρ1 ≤ µ. Passing with µ → λ, we obtain
ρ1 ≤ λ. On the other hand, for ϵ > 0,

n(t)
as
≤ tρ1+

ϵ
2 .

Therefore, for µ = ρ1 + ϵ,∫ ∞

0

n(t)

tµ+1
dt <∞ and

n(t)

tµ
→ 0 as t→ ∞ .

It follows from the proof of Lemma 3.3 that

∞∑
n=1

1

|an|µ
<∞

and, therefore, λ < µ = ρ1 + ϵ. Passing with ϵ→ 0, we obtain λ ≤ ρ1. QED

Theorem 3.5 (Hadamard).
Convergence exponent λ of zeros of an entire function, equal to the order ρ1 of its counting
function, is bounded by the growth order ρ of the function.

Proof. Recall the estimate (3.1.8),

n(r) ≤ lnMf (er) .

We have:

ρ1 := lim supr→∞
lnn(r)

ln r
≤ lim supr→∞

ln lnMf (er)

ln r

= lim supr→∞
ln lnMf (er)

ln(er)
lim
r→∞

ln(er)

ln r

= lim supr→∞
ln lnMf (r)

ln(r)
.

Use Lemma 3.4 to finish the proof. QED

Exercises
3.2.1. (Borel lemma.) Let 0 ≤ an+1 ≤ an be a (weakly) decreasing sequence of non-negative

real numbers such that the series
∞∑
n=1

an

converges. Prove that
lim
n→∞

nan = 0 .

(5 points)
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3.2.2. Prove that
∞∑
n=1

1

|an|λ
<∞ ⇔

∫ ∞

0

n(t)

tλ+1
dt <∞ .

(2 points)
3.2.3. Show that, for the sequence an = n ln2 n,

∞∑
n=1

1

an
<∞ but

∞∑
n=1

1

aµn
= ∞ ∀, µ < 1 .

Consequently, the sequence convergence exponent λ = 1 and the infimum in defini-
tion (3.2.9) is attained. (2 points)

3.3 Weierstrass Products
Let 0 ̸= an ∈ C be a sequence of non-zero complex numbers increasing in modulus, such that

∞∑
n=1

1

|an|p+1
<∞ ,

for some natural number p = 1, 2, . . .. The Weierstrass canonical product of genus p is defined
as:

Π(z) :=

∞∏
n=1

G(
z

an
, p) (3.3.10)

where G(u, p) are the Weierstrass primary factors:

G(u, p) :=

 1− u p = 0 ,

(1− u) exp[u+ u2

2 + . . .+ up

p ] p > 0 .
(3.3.11)

Expanding ln(1− u) into its Taylor series at u = 0, we learn that

lnG(u, p) = ln(1− u) + u+
u2

2
+ . . .

up

p
= −

∞∑
k=p+1

uk

k
.

This leads to the following estimate for |u| < 1
2 ,

| lnG(u, p)| ≤
∞∑

k=p+1

|u|k

k

≤ |u|p+1

p+1 [1 + p+1
p+2

1
2 + p+1

p+3
1
22 + . . .]

≤ 2
p+1 |u|

p+1 .

Consequently,

ln |Π(z)| ≤ 2

p+ 1

∞∑
n=1

∣∣∣∣ zan
∣∣∣∣p+1

=
2|z|p+1

p+ 1

∞∑
n=1

1

|an|p+1
.

Note that for |z| ≤ R, and sufficiently large n, | zan | <
1
2 and, therefore, the series above con-

verges absolutely and uniformly in any disk {|z| ≤ R < ∞}. Consequently, the same holds for
the Weierstrass product which represents an entire function10.

10Uniformly convergent sequence of analytic functions is analytic.
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Lemma 3.6 (Borel estimates).
The following estimates hold:

ln |G(u, 0)| ≤ ln(1 + |u|)

ln |G(u, p)| ≤ Ap
|u|p+1

1 + |u|
Ap := 3e(2 + ln p) .

(3.3.12)

Proof. Case p = 0 is obvious. Let p > 0.
Case: |u| < p

p+1 . We have (see above):

ln |G(u, p)| ≤
∞∑

n=p+1

|u|n

n
≤ |u|p+1

(p+ 1)(1− |u|)
≤ |u|p+1 ,

since
|u| < p

p+ 1
⇔ 1

1− |u|
< p+ 1 .

Case: |u| > p
p+1 . We have:

ln |G(u, p)| ≤ | ln(1− u)|︸ ︷︷ ︸
≤|u|

+|u|+ |u|2
2 + . . .+ |u|p

p

= |u|p
(

1
p +

1
p−1

1
|u| + . . .+ 1

2
1

|u|p−2 + 2
|u|p−1

)
≤ |u|p

(
p+1
p

)p−1

(2 + 1
2 + . . .+ 1

p ) ,

since

|u| > p
p+1 ⇒

1
|u| <

p+1
p , 1

|u|p−1 <
(
p+1
p

)p−1

, 1
|u|p−2 <

(
p+1
p

)p−2

<
(
p+1
p

)p−1

= (∗)

etc. Additionally, (
p+ 1

p

)p−1

=

(
1 +

1

p

)p
p

p+ 1
≤ e

p

p+ 1
≤ e ,

1

2
+ . . .+

1

p
<

∫ p

0

dx

x
= ln p .

Continuing the estimate above,

(∗) ≤ e(2 + ln p)|u|p 1 + |u|
1 + |u|︸ ︷︷ ︸

=1

= e(2 + ln p)
(
1 + 1

|u|

)
|u|p+1

1+|u|

≤ 3e(2 + ln p)︸ ︷︷ ︸
=:Ap

|u|p+1

1+|u| (since 1 + 1
|u| < 1 + p+1

p = 2p+1
p ≤ 3) .

QED
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Theorem 3.7.
Let

∞∑
n=1

1

|an|p+1
<∞ .

Then the Weierstrass product

Π(z) :=

∞∏
n=1

G(
z

an
, p)

converges uniformly on every compact set, and the following estimate holds:

ln |Π(z)| ≤ Kpr
p

{∫ r

0

n(t)

tp+1
dt+ r

∫ ∞

r

n(t)

tp+2
dt

}
(3.3.13)

with Kp := (p+ 1)Ap, r = |z| where Ap is the constant from Borel estimates.

Proof. We have already discussed the convergence.
Case: p = 0.

ln |Π(z)| ≤
∞∑
n=1

ln

(
1 +

r

|an|

)
=

∫ ∞

0

ln(1 +
r

t
) dn(t)

= ln(1 +
r

t
)n(t)

∣∣∞
0︸ ︷︷ ︸

=0

+r

∫ ∫ ∞

0

n(t)

t(t+ r)
dt

(
d
dt (ln(1 +

r
t )) =

1
1+ r

t
(− r

t2 ) =
1

t(t+r)

)

≤
∫ ∞

0

n(t)

t
dt+ r

∫ ∞

r

n(t)

t2
dt .

Case: p > 0. Borel estimate implies

ln |Π(z)| ≤ Ap

∞∑
n=1

rp+1

|a|p(r + |an|)

= Apr
p+1

∫ ∞

0

dn(t)

tp(t+ r)

= Apr
p+1 n(t)

tp(t+ r)

∣∣∞
0

+Apr
p+1

∫ ∞

0

[
p

tp+1(t+ r)
+

1

tp(t+ r)2

]
n(t) dt(

n(t)

tp+1
→ 0 ⇒ n(t)

tp(t+ r)
→ 0 as t→ ∞ since r is fixed

)
= apr

p+1{
∫ r

0

+

∫ ∞

r

} [. . .] n(t)dt

≤ (p+ 1)Apr
p

{∫ r

0

n(t)

tp+1
dt+ r

∫ ∞

r

n(t)

tp+2
dt

}
since

r

∫ r

0

p

tp+1(t+ r)
n(t) dt ≤ p

∫ r

0

n(t)

tp+1 t+r
t

dt ≤ p

∫ r

0

n(t)

tp+1
dt
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and

r

∫ ∞

r

p

tp+1(t+ r)
n(t) dt ≤ pr

∫ ∞

r

n(t)

tp+2
dt (t+ r > t ⇒ 1

t+ r
<

1

t
)

along with

r

∫ ∞

r

n(t)

tp(t+ r)2
dt ≤ r

∫ ∞

r

n(t)

tp+2
dt∫ r

0

n(t)

tp(t+ r)( tr + 1)
≤
∫ r

0

n(t)

tp+1
dt .

QED
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Theorem 3.8 (Borel).
Let p ∈ N be the smallest natural number such that

∞∑
n=1

1

|an|p+1
<∞ .

The growth order of the Weierstrass product of genus p for sequence an is equal to the conver-
gence exponent λ of an.

Proof. It follows from the definition of convergence exponent λ of an that

p ≤ λ ≤ p+ 1 .

Case: λ < p+ 1. Pick an ϵ > 0 such that λ+ ϵ < p+ 1. According to our opening discussion
in Section 3.2 and Lemma 3.4,

n(t)
as
≤ tλ+ϵ .

Estimate (3.3.13) implies then

lnMΠ(r) ≤ Kpr
p{ O(1)︸︷︷︸

asymptotics

+

∫ r

0

tλ+ϵ−p−1 dt+ r

∫ ∞

r

tλ+ϵ−p−2 dt}

≤ Kp

{
O(1) +

rλ+ϵ−p

λ+ ϵ− p
+

rλ+ϵ−p

p+ 1− λ− ϵ

}
as
≤ rλ+ϵ .

Case: λ = p+ 1. Lemma 3.3 implies that∫ ∞

r

n(t)

tp+1
dt→ 0 as r → ∞ .

In turn, it follows from estimate (3.3.13) that

lnMΠ(r) ≤ Kpr
p

{
O(1) +

∫ r

0

n(t)

tp+1
dt+ r

∫ ∞

r

n(t)

tp+2
dt

}
.

However,

1

r

∫ r

0

n(t)

tp+1
dt =

∫ r

0

n(t)

tp+2

t

r
dt =

∫ ∞

0

n(t)

tp+2

t

r
χ[0,r]︸ ︷︷ ︸

≤1,→0 as r→∞

dt ≤
∫ ∞

0

n(t)

tp+2︸ ︷︷ ︸
dominating function

dt <∞

so, by the Lebesgue Dominated Convergence Theorem, the term converges to zero as r → ∞.
Since

lim
r→∞

∫ ∞

r

n(t)

tp+2
dt = 0 ,

we arrive at the asymptotic estimate:

lnMΠ(r)
as
≤ ϵrp+1 = ϵrλ

for any ϵ > 0.
Both discussed cases imply that the growth order of function MΠ(r) is bounded by λ. For the
reverse inequality, see the Hadamard Theorem 3.5. QED
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3.4 Phragmén and Lindelöf Result

Theorem 3.9 (Phragmén, Lindelöf, 1908).
Let D be an infinite sector of the complex plane,

D = {z : α < arg z < β} β − α =
π

λ

and let f be an analytic function in D, continuous on its boundary11 with the growth:

lnMf (r)
as
≤ rρ for ρ < λ .

Assume function f is bounded on the sides of sector D,

|f(z)| ≤M z ∈ ∂D .

Then f must be bounded by M in the whole sector,

|f(z)| ≤M ∀ z ∈ D .

Proof. Without loosing generality assume

D = {reiθ : |θ| < α} α =
π

2λ
.

Pick ρ1 ∈ (ρ, λ) and define

φρ(z) := f(z)e−δz
ρ1
, δ > 0 .

Then (see Exercise 3.4.1 for details),

|φδ(z)| ≤ |f(z)| e−δ|z|
ρ1 cos ρ1α

as
≤ e|z|

ρ−δ|z|ρ1 cos ρ1α .

As
ρ < ρ1, cos ρ1α > 0 (ρ1α < λα =

π

2
) ,

we have
|φδ(Reiθ)| ≤M for sufficiently large R > R(δ) .

Maximum Principle implies then

|φδ(z)| ≤M ∀ z ∈ DR := {reiθ : r < R, |θ| < α} .

As f(z) = φδ(z)e
δzρ1 , this implies that

|f(z)| ≤ Meδ|z|
ρ1 cos θρ1︸ ︷︷ ︸

no dependence uponR

≤Meδ|z|
ρ1

(cos θρ1 ≤ 1 ⇒ ecos θρ1 ≤ e) .

Consequently,
|f(z)| ≤Meδ|z|

ρ1 in D (not just in DR) .

Pass with δ → 0 to get |f(z)| ≤M . QED

Exercises
3.4.1. Fill in the details of the estimate used in proof of Theorem 3.9 (1 point)

11The assumption may be replaced with a weaker assumption that lim supz→ζ |f(z)| ≤ M ∀ ζ ∈ ∂D.
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Macaev’s Results

4.1 Additional Properties of Singular Values
Schmidt representation of a compact operator12. Let A be a compact operator, and A =
UH be its polar representation. Let ϕk, k = 1, . . . , r(H) denote the orthonormal system dense
in R(H), i.e.

Hu =

∞∑
j=1

sj(u, ϕj)ϕj (convergence in norm) .

Applying the unitary operator U to both sides, we obtain

Au =

∞∑
j=1

sj(u, ϕj)Uϕj︸︷︷︸
=:ψj

where ψj form an orthonormal system in R(A). This is the Schmidt representation (sum, series)
of operator A. Direct computation shows:

A∗u =

∞∑
j=1

sj(u, ψj)ϕj .

The representations for operators A and A∗ imply that

A∗Aϕj = s2jϕj and AA∗ψj = s2jψj

from which, in turn, follows that sj(A) = sj(A
∗).

Theorem 4.1.
Let A be a compact operator. Then,

sn+1(A) = min
rankK=n

∥A−K∥ = ∥A−Kn∥ (4.1.1)

where the minimizer Kn equals the n-th partial Schmidt sum of operator A,

Kn =

n∑
j=1

sj(A)(u, ϕj)ψj .

12For a derivation avoiding the use of polar representation, see [4], p.587.

35
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Proof. Recall the min-max variational property for the eigenvalues of a self-adjoint compact
operator,

sn+1 = min
V⊂X,dimV=n+1

max
u∈V

∥Av∥
∥v∥

.

Let K be a compact operator of rank n. The min-max property implies that

sn+1 ≤ min
V⊂N (K)⊂X,dimV=n+1

max
u∈V

∥Av∥
∥v∥

= min
V⊂N (K)⊂X,dimV=n+1

max
u∈V

∥(A−K)v∥
∥v∥

≤ ∥A−K∥ .

To claim the equality, it is sufficient to notice that

∥Au−
n∑
k=1

sk(A)(u, ϕk)ψk∥ = ∥
r(A)∑
k=n+1

sk(A)(u, ϕk)ψk∥ = sn+1(A) .

QED

Corollary 4.2. Let A be a compact operator, and let T be an operator of rank r. Then

sn+r(A) ≤ sn(A+ T ) ≤ sn−r(A) . (4.1.2)

Proof. Let Kn be the partial Schmidt sum for operator A. By Theorem 4.1,

sn+1(A) = ∥(A+ T )− (T +Kn)∥ ≥ sn+r+1(A+ T ), n = 0, 1, . . . .

Trading A for A+ T , we obtain,

sn+1(A+ T ) ≥ sn+r+1(A), n = 0, 1, . . . .

The two inequalities imply (4.1.2). QED

Corollary 4.3. Let A,B be two compact operators. The following inequalities hold:

sm+n−1(A+B) ≤ sm(A) + sn(B) m,n = 1, 2, . . .

sm+n−1(AB) ≤ sm(A)sn(B) m,n = 1, 2, . . .

In particular,
sn(A

q) ≤ sq[nq +1](A) n = 1, 2, . . . .

Proof. Let K1,K2 be the (m− 1)- and (n− 1)-dimensional operators such that

sm(A) = ∥A−K1∥ and sn(B) = ∥B −K2∥ .

Then

sm+n−1 ≤ ∥A+B − (K1 +K2)︸ ︷︷ ︸
of rank≤m+n−2

∥ ≤ ∥A−K1∥+ ∥B −K2∥ = sm(A) + sn(B) .
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Similarly, since
(A−K1)(B −K2) = AB −AK2 −K1(B −K2)

and the rank of AK2 +K1(B −K2) is bounded by m+ n− 2, we obtain

sm+n−1(AB) ≤ ∥AB −AK2 −K1(B −K2)∥ ≤ ∥A−K1∥ ∥B −K2∥ = sm(A)sn(B) .

By induction,
sqn−(q−1)(A

q) ≤ sqn(A)

from which the last inequality follows. QED

4.2 Determinant of an Operator
Class Cµ of compact operators. We say that a compact operator A belongs to class Cµ, for
some µ > 0, if

∞∑
n=1

sµn(A) <∞

where sn(A) are the singular values of the operator.
Let A ∈ C1. We define,

det(I −A) :=

ν(A)∏
j=1

(1− λj(A)) (4.2.3)

where the right-hand side converges, see below.

Characteristic determinant of operator A is defined as:

DA(z) = det(I − zA) . (4.2.4)

We have,

|DA(z)| ≤
ν(A)∏
j=1

(1 + |z| |λj(A)|)

≤
∞∏
j=1

(1 + |z|sj(A)|) ( Corollary 2.7)

≤ exp(|z|
∞∑
j=1

sj(A)) .

The characteristic determinant DA(z) is a Weierstrass canonical product of genus zero. Recall
that compact operator A is a Volterra operator if it does not have non-zero eigenvalues. Then
det(I −A) = 1 and DA(z) = 1.

4.3 A Resolvent Estimate

Theorem 4.4.
Let A ∈ C1. The following estimate holds:

∥(I − zA)−1∥ ≤ 1

|DA(z)|

∞∏
j=1

(1 + |z| sj(A)) . (4.3.5)
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Proof. Let ϕ, ψ be unit vectors and ξ > 0. Consider operator

A1 := A+ ξ(·, ψ)ϕ .

By Corollary 4.1.2,
sj+1(A1) ≤ sj(A) .

Also,

s1(A1) = min
∥u∥=1

∥A1u∥ ≤ min
∥u∥=1

(∥Au∥+ ∥ξ(u, ψ)ϕ∥) ≤ min
∥u∥=1

∥Au∥+ ξ = s1(A) + ξ .

Consequently,

|DA1(z)| ≤ (1 + |z|(s1(A) + ξ))

∞∏
j=1

(1 + |z| sj(A)) . (4.3.6)

By a generalization of the Cauchy theorem for determinants,

det((I − zA1)(I − zA)−1) =
DA1(z)

DA(z)
.

At the same time,

det((I − zA1)(I − zA)−1) = det((I − zA− zξ(·, ψ)ϕ)(I − zA)−1)

= det(I − zξ(·, ψ)ϕ(I − zA)−1)

= det(I − zξ((I − zA)−1·, ψ)ϕ︸ ︷︷ ︸
rank 1 operator

= 1− zξ((I − zA)−1ϕ, ψ) .

The last equality follows form the fact that the rank one operator ((I − zA)−1·, ψ)ϕ has a single
eigenvector ϕwith the corresponding eigenvalue equal ((I−zA)−1ϕ, ψ). Consequently, utilizing
estimate (4.3.6), we obtain,

|z(I − zA)−1ϕ, ψ)| ≤ 1

ξ
+

1

ξ

|DA1
(z)|

|DA(z)|

≤ 1

ξ
+

1

|DA(z)|

(
1

ξ
+ |z|

(
s1(A)

ξ
+ 1

)) ∞∏
j=1

(1 + |z|sj(A)) .

Letting ξ → ∞, and dividing both sides by |z|, we obtain

|(I − zA)−1ϕ, ψ)| ≤ 1

|DA(z)|

∞∏
j=1

(1 + |z|sj(A)) .

Taking supremum with respect ψ and ϕ, we obtain the final estimate. QED

Corollary 4.5. For a Volterra operator A, DA(z) = 1, and the estimate reduces to

∥(I − zA)−1∥ ≤
∞∏
j=1

(1 + |z| sj(A)) . (4.3.7)
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4.4 Macaev’s Result
The following crucial theorem is stated in [2], p.244.

Theorem 4.6 (Macaev).
Let A be a compact Volterra operator and p > 0 an arbitrary number. If

sn(A) = O(n−
1
p )

(
or o(n−

1
p )
)

then,
lnMA(r) = O(rp+[p])13

(
or o(rp+[p])

)
.

I have managed to reproduce the proof under the stronger assumptionA ∈ Cp, and a technical
assumption that the convergence exponent λ of sequence s−1

n (A) is strictly less than p. Note that,
by Borel lemma (comp. Exercise 3.2.1),

∞∑
n=1

spn(A) <∞ ⇒ nspn(A) → 0

⇒ n
1
p sn(A) → 0 ⇒ sn(A) = o(n−

1
p ) .

Proof. Case: p < 1. By the Borel Theorem 3.8, the growth order ρ of Weierstrass canonical
product of genus 0,

Π(z) =

∞∏
n=1

(1− z

an
) =

∞∏
n=1

(1− zsn(A)) an = s−1
n (A) ,

equals the convergence exponent λ of sequence an. Note that

MΠ(r) =

∞∏
n=1

(1 + rsn(A)) .

It follows from the definition of growth order ρ that

lnMΠ(r)
as
≤ rρ+ϵ .

Under the additional assumption on ρ < p, for ρ+ ϵ < p, we obtain:

lnMΠ(r)
as
≤ rρ+ϵ = rp rρ+ϵ−p︸ ︷︷ ︸

→0

and, so,
lnMΠ(r) = o(rp) .

It remains to apply estimate (4.3.7).
Case: p ≥ 1. Take integer q = [p] + 1, so that p1 = p

q < 1, and consider Volterra operator
B = Aq . We have:

1− zqB = (I − zA)(I + zA+ . . .+ zq−1Aq−1)

(I − zA)−1 = (I + zA+ . . .+ zq−1Aq−1)(I − zqB)−1

13Gohberg has O(r
1
p ), a typo ??
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which implies:

MA(r) ≤MB(r
q)

q−1∑
k=0

rk∥Ak∥ . (4.4.8)

But (see Corollary 4.3),

sn(B) = sn(A
q) ≤ sq[nq +1](A) n = 1, 2, . . .

and, therefore,
∞∑
n=1

sp1n (B) ≤
∞∑
n=1

sp[nq +1](A) ≤ q

∞∑
n=1

spn(A) <∞ .

By the first case result,

lnMB(r) = o(r
p
q ) ⇒ lnMB(r

q) = o(rp) .

Use estimate (4.4.8) to conclude the final result. QED
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Keldyš’ Results

5.1 Keldyš’ Lemma

Lemma 5.1.
Let H be an injective normal compact operator. Assume that almost all characteristic numbers
of H lie outside the open sector:

F := {z ∈ C : θ1 < arg z < θ2} ,

see Fig. 5.1 for illustration. Let T be another compact operator. Then, for every ϵ > 0,

lim
|z|→∞

∥T (I + zH)−1∥ = 0

uniformly in closed sector

Fϵ := {z ∈ C : θ1 + ϵ ≤ arg z ≤ θ2 − ϵ} .

Proof. Recall that

∥(H − λI)−1∥ =
1

d(λ, sp(H))

where d(λ, sp (H)) is the distance of λ to spectrum of operator H . Therefore,

∥(I − zH)−1∥ =
| 1z |

d( 1z , sp(H))
.

Notice that, for |z| = c, z ∈ Fϵ, the smallest distance between 1/z and the exterior of F ′ (and,
therefore, the spectrum of H as well) is attained on the boundary of F ϵ. This produces a lower
bound for d( 1z , sp(H)):

|1
z
| sin ϵ ≤ d(

1

z
, sp(H)) .

Consequently,
| 1z |

d( 1z , spH)
≤ 1

ϵ
⇒ ∥(I − zH)−1∥ ≤ 1

sin ϵ
.

41
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F

2Θ

Θ1

F
ε

Figure 5.1: Proof of Lemma 5.1: Sector F and its image F ′ under z → 1
z transformation. The

shaded set illustrates subsector Fϵ for a small ϵ.

By the density of finite rank operators in the subspace of compact operators, for any δ > 0, we
can decompose operator into a finite rank operator K and a remainder M such that

T = K +M, ∥M∥ < δ

2
sin ϵ .

Representing K using its Schmidt’s sum,

Ku =

n∑
j=1

(u, ψj)ϕj ∥ϕj∥ = 1, j = 1, . . . , n

and introducing an orthonormal basis ei formed by eigenvectors of operator H , we have:

Hu =

∞∑
i=1

λi(u, ei) ei

(I − zH)u =

∞∑
i=1

(1− zλi) (u, ei) ei

(I − zH)−1u =

∞∑
i=1

(1− zλi)
−1 (u, ei) ei =

∞∑
i=1

µi
µi − z

(u, ei) ei

where µi = 1/λi are the characteristic values of operator H . Select now a sufficiently large N
such that  ∞∑

j=N+1

|(ψk, ej)|2
 1

2

<
δ sin ϵ

4n
for k = 1, . . . , n

and then a corresponding, sufficiently large R such that N∑
j=1

∣∣∣∣ µj
µj − z

∣∣∣∣ |(ψk, ej)|2
 1

2

<
δ

4n
for |z| ≥ R, k = 1, . . . , N .
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We have,

K(I − zH)−1f =

∞∑
j=1

n∑
k=1

µj(ψk, ej)(f, ej)

µj − z
ϕk

∥K(I − zH)−1f∥ ≤
∞∑
k=1

 ∞∑
j=1

∣∣∣∣ µj
µj − z

(ψk, ej)

∣∣∣∣2
 1

2
 ∞∑
j=1

|(f, ej)|2
 1

2

︸ ︷︷ ︸
=∥f∥∥

.

But, ∣∣∣∣ µj
µj − z

∣∣∣∣ = |z−1|
|z−1 − µ−1

j |
≤ 1

sin ϵ

so,

∥K(I − zH)−1f∥ ≤ δ

2
∥f∥ .

QED

5.2 Keldyš’ Theorems
Let A be a compact operator. We will use the notation:

p(A) := inf{p :

∞∑
j=1

|sj |p <∞} .

Theorem 5.2 (First Keldyš Theorem).
Let

A = H(I + S)

where H is a self-adjoint compact operator with p(H) < ∞, and S is a compact operator. We
assume that A is injective. Then

(i) The system of generalized eigenvectors of A is complete in X .

(ii) For any ϵ > 0, almost all eigenvalues of A lie in the sectors

−ϵ < arg z < ϵ π − ϵ < arg z < π + ϵ .

If the operator H has only a finite number of negative (positive) eigenvalues, then A has
at most a finite number of eigenvalues in the second (first) sector.

Proof. Injectivity of A implies that I + S must be injective as well. Fredholm alternative
implies that (I + S)−1 exists and it is continuous. Consequently, H is injective as well, and the
eigenvectors ofH form a complete system forX . Consider compact operator T := I−(I+S)−1

(comp. Exercise 5.2.1). Lemma 5.1 implies that ∀ ϵ > 0 ∃ r > 0 such that

z ∈ Fϵ := {ϵ ≤ | arg z| ≤ π − ϵ, |z| ≥ r} ⇒ ∥T (I − zH)−1∥ < q < 1 .

By the same lemma, ifH has only a finite number of negative eigenvalues, set Fϵ can be enlarged
to:

Fϵ := {ϵ ≤ arg z ≤ 2π − ϵ, |z| ≥ r} .
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From now on, we will consider this case only. The reasoning for the other case(s) is fully analo-
gous. We have:

I − zA = (I + S)−1(I + S)− zH(I + S)

= ((I + S)−1 − zH) (I + S)

= (I − T − zH) (I + S)

= (I − zH − T ) (I + S)

=
[
I − T (I − zH)−1

]
(I − zH) (I + S)

Now, operator
[
I − T (I − zH)−1

]
is invertible in set Fϵ by the Neumann series argument, oper-

ator (I− zH) is invertible in set Fϵ by definition of Fϵ, and we have already shown that operator
(I + S) is invertible as well. Consequently, for z ∈ Fϵ, inverse (I − zA)−1 exists as well and,

(I − zA)−1 = (I + S)−1 (I − zH)−1

[ ∞∑
n=q

(T (I − zH)−1)n

]
.

We have proved thus already the second assertion of the theorem.
By reasoning identical to the one in proof of Lemma 5.1, we can estimate norm ∥(I−zH)−1∥

by 1
sin ϵ which, by the representation above, implies the estimate:

∥(I − zA)−1∥ ≤ ∥(I + S)−1∥
sin ϵ

(1− q) z ∈ Fϵ .

Denote,
XA := span{generalized eigenvectors of A} .

We need to prove now that XA = X . Suppose, by contrary, that XA ̸= X . Let P : X → XA

be the orthogonal projection onto the closed subspace XA. Lemma 1.11 implies that operator:

A1 := QAQ, Q := I − P ,

is a Volterra operator. Consequently, the operator valued function:

z → (I − zA1)
−1

is an entire function. By the same Lemma 1.11,

(I − zA1)
−1 = (I − zQAQ)−1

= (P = Q︸︷︷︸
=Q2=QIQ

−zQAQ)−1

= (P +Q(I − zA)Q)−1

= Q(I − zA)−1Q+ P .

Consequently, (I − zA1)
−1 is bounded in Fϵ. As A1 ∈ Cp for p > p(H), Theorem 4.6 implies

that
ln ∥(I − zA1)

−1∥ = o(|z|p+[p]) .

Choose now ϵ < π
p+[p] . As ∥(I−zA1)

−1∥ is bounded on the sides of sector Fϵ, and we control
its growth outside the sector, by the Phragmén-Lindelöf Theorem 3.9, function ∥(I − zA1)

−1∥
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must be bounded on whole complex plane. But the only bounded entire function is a constant,
and (I − 0A1)

−1 = I−1 = I , so
(I − zA1)

−1 = I .

This implies that I = I − zA1 and, therefore, A1 = 0. But (both PX and QX are invariant wrt
A),

A1 = QAQ = QQA = QA

which implies
A∗Q = 0 ⇒ A∗(QX) = 0 ⇒ QX ⊂ N (A∗)

which contradicts injectivity of A∗ = (I + S∗)H . QED

Jordan chains. Let A be a compact operator, µ0 an eigenvalue of A with the corresponding
eigenvector v0. Recall that vectors v0, v1, . . . vk form a Jordan chain corresponding to eigenvec-
tor v0 if

(A− µ0I)vj = vj−1 j = 1, . . . , k .

As the eigenspace Xµ corresponding to eigenvalue µ may be multidimensional, there may be
multiple Jordan chains corresponding to different, linearly independent, eigenvectors v0 for the
same eigenvalue µ0. Assuming µ0 ̸= 0, we may rewrite the definition of the Jordan chain in
terms of the singular value λ0 = 1

µ0
,

(I − 1

µ0︸︷︷︸
=λ0

A)vj = − 1

µ0
vj−1 j = 1, . . . , k .

Thus, at the cost of rescaling vectors vj , we may redefine the Jordan chain corresponding to a
singular value λ0 and eigenvector v0 by the relation:

(I − λ0A)vj = vj−1 j = 1, . . . , k .

It follows from the definition that

(I − λ0A)
j+1vj = 0 j = 0, 1, . . . , k .

Conversely, given a vector v such that

(I − λ0A)
k+1v = 0 and (I − λ0A)

kv ̸= 0

we can reconstruct the corresponding Jordan chain by:

vk+1 := v, vj−1 := (I − λ0A)vj , j = k, . . . , 1 .

The null space N ((I − λ0A)
j) is identified as the space of generalized eigenvectors of order

j. The spaces N ((I − λ0A)
j) form an increasing sequence. It is known that, if A is com-

pact, this sequence eventually stops growing and becomes constant. The corresponding space
N ((I − λ0A)

j) is identified as the generalized14 eigenspace corresponding to singular value
λ0. Consequently, length k of Jordan chains is limited by the dimension of the generalized
eigenspace.

14Gohberg calls it the root space.
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Keldyš chains. In the next theorem we will consider a bundle

L(λ) := I − T − λH

where T and H are compact, and H is injective.
A number λ0 is a characteristic value of the bundle if there exists a (non-zero) eigenvector

x0 such that
(I − T − λ0H)x0 = 0 ⇔ (I − T )x0 = λ0Hx0 .

Vectors x1, . . . , xk form a Keldyš chain corresponding to eigenvector x0 if

(I − T − λ0H)xj = Hxj−1, j = 1, . . . , k .

Case: T = 0. If H had a range dense in X and the corresponding inverse were bounded15, we
could apply H−1 to both sides of the equation above to obtain:

(H−1 − λ0I)xj = xj−1, j = 1, . . . , k .

The Keldyš chain would coincide then with the Jordan chain for the inverse H−1 corresponding
to eigenvalue λ0 and eigenvector x0. But the range of operator H may not be dense in X and/or
its inverse may not be bounded so this simple interpretation of Keldyš chains, in general, may
not be possible.

Definition of the Keldyš chain implies that

(I − λ0H)k+1xk = H(I − λ0H)kxk−1 = . . . = Hk(I − λ0H)x0 = 0 .

Injectivity of H implies thus that vectors x0, . . . , xk are also generalized (root) eigenvectors of
operator H . Conversely, let x be a generalized eigenvector of operator H of order k, i.e.,

(I − λ0H)k+1x = 0 and (I − λ0H)kx ̸= 0 .

Setting xk = x, we define:

xk−1 =

k+1∑
i=1

(
k + 1
i

)
(−λ0)iHi−1xk − λ0xk .

We verify that
(I − λ0H)xk −Hxk−1 = (I − λ0H)k+1x = 0

and, consequently,

H(I − λ0H)kxk−1 = (I − λ0H)kHxk−1 = (I − λ0H)k+1xk = 0 .

By injectivity of H this implies that (I − λ0H)kxk−1 = 0, i.e., xk−1 is a generalized (root)
eigenvector of order k − 1. Repeating the construction for x = xk−1, we obtain a Keldyš chain
of vectors x0, . . . , xk. We have proved thus the following lemma.

Lemma 5.3.
Let A be a compact and injective operator. Let λ0 be a characteristic value of the bundle:

L(λ) := (I − λA) .

Then the set of all Keldyš chain vectors corresponding to λ0 and linearly independent eigenvec-
tors x0 spans the space X0 of generalized eigenvectors for operator A. In particular, the space
is finite-dimensional.

15A bounded operator defined on a dense subset admits a unique extension to the whole space.
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Remark 5.4. Notice from the reasoning above that Keldyš chains for H do not go into Jordan
chains of H .

Theorem 5.5 (Second Keldyš Theorem).
Consider the bundle:

L(λ) := I − T − λH

where T is an arbitrary compact operator, andH is compact, self-adjoint with p(H) <∞. Then
the system of Keldyš chain vectors for the bundle is complete in X .

Proof. We will show that the completeness results stated in the two Keldyš theorems are actually
equivalent to each other.
Step 1: We first observe that, without loosing any generality, we can assume that operator I − T
is injective. Indeed, replacing T with T + aH, a ∈ C, shifts all characteristic values, λ→ λ+ a
but does not alter the corresponding generalized eigenspaces. By Lemma 5.1, we can16 find an a
such that

∥(I − aH)−1T∥ < 1 .

Then
I − (T + aH) = (I − aH)

[
I − (I − aH)−1T

]
is invertible. Assuming thus that the inverse (I − T )−1 exists and is continuous, we represent it
as

(I − T )−1 = I + S

where S is a compact operator, comp. Exercise 5.2.1. Multiplying bundle L(λ) = I − T − λH
on the left by (I − T )−1, we get:

(I − T )−1L(λ) = I − λ (I − T )−1H︸ ︷︷ ︸
=(I+S)H=:A1︸ ︷︷ ︸
=:L1(λ)

.

Note that the new bundle L1(λ) = I − λA1 shares with bundle L(λ) all eigenvectors and
corresponding Keldyš chain vectors.

Step 2: It is now sufficient to apply Lemma 5.3 to operator A1 and check that operator
A1 satisfies assumptions of Theorem 5.2. As Keldyš chain vectors for A1 span the generalized
eigenspaceXλ0

, the completeness of Keldyš chain vectors forA1 implies the completeness result
stated in Theorem 5.2. QED

Exercises
5.2.1. LetK be a compact operator. Prove that the inverse of the compact perturbation of identity

I +K (if it exists), is a compact perturbation of identity as well. (1 point)

16Note that ∥A∥ = ∥A∗∥.
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Chapter 6

Non-orthogonal Bases

6.1 Introduction to Non-orthogonal Bases
Schauder basis. Let X be a separable Banach space. A sequence ϕj ∈ X, j = 1, 2, . . . is a
Schauder basis for space X iff

∀x ∈ X ∃!xj , j = 1, 2, . . . : x =

∞∑
j=1

xjϕj .

Numbers xj are the components of x wrt the basis. By assumption, they exist and they are
unique. We will examine now what these assumptions imply about the basis ϕj .

First of all, each component xj defines a linear functional of x,

ψ∗
j : X → C(R), x→ xj .

Indeed, if

x =

∞∑
j=1

xj︸︷︷︸
=ψ∗

j (x)

ϕj and y =

∞∑
j=1

yj︸︷︷︸
=ψ∗

j (y)

ϕj ,

then, for any α, β,

αx+ βy =

∞∑
j=1

(αxj + βyj︸ ︷︷ ︸
=ψ∗

j (αx+βy)

)ϕj .

Define now the partial sum projections:

Pnx :=

n∑
j=1

xjϕj =

n∑
j=1

ψ∗
j (x)ϕj .

The assumed convergence of the series
∑∞
j=1 xjϕj implies that Pnx are bounded uniformly in

n. The Uniform Boundedness Theorem ([4], Theorem 5.8.1) implies that the projections are
bounded uniformly in the operator norm,

∥Pj∥ ≤ C j = 1, 2, . . . .

This implies that ψ∗
j are not only linear but also bounded. Indeed,

xjϕj = Pjx−Pj−1x ⇒ |xj | ∥ϕj∥ ≤ (∥Pj∥+∥Pj−1∥)∥x∥ ⇒ |ψ∗
j (x)| ≤ 2C∥ϕj∥−1 ∥x∥ .

49
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We also have a lower bound:

∥ψ∗
j ∥ = sup

x

|ψ∗
j (x)|
∥x∥

≥ 1

∥ϕj∥
(x = ϕj) .

We will change thus the notation from ψ∗
j to ψ′

j . Moving on from the Banach space to a Hilbert
space X , we can introduce now the Riesz representations ψj of ψ′

j ,

ψ′
j(x) = (x, ψj) .

Note that by the dual space we mean the space of linear and not anti-linear functionals. We have:

∥ϕj∥−1 ≤ ∥ψj∥ ≤ 2C∥ϕj∥−1 . (6.1.1)

We can rewrite the condition defining the basis in the form:

x =

∞∑
j=1

(x, ψj)ϕj . (6.1.2)

Vectors ψj form thus a biorthogonal sequence to sequence ϕi. The existence of the unique
biorthogonal system ψj implies two properties of the Schauder basis (Exercise 6.1.1):

(i) “Linear independence” of vectors ϕi:

ϕi ̸∈ span{ϕk : k ̸= i} ,

(ii) Sequence ϕi is complete in X , i.e.,

(x, ϕi) = 0 , i = 1, 2, . . . ⇒ x = 0 .

Theorem 6.1 (Banach).
Vectors ψj form a Schauder basis as well.

Proof. Expansion:

f =

∞∑
j=1

(f, ψj)ϕj = lim
n→∞

n∑
j=1

(f, ψj)ϕj f ∈ X ,

implies that, for any χ ∈ X ,

(f, χ) = lim
n→∞

(

n∑
j=1

(f, ψj)ϕj , χ)

= lim
n→∞

n∑
j=1

(f, ψj)(ϕj , χ) = lim
n→∞

(f,

n∑
j=1

(χ, ϕj)ψj︸ ︷︷ ︸
=:Qnχ

) .

In other words, Qnχ converges weakly to χ, Qnχ ⇀ χ. But every weakly convergent sequence
is bounded ([4], Prop. 5.14.2), i.e. ∥Qnχ∥ ≤ C(χ)n = 1, 2, . . .. By the Uniform Boundedness
Theorem, operators Qn must be uniformly bounded,

∥Qn∥ ≤ C n = 1, 2, . . . .
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On the other side, representation (6.1.2) implies that vectors ψj are complete in X ,

(f, ψj) = 0 j = 1, 2, . . . ⇒ f = 0 .

The completeness condition is equivalent to the density of span of ψj in X , i.e.,

∀χ ∀ ϵ > 0 ∃Nϵ , c(ϵ)j , j = 1, . . . , Nϵ : ∥χ−
Nϵ∑
j=1

c
(ϵ)
j ψj∥ < ϵ .

Consequently,

∥Qn(χ−
Nϵ∑
j=1

c
(ϵ)
j ψj)∥ = ∥Qnχ−

Nϵ∑
j=1

c
(ϵ)
j ψj∥ < Cϵ ∀n ≥ Nϵ .

By triangle inequality,

∥Qnχ− χ∥ ≤ ∥Qnχ−
Nϵ∑
j=1

c
(ϵ)
j ψj∥+ ∥

Nϵ∑
j=1

c
(ϵ)
j ψj − χ∥ < (C + 1)ϵ n ≥ Nϵ ,

which proves the strong convergence Qnχ → χ. Finally, the biorthogonality condition and
completeness of ψj imply that the components in the expansions:

χ =

∞∑
j=1

cjψj , cj = (χ, ϕj) ,

are unique (comp. Exercise 6.1.1). QED

Almost normalized sequence. We say that a sequence ϕj ∈ X is almost normalized, if

inf
j
∥ϕj∥ > 0 and sup

j
∥ϕj∥ <∞ .

Estimates (6.1.1) imply immediately that, if a basis ϕj is almost normalized then the correspond-
ing biorthogonal basis is almost normalized as well.

Exercises
6.1.1. Biorthogonal sequences. Let X be a Hilbert space. Sequences ϕi, ψj are biorthogonal if

(ϕi, ψj) = δij . Let ϕj ∈ X be given. Show that:

(i) A biorthogonal sequence ψj exists iff

ϕj ̸∈ span{ϕk : k ̸= j}︸ ︷︷ ︸
=:Xj

.

(ii) If it exists, biorthogonal sequence ψj is unique iff ϕj is complete in X , i.e.,

(x, ϕj) = 0, j = 1, 2, . . . ⇒ x = 0 .

(5 points)
6.1.2. Generalize Theorem 6.1 to Banach spaces. (5 points)
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6.2 Riesz Bases
A Riesz basis. Let A ∈ L(X) be a linear bounded operator with a bounded inverse, and let
χj be an orthonormal basis in X . For every x ∈ X , we have the unique expansion:

A−1x =

∞∑
j=1

(A−1x, χj)χj =

∞∑
j=1

(x, (A∗)−1χj)χj .

Applying operator A to both sides, we obtain:

x =

∞∑
j=1

(x, (A∗)−1χj︸ ︷︷ ︸
=:ψj

)Aχj︸︷︷︸
=:ϕj

where ϕj := Aχj , and ψj := (A∗)−1χj are now biorthogonal bases. Any basis ϕj that can be
obtained from an orthonormal basis χj by means of such a transformation, is called a Riesz basis.
Note that the biorthogonal basis ψj being the image of χj under operator (A∗)−1 is automatically
a Riesz basis as well. As

sup
j

∥ϕj∥ ≤ ∥A∥ and inf
j
∥ϕj∥ ≥ 1

∥A−1∥
,

every Riesz basis is also automatically almost normalized. If we normalize a Riesz basis to
define:

ϕ̂j :=
ϕj
∥ϕj∥

j = 1, 2, . . . ,

we obtain a new Riesz basis. Indeed, a map B setting the original orthonormal basis χj into
vectors χj/∥ϕj∥:

B : X → X, Bχj =
χj
∥ϕj∥

j = 1, 2, . . . ,

obviously represents a bounded invertible operator, and

ϕ̂j = ABχj

where operator AB is invertible.

Gelfand’s Lemma. LetX be a vector space. Recall that a function p : X → R is a semi-norm
on X , if p is homogeneous and it satisfies the triangle inequality,

p(αx) = |α| p(x) α ∈ C, x ∈ X (homogeneity)

p(x+ y) ≤ p(x) + p(y) x, y ∈ X (triangle inequality).

The homogeneity implies that p(0) = 0, and the two conditions imply now that p is non-negative,
p(x) ≥ 0, x ∈ X . Indeed, we have for any x ∈ X ,

0 = p(0) = p(x− x) ≤ p(x) + p(−x) = 2p(x) .

Every seminorm is also convex,

p(αx+ (1− α)y) ≤ p(αx) + p((1− α)y) = αp(x) + (1− α)p(y) α ∈ [0, 1], x, y ∈ X .

We will need the following fundamental result of Gelfand.
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Lemma 6.2 (Gelfand). Let X be a Banach space, and p : X → [0,∞), a seminorm on X .
Assume p is lower semicontinuous on X , i.e., for each x0 ∈ X and for each ϵ > 0, there exists
δ > 0 such that

p(x)− p(x0) > −ϵ ∥x− x0∥ < δ .

Then there exists C > 0 such that

p(x) ≤ C∥x∥ x ∈ X . (6.2.3)

Proof. Condition (6.2.3) is equivalent to the boundedness of p on the unit ball. Indeed, if
p(y) ≤ C for ∥y∥ < 1 then, taking y = x/∥x∥, we have,

1

∥x∥
p(x) = p(

x

∥x∥
) = p(y) ≤ C ⇒ p(x) ≤ C∥x∥ .

Secondly, we observe that if p were not bounded on the unit ball B(0, 1), then p would not be
bounded on any ball B(x0, δ). Indeed, assume to the contrary that

p(y) ≤ C for y ∈ B(x0, δ) ,

Let ∥x∥ < 1. Then y = x0 + δx ∈ B(x0, δ), and

p(x) = p(
1

δ
(y − x0)) =

1

δ
p(y − x0) ≤

1

δ
(p(y) + p(x0)) ≤

2C

δ
,

a contradiction.
Assume now to the contrary that p is not bounded on the unit ball. Consequently, p is not

bounded on any ball. Choose a point x1 ∈ B(0, 1) such that p(x1) > 1. Lower semicontinuity
of p at x1 implies that there exists a sufficiently small ρ1 such that (choose ϵ = p(x1)− 1)

p(x)− p(x1) > 1− p(x1) x ∈ B(x1, ρ1) ⇒ p(x) > 1 x ∈ B(x1, ρ1) .

We can always assume additionally that B̄(x1, ρ1) ⊂ B(0, 1) and ρ1 < 1
2 . But p is not bounded

on B(x1, ρ1) either, so there exists x2 ∈ B(x1, ρ1) such that p(x2) > 2. Lower semicontinuity
at x2 implies again that there exists ρ2 such that B̄(x2, ρ2) ⊂ B(x1, ρ1), ρ2 <

1
2ρ1 , and

p(x)− p(x2) > 2− p(x2) x ∈ B(x2, ρ2) ⇒ p(x) > 2 x ∈ B(x2, ρ2) ,

and so on. We obtain a sequence of balls

B(1, 0) ⊃⊃ B(x1, ρ1) ⊃⊃ B(x2, ρ2) ⊃⊃ . . . ⊃⊃ B(xn, ρn) ⊃⊃ . . .

such that
p(x) > n x ∈ B(xn, ρn) .

It follows from the construction that

∥x1∥ < 1

∥x2 − x1∥ < ρ1 <
1
2

∥x3 − x2∥ < ρ2 <
1
2ρ1 <

1
22

and, by induction,

∥xn+1 − xn∥ <
1

2n
.
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In turn, for k > 0,

∥xn+k − xn∥ ≤ ∥xn+k − xn+k−1∥+ . . .+ ∥xn+1 − xn∥

≤ 1
2n+k−1 + . . .+ 1

2n = 1
2n

(
1

2k−1 + . . .+ 1
)

≤ 1
2n−1

which implies that xn is Cauchy and, therefore, xn → x, for some x ∈ X . It follows from
the construction that, for every n, x ∈ B̄(xn, ρn) and, therefore, x ∈ B(xn, ρn) as well and,
therefore, p(x) > n for every n which is impossible. QED.

Remark 6.3. Note the boundedness of the seminorm is equivalent to its continuity 17. Indeed, if
p is continuous at 0 then there exists δ > 0 such that

p(x) = p(x)− p(0) ≤ 1 ∥x∥ = ∥x− 0∥ ≤ δ .

Consequently, for any x ̸= 0,

δ

∥x∥
p(x) = p

(
δx

∥x∥

)
≤ 1 ⇒ p(x) ≤ 1

δ
∥x∥ .

Conversely, assuming that p is bounded, we have,

p(x)− p(x0) = p(x0 + x− x0)− p(x0) ≤ p(x0) + p(x− x0)− p(x0) ≤ C∥x− x0∥

and, interchanging x with x0,

p(x0)− p(x) ≤ C∥x0 − x∥ = C∥x− x0∥ .

Consequently, the Gelfand Lemma may be reformulated by stating that any lower semicontinu-
ous seminorm is automatically continuous.

Corollary 6.4. Let pn(x) be a sequence of continuous seminorms defined on a Banach space X .
Assume that, for every x, pn(x) is uniformly bounded in n, i.e., there exists Cx > 0 such that

pn(x) ≤ Cx ∀n . (6.2.4)

Then the pointwise supremum,
p(x) := sup

n
pn(x)

is a bounded seminorm as well.

Proof. Condition (6.2.4) implies that p(x) is well-defined (it is a real number). Passing to the
supremum in the homogeneity and triangle inequality conditions, we verify immediately that p is
a seminorm. In view of Gelfand’s result, it is sufficient to show that p is lower semi-continuous.
Let x0 ∈ X and ϵ > 0. It follows from the definition of supremum that there exists N such that

p(x0)− pN (x0) <
ϵ

2
.

In turn, continuity of pN at x0 implies that there exists δ > 0 such that

|pN (x)− pN (x0)| ≤
ϵ

2
∥x− x0∥ < δ .

17The reasoning is identical with that for linear operators.
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Consequently, for ∥x− x0∥ < δ,

p(x)− p(x0) > sup
n
pn(x)− pN (x0)−

ϵ

2
≥ pN (x)− pN (x0)−

ϵ

2
≥ −ϵ .

QED.

Theorem 6.5 (Bari).
The following five conditions are equivalent to each other.

(i) Sequence ϕj is a Riesz basis.

(ii) Sequence ϕj represents an orthonormal basis in a new inner product norm equivalent to
the original inner product in X .

(iii) Sequence ϕj is complete in X , and there exist positive constants α1, α2 such that

α1

n∑
j=1

|xj |2 ≤ ∥
n∑
j=1

xjϕj∥2 ≤ α2

n∑
j=1

|xj |2 (6.2.5)

for any n > 0, and any sequence of complex numbers xj , j = 1, . . . , n.

(iv) Sequence ϕj is complete in X , and its Gram matrix:

(ϕj , ϕk) j, k = 1, . . . (6.2.6)

represents a bounded invertible operator in ℓ2.

(v) Sequence ϕj is complete in X and it has a complete biorthogonal sequence ψj , and

∞∑
j=1

|(x, ϕj)|2 <∞ and
∞∑
j=1

|(x, ψj)|2 <∞ ∀x ∈ X .

Proof. (i) ⇒ (ii). Let ϕj = Aχj where χj is an orthonormal basis, and A a bounded linear
operator with a bounded inverse. Define the new inner product as

((x, y)) := (A−1x,A−1y) .

Then
((ϕi, ϕj)) = (A−1ϕi, A

−1ϕj) = (χi, χj) = δij .

(ii) ⇒ (iii). Let ((·, ·)) be the inner product in which basis ϕj is orthonormal. By the equiva-
lence of norms, there exist positive constants β1, β2 such that

β1∥
n∑
j=1

xjϕj∥2 ≤ ((

n∑
i=1

xiϕi,

n∑
j=1

xjϕj)) =

n∑
j=1

|xj |2 ≤ β2∥
n∑
j=1

xjϕj∥2

from which the required inequality follows. At the same time, by the equivalence of norms, the
density of span{ϕj , j = 1, . . .} in X in norm ((x, x))

1
2 implies the density in the original norm.

Consequently, ϕj is complete in X .
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(iii) ⇒ (i). Let χj be an arbitrary orthonormal basis for X . We define operators A and A1

defined on the spans of χj’s, and ϕj’s by setting χj into ϕj and vice versa,

A(
∑
j

ajχj) :=
∑
j

ajϕj and A1(
∑
j

ajϕj) :=
∑
j

ajχj .

By (6.2.5),

∥A(
∑
j

ajχj)∥2 = ∥
∑
j

ajϕj∥2 ≤ α2

∑
j

|aj |2 = ∥
∑
j

ajχj∥2

and.
∥A1(

∑
j

ajϕj)∥2 = ∥
∑
j

ajχj∥2 =
∑
j

|aj |2 ≤ α−1
1 ∥

∑
j

ajϕj∥2 ,

As both sequences χj and ϕj are complete, maps A and A1 admit unique continuous extensions
to whole X . Using the continuity argument, we have AA1 = A1A = I . Consequently, ϕj is a
Riesz basis.
(i) ⇒ (iv). Let A be a bounded invertible operator which carries an orthonormal basis χj into
ϕj . As

(A∗Aχj , χk) = (Aχj , Aχk) = (ϕj , ϕk) ,

Gram matrix (6.2.6) is the matrix representation of operator A∗A in the orthonormal basis χj
and, therefore, it represents a bounded invertible operator in the coefficients space ℓ2.
(iv) ⇒ (iii). Let χj be an arbitrary orthonormal basis in X . Define an operator H by:

H(
∑
j

ajχj) :=
∑
j

( ∞∑
k=1

(ϕk, ϕj)ak

)
χj

∑
j

|aj |2 <∞ .

By the isomorphism of bounded invertible operators in X with bounded invertible operators in
the coefficient space ℓ2, the operator H is a bounded, positive and invertible operator in X . We
have,

∥
∑
j

ajϕj∥2 = (H(
∑
j

ajχj),
∑
j

ajχj) = (H
1
2 (
∑
j

ajχj), H
1
2

∑
j

ajχj)

≤ ∥H 1
2 ∥2∥

∑
j

ajχj∥2 = ∥H∥
∑
j

|aj |2 .

By the same token, ∑
j

|aj |2 ≤ ∥H−1∥ ∥
∑
j

ajϕj∥2 .

(i) ⇒ (v). This was proved in the beginning of this section.
(v) ⇒ (i). By Corollary 6.4, the seminorm

p(x) :=

 ∞∑
j=1

|(x, ϕj)|2
 1

2

= sup
n

 n∑
j=1

|(x, ϕj)|2
 1

2

︸ ︷︷ ︸
=:pn(x)

must be bounded, i.e., there exists C1 > 0 such that ∞∑
j=1

|(x, ϕj)|2
 1

2

≤ C1∥x∥ ,
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By the same argument, there exists C2 > 0 such that ∞∑
j=1

|(x, ψj)|2
 1

2

≤ C2∥x∥ ,

Let χj be an arbitrary orthonormal basis in X . Define linear operators A1 and A2 by setting
vectors ϕj and ψj into χj . Let x :=

∑
j ajϕj . Then aj = (x, ψj) and the inequality above

implies
∥A1(

∑
j

ajϕj)∥2 =
∑
j

|aj |2 ≤ C2
2∥
∑
j

ajϕj∥2 .

Similarly,
∥A2(

∑
j

ajψj)∥2 =
∑
j

|aj |2 ≤ C2
1∥
∑
j

ajψj∥2 .

By completeness of ϕj and ψj , the operators A2 and A3 can be extended to continuous operators
defined on the whole X . We have,

(A1(
∑
j

ajϕj), A2(
∑
k

bkψk)) =
∑
j

ajbj = (
∑
j

ajϕj ,
∑
k

bkψk)

and, by completeness,
(A1x,A2y) = (x, y) x, y,∈ X .

Consequently, A∗
2A1 = I and, in particular, A2χj = ϕj . By the same argument, A1χj = ψj .

We thus have,

(A∗
2(
∑
j

ajχj), A
∗
1(
∑
k

bkχk)) = (
∑
j

ajϕj ,
∑
k

bkψk) =
∑
j

ajbj = (
∑
j

ajχj ,
∑
k

bkχk)

and, by completeness again,

(A∗
2x,A

∗
1y) = (x, y) x, y,∈ X .

Consequently, A1A
∗
2 = I which proves that A1 is invertible and has a bounded inverse A−1

1 =
A∗

2. QED.

Permutable bases. A Schauder basis ϕi of X is permutable (unconditional) if every permu-
tation of the basis is a Schauder basis as well. Every orthonormal basis is permutable and every
Riesz basis is permutable as well. It turns out that the permutability is unique for the Riesz bases.

Lemma 6.6 (Orlicz). Let xn, n = 1, . . ., be a sequence of vectors in a Banach space X . Let
n(k), k = 1, . . . be an arbitrary permutation of the indices. Assume that, for each such a
permutations, the corresponding partial sums are uniformly bounded,

∥
m∑
k=1

xn(k)∥ ≤ C .

Then

sup
n,|ϵj |≤1

∥
n∑
j=1

ϵjxj∥ <∞ .
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Proof. Let f ∈ X ′ and n(k) be an arbitrary permutation of the indices. Then

|
m∑
k=1

f(xn(k))| = |f(
m∑
k=1

xn(k))| ≤ ∥f∥ ∥
m∑
k=1

xn(k)∥ ≤ C∥f∥ .

Consequently, the number series above is absolutely convergent (comp. Exercise 6.2.1). By
Corollary 6.4, the convex functional

p(f) :=

∞∑
j=1

|f(xj)|, f ∈ X ′ ,

is continuous, i.e., there exists c > 0 such that

|p(f)| ≤ c∥f∥ .

Consequently, for any |ϵj | ≤ 1,

|f(
n∑
j=1

ϵjxj)| = |
n∑
j=1

ϵjf(xj)| ≤
n∑
j=1

|ϵj | |f(xj)| ≤
∞∑
j=1

|f(xj)| ≤ c∥f∥ ,

as well. By Exercise 6.2.2,

∥
n∑
j=1

ϵjxj∥ = sup
f ̸=0

|f(
∑n
j=1 ϵjxj)|
∥f∥

≤ c .

QED.

Corollary 6.7 (Orlicz). Let xn, n = 1, . . . be a sequence of vectors in a Hilbert space X ,
satisfying the assumptions of Lemma 6.6. Then

∞∑
j=1

∥xj∥2 <∞ .

Proof. For any two vectors x, y ∈ X , we can always choose a number ϵ, |ϵ| = 1, such that

∥x∥2 + ∥y∥2 ≤ ∥x+ ϵy∥2 .

Indeed, expanding,

∥x+ ϵy∥2 = ∥x∥2 + ∥y∥2 + 2ℜ(ϵ̄(x, y)) = ∥x∥2 + ∥y∥2 + 2|(x, y)| ≥ ∥x∥2 + ∥y∥2

for ϵ = (x,y)
|(x,y)| . For three vectors x1, x2, x3, we have then:

∥x1∥2 + ∥x2∥2 + ∥x3∥2 ≤ ∥x1 + ϵ2x2∥2 + ∥x3∥2 ≤ ∥x1 + ϵ2x2 + ϵ3x3∥2

and, by induction,
n∑
j=1

∥xj∥2 ≤ ∥
n∑
j=1

ϵjxj∥2
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where ϵ1 = 1, |ϵj | = 1, j = 1, . . .. The final result follows now from Lemma 6.6. QED.

Theorem 6.8 (Lorch).
A Schauder basis ϕj ∈ X, j = 1, . . . in a Hilbert space X is a Riesz basis iff it is permutable
and almost normalized.

Proof. We need to prove only the sufficiency. For an arbitrary x ∈ X ,

x =

∞∑
j=1

(x, ψj)ϕj

where ψj is the biorthogonal basis to ϕj . By assumption, the series converges for an arbitrary
permutation of indices. By Corollary 6.7 then

∞∑
j=1

|(x, ψj)|2 ∥ϕj∥2 <∞

and, since ϕj is almost normalized,

∞∑
j=1

|(x, ψj)|2 <∞ .

As a basis biorthogonal to a permutable and almost normalized basis is also permutable and
almost normalized, we also have

∞∑
j=1

|(x, ϕj)|2 <∞ .

The conclusion follows now from Theorem 6.5 (v). QED.

Quadratically close sequences of vectors. Sequences of vectors χj and ϕj are said to be
quadratically close if

∞∑
j=1

∥χj − ϕj∥2 <∞ .

ω-linear independence. A sequence of vectors ϕj is ω-linearly independent if the condition

∞∑
j=1

xjϕj = 0

is not possible for components xj such that

0 <

∞∑
j=1

|xj |2 ∥ϕj∥2 <∞ .

This is equivalent to say (comp. Exercise 6.2.3) that ∞∑
j=1

xjϕj = 0 and
∞∑
j=1

|xj |2 ∥ϕj∥2 <∞

 ⇒ xj = 0, j = 1, 2, . . . .
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If sequence ϕj is almost normalized then the condition above is equivalent to

0 <

∞∑
j=1

|xj |2 <∞ ,

i.e., the sequence of components xj is a non-zero element of ℓ2.

Theorem 6.9 (Bari).
Let ϕj ∈ X be a Riesz basis. Let ψj be a ω-linearly independent sequence of vectors which is
quadratically close to basis ϕj . Then ψj is a Riesz basis as well.

Proof. LetA be a bounded linear invertible operator mapping an orthonormal basis χj onto basis
ϕj ,

Aχj = ϕj j = 1, 2, . . . .

Define an operator T by setting Tχj = ϕj − ψj . Equivalently,

T

 ∞∑
j=1

xjχj

 =

∞∑
j=1

xj(ϕj − ψj) where
∞∑
j=1

|xj |2 <∞ .

Operator T is bounded, and

∥T∥2 ≤
∞∑
j=1

∥ϕj − ψj∥2 ,

i.e., T ∈ C2 and, in particular, it is compact.
The ω-linear independence of ψj implies that equation (A − T )x = 0 has only a trivial

solution. Indeed, let

(A− T )x =

∞∑
j=1

xjψj = 0, x =

∞∑
j=1

xjχj ,

∞∑
j=1

|xj |2 <∞ .

As

∥ψj∥ ≤ ∥ψj − ϕj∥+ ∥ϕj∥ ≤ (

∞∑
i=1

∥ψi − ϕi∥2)
1
2 + ∥A∥ .

∞∑
j=1

|xj |2 <∞ ⇒
∞∑
j=1

|xj |2∥ψj∥2 <∞

and, consequently, xj = 0, j = 1, . . . .
By the Fredholm Alternative, operator A − T has thus a bounded inverse, and it sets the

orthonormal basis χj into basis ψj . QED.

Exercises
6.2.1. Unconditional and absolute convergence. Let xn ∈ R, n = 1, 2, . . ., be an arbitrary

sequence.
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(i) Let xn ≥ 0 and
∑∞
n=1 xn <∞. Prove that the series

∞∑
k=1

xn(k)

converges for any bijection: N ∋ k → n(k) ∈ N (permutation of indices) to the
same number.

(ii) Let xn be absolutely convergent, i.e.,
∑∞
n=1 |xn| < ∞. Prove that the permuted

series
∞∑
k=1

xn(k)

converges (to a number), for any permutation n(k).

(iii) Assume now that the series
∞∑
k=1

xn(k)

converges (to a number), for every permutation of indices n(k). Prove that the series
must be absolutely convergent.

(iv) Argue why the equivalence of the unconditional and absolute convergence general-
izes to any finite dimensional vector space including C.

(5 points)
6.2.2. Duality pairing. Let X be a Banach space. Consider the duality pairing:

X ′ ×X ∋ (f, x) → ⟨f, x⟩ := f(x) ∈ R(C) .

By definition,

∥f∥X′ := sup
x∈X

|⟨f, x⟩|
∥x∥X

.

Prove that, in turn,

∥x∥X := sup
f∈X′

|⟨f, x⟩|
∥f∥X′

.

(2 points)
6.2.3. Prove the tautology;

((p ∧ q) ⇒ ∼ r) ⇔ (r ⇒ (∼ p ∨ ∼ q)) ⇔ ((r ∧ p) ⇒ ∼ q)

(1 point)

6.3 Bari Bases
Bari bases. By Theorem 6.9, any ω-linearly independent system of vectors quadratically close
to an orthonormal basis is a Riesz basis. Such bases will be called a Bari bases after Russian
mathematician Nina Bari.

Any permutation of a Bari basis is also a Bari basis. Moreover, if ψj , j = 1, . . . is a Bari
basis then so is the basis of the normalized vectors ψ̂j := ψj/∥ψj∥, j = 1, . . .. Indeed, let ϕj
be an orthormal basis quadratically close to ψj and let ϵj = (ψ̂j , ϕj)/|(ψ̂j , ϕj)|. Then, |ϵj | = 1,
and

∥ψ̂j − ϵjϕj∥2 = 2(1− |(ψ̂j , ϕj)|) ≤ 2(1− |(ψ̂j , ϕj)|2) = 2min
z∈C

∥ϕj − zψj∥2 ≤ 2∥ϕj − ψj∥2 ,
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i.e., the rescaled basis ψ̂j is quadratically close to rescaled (and still orthonormal) basis ϵjϕj .

Lemma 6.10. The following conditions are equivalent to each other.

(i) ψj is a Riesz basis quadratically close to an orthonormal basis χj .

(ii) There exists an operator T ∈ C2 such that

(a) Tχj = ψj − χj , j = 1, . . ., and

(b) I + T is invertible with a bounded inverse.

Proof. (a) ⇒ (b). LetA be a bounded operator that takes basis χj into basis ψj . For T := A−I ,
Tχj = ψj − χj , and ∑

j

∥Tχj∥2 =
∑
j

∥ψj − χj∥2 <∞ ,

i.e. T ∈ C2.
(b) ⇒ (a). It follows that ψj is a Riesz basis quadratically close to χj . QED.

Corollary 6.11. If a basis ψj is quadratically close to an orthonormal basis χj , then its
bioorthogonal basis ϕj is also quadratically close to basis χj . Consequently the bioorthogo-
nal bases ψj , ϕj are also quadratically close to each other.

Proof. Let
(I + T )χj = ψj where T ∈ C2 .

Then
(χk, (I + T ∗)ϕj) = ((I + T )χk, ϕj) = (ψk, ϕj) = δjk j, k = 1, 2, . . .

implies that χj = (I + T ∗)ϕj which, in turn, implies (see Exercise 6.3.2) that

ϕj = (I + T1)χj where T1 = (I + T ∗)−1 − I ∈ C2 .

Finally,
∥ψj − ϕj∥2 ≤ 2

(
∥ψj − χj∥2 + ∥χj − ϕj∥2

)
implies that ψj , ϕj are quadratically close as well. QED.

Let ψj , j = 1, . . . be a sequence of linearly independent vectors. It follows from the positive
definitness of the inner product and the Sylvester criterion that

D(ψ1, . . . , ψn) := det ((ψj , ψk)
n
1 ) > 0 .

If the sequence is normalized then (see Exercise 6.3.3),

D(ψ1, . . . , ψn)

D(ψ1, . . . , ψn−1)
= d2j ≤ ∥ψj∥2 = 1, dj = dist(ψn, span{ψ1, . . . , ψn−1}) ,

so
D(ψ1, . . . , ψn) ≤ D(ψ1, . . . , ψn−1) .

The sequence is thus (weakly) decreasing and, therefore, convergent and,

∆ := lim
n→∞

D(ψ1, . . . , ψn) ≥ 0 .
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The limit ∆ can be interpreted as the square of the volume of the (infinite dimensional) paral-
lelpiped spanned by the unit vectors ψj .

Theorem 6.12. Let ψj ∈ X, j = 1, . . . be a complete sequence of unit vectors. The following
conditions are equivalent to each other,

(i) The sequence is a basis quadratically close to an orthonormal basis, i.e., it is a Bari basis.

(ii) ∆ > 0.

(iii) There exists a sequence ϕj biorthogonal to ψj , and the two sequences are quadratically
close.

Proof. (i) ⇒ (ii). Let ψj be a normalized basis quadratically close to an orthonormal basis, and
let ϕj be the biorthogonal basis. We have already learned that

∞∑
j=1

∥ψj − ϕj∥2 <∞ .

The unit vector ej = ϕj/∥ϕj∥ is orthogonal to

Xj := span{ψj , j = 1, . . . , j ̸= i}

and, therefore, the distance δj from the unit vector ψj to Xj equal to:

δj := (ψj , ej) = ∥ϕj∥−1 0 < δj ≤ 1, j = 1, 2, . . . .

Since ∥ψj − ϕj∥2 = ∥ϕj∥2 − 1 = δ−2
j − 1, it follows that

∞∑
j=1

(1− δ2j ) ≤
∞∑
j=1

1− δ2j
δ2j

=

∞∑
j=1

(δ−2
j − 1) <∞ .

Obviously,
δj ≤ dj = dist(ψj , span{ψ1, . . . , ψj−1}︸ ︷︷ ︸

=:Yj

) .

But d2j = Dj/Dj−1 (see Exercise 6.3.3), so

∞∑
j=1

(
1− Dj

Dj−1

)
<∞ .

But the inequality above is a sufficient and necessary condition for the existence of a positive
limit of the product

lim
n→∞

n∏
i−1

Dj

Dj−1
= lim
n→∞

Dn (D0 = 1 by definition) .

(ii) ⇒ (i). It follows from the lines above that

∞∑
j=1

(1− δ2j ) <∞ .
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It follows from

(1− δj) =
1− δ2j
1 + δj

and 0 ≤ δj ≤ 1

that the series above converges iff the series

∞∑
j=1

(1− δj) <∞ .

Applying the Gram-Schmidt orthonormalization to ψj , we obtain an orthormal sequence χj ,

χj = cj1ψ1 + cj2ψ2 + . . . cjjψj cjj > 0, j = 1, 2, . . . .

Consequently, χj ⊥ Yj−1 and dj = (χj , ψj) = cjj , so

∞∑
j=1

∥χj − ψj∥2 = 2

∞∑
j=1

(1− (χj , ψj)) = 2

∞∑
j=1

(1− dj) <∞ .

It remains to show that vectors ψj are ω-linearly independent. Suppose, to the contrary, that there
exists 0 ̸= {cj} ∈ ℓ2 such that

∑∞
j=1 cjψj = 0. We can always rescale the sequence cj to have

c1 = 1. We have then,

ϵn := ∥ψ1 + c2ψ2 + . . .+ cnψn∥2 → 0 as n→ ∞ .

But (comp. Exercise 6.3.3),

ϵn ≥ min
ξ

∥ψ1 + ξ2ψ2 + . . .+ ξnψn∥2 =
D(ψ1, ψ2, . . . , ψn)

D(ψ2, . . . , ψn)
≥ D(ψ1, ψ2, . . . , ψn)

since, by the Hadamard inequality, D(ψ2, . . . , ψn) ≤ ∥ψ2∥ . . . ∥ψn∥ = 1. Consequently,
limn→∞D(ψ1, . . . , ψn) = 0, a contradiction.
(i) ⇔ (iii). The proof is already contained in the reasoning above. QED.

Lemma 6.13.
Let A be a bounded linear operator with a bounded inverse. If A∗A − I belongs to C2 then so
does the operator (A∗A)

1
2 − I and, for any unitary operator U , the following inequality holds:

∥(A∗A)
1
2 − I∥2 ≤ ∥A− U∥2 .

In the relation above, the equality holds iff U is the unitary operator from the polar decomposi-
tion of A, i.e., U = A(A∗A)−

1
2 .

Proof. Let H := (A∗A)
1
2 − I . We have,

H((A∗A)
1
2 + I) = A∗A− I .

Operator (A∗A)
1
2+I) is bounded below and self-adjoint and, therefore, invertible with a bounded

inverse. Hence, by Exercise 6.3.5, H is a Hilbert-Schmidt operator. Let U1 be the unitary opera-
tor from the polar decomposition of A,

A = U1(A
∗A)

1
2 = U1(I +H) .
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From
A− U = U1(I +H)− U = U1(I +H − U−1

1 U︸ ︷︷ ︸
=:V

)

follows that

∥A− U∥22 = ∥I +H − V ∥22 = sp[(H + I − V ∗)(H + I − V )]

= sp[(H + I − V )(H + I − V ∗)] = spH2 + spC

where
C = 2I + 2H − V − V ∗ −HV ∗ − V H

is a self-adjoint operator from C1. Let χj be a complete eigensystem for H with the correspond-
ing eigenvalues λj . Then,

(Cχj , χj) = 2 + 2λj − 2ℜ(V χj , χj)− 2λjℜ(V χj , χj) = 2(λj + 1)(1−ℜ(V χj , χj)) .

Since
1−ℜ(V χj , χj) ≥ 0 j = 1, 2, . . .

we have sp(C) ≥ 0 and so the relation

∥A− U∥22 ≥ spH2

holds true. The equality holds if ℜ(V χj , χj) = 1, for all j. In view of the fact that |(V χj , χj)| =
1, this implies that actually (V χj , χj) = 1. Hence V = I which implies U1 = U . QED.

Theorem 6.14.
Let ψj ∈ X, j = 1, . . ., be a sequence of vectors complete in X . The following conditions are

equivalent to each other.

(i) The sequence ψj is a Bari basis in X .

(ii) The sequence ψj is ω-linearly independent, and matrix (ψj , ψk)−δjk is of Hilbert-Schmidt
class, i.e.

∞∑
j,k=1

|(ψj , ψk)− δjk|2 <∞ . (6.3.7)

Proof. (i) ⇒ (ii). If ψj is (any Schauder) basis, and
∑∞
j=1 cjψj = 0 (for any sequence cj) then,

by uniqueness of the components with respect to a basis, all cj must be equal zero. The ω-linear
independence condition is thus satisfied trivially. Let χj be an orthonormal basis such that

∞∑
j=1

∥ψj − χj∥2 <∞ ,

and letA be the operator taking χj into ψj . By Theorem 6.9, A is a bounded linear operator with
a bounded inverse, and T := A− I ∈ C2. We have then,

(ψj , ψk)− δjk = (Aχj , Aχk)− (χj , χk) = ((A∗A− I)︸ ︷︷ ︸
=:B

χj , χk)
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and B = (T + I)∗(T + I)− I = T + T ∗ + T ∗T ∈ C2. Consequently,

∞∑
j,k=1

|(ψj , ψk)− δjk|2 =

∞∑
j=1

|Bχj |2 <∞ .

(ii) ⇒ (i). Let χj be an arbitrary othonormal basis in X . Define a linear self-adjoint operator
I +G such that

((I +G)χj , χk) = (ψj , ψk) j, k = 1, . . . .

It follows from condition 6.3.7 that G ∈ C2. Next, define an operator A taking χj into ψj and
extend it by linearity to the span of χj . Then, for any x =

∑n
j=1 xjχj ,

∥Ax∥2 =

n∑
j,k=1

xj x̄k(ψj , ψk) = ((I +G)x, x) ≤ (1 + ∥G∥)∥x∥2 ,

i.e., the operator A is continuous and, by continuity, it can be extended to a continuous operator
with the same norm to the whole X . We will denote the extension with the same symbol A. The
ω-linear independence implies now that I +G is injective. Indeed, if

(I +G)x = 0 where x =

∞∑
j=1

xjχj , {xj} ∈ ℓ2

then

∥Ax∥ = 0 ⇒ Ax =

∞∑
j=1

xjψj = 0 ⇒ xj = 0, j = 1, . . . .

Compactness of G implies then that I +G is invertible with a bounded inverse, i.e., there exists
δ > 0 such that

δ∥x∥2 ≤ ((I +G)x, x) = ∥Ax∥2 .

The density of span of ψj in X (and, therefore, the range of A) implies then that A is invertible
on X with a bounded inverse. Since G = A∗A− I ∈ C2, by Lemma 6.13, (A∗A)

1
2 − I ∈ C2 as

well, and
∥A− U∥2C2

= ∥(A∗A)
1
2 − I∥2C2

<∞ ,

with the unitary operatorU = A(A∗A)−
1
2 . Finally, introducing an orthonormal basis ωj = Uχj ,

we have,
∞∑
j=1

∥ψj − ωj∥2 +
∞∑
j=1

∥(A− U)χj∥2 <∞ .

QED.

Exercises
6.3.1. Let u, v ∈ X be any two elements of a Hilbert space X . Define a function:

f(z) = ∥v − zu∥2 = (v − zu, v − zu) .

Show that
min
z∈C

f(z) = f(z0)
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where

z0 =
(v, u)

∥u∥2

and

f(z0) = ∥v∥2 − |(v, u)|2

∥u∥2
= ∥v∥2 − |(v, û)|2

with û = u/∥u∥. (1 point)
6.3.2. Let T ∈ C2, and T1 := (I + T )−1 − I . Prove that T1 ∈ C2 as well. (5 points)
6.3.3. Prove that

min
ξ

∥ξ1ψ1+ξ2ψ2+. . .+ψn∥2 = dist2(ψn, span{ψ1, . . . , ψn−1}) =
D(ψ1, ψ2, . . . , ψn)

D(ψ1, . . . , ψn−1)
.

(5 points)
6.3.4. Let ψj , j = 1, . . . be a sequence of linearly independent vectors in a Hilbert space X .

Define

D(ψ1, . . . , ψn) := det ((ψi, ψj)
n
1 ) .

Prove the Hadamard inequality:

D(ψ1, . . . , ψn+m) ≤ D(ψ1, . . . , ψn)D(ψn+1, . . . , ψn+m) .

Hint: Proceed in the following steps.

Step 1: Let S be a subspace of X and PS denote the orthogonal projection onto S. Use the
induction in n (Exercise 6.3.3 may be useful) to prove that

D(PSψ1, . . . , PSψn) ≤ D(ψ1, . . . , ψn) .

Step 2: Let M = span{ψ1, . . . , ψn} and let M⊥ be the orthogonal complement of M in
Y := span{ψ1, . . . , ψn, ψn+1, . . . , ψn+m}. Let P : Y → M⊥ denote the orthogo-
nal projection. Prove that

D(ψ1, . . . , ψn, ψn+1, . . . , ψn+m) = D(ψ1, . . . , ψn, Pψn+1, . . . , Pψn+m) .

Step 3: Show that

D(ψ1, . . . , ψn, Pψn+1, . . . , Pψn+m) = D(ψ1, . . . , ψn)D(Pψn+1, . . . , Pψn+m)

and conclude the proof by using Step 1 result.

(10 points)
6.3.5. Let X be a Hilbert space, and A : X → X a Hilbert-Schmidt operator. Let B : X → X

be a continuous operator with a bounded inverse. Prove that the composition AB is a
Hilbert-Schmidt operator as well. (5 points)

6.3.6. (5 points)
6.3.7. (5 points)
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6.4 Glazman’s Criterion for Eigenvectors of a Dissipative
Operator to Form a Basis

Dissipative operators. A linear operator

X ⊃ D(A) ∋ x→ Ax ∈ X

is called dissipative if
ℑ(Ax, x) ≥ 0 x ∈ D(A) .

If A is bounded (and, therefore, defined on the whole X), then

ℑ(Ax, x) = 1

2i
[(Ax, x)− (Ax, x)] = (

1

2i
(A−A∗)x, x) ,

so the condition is equivalent to the semi-positive definitness of 1
2i (A−A∗).

Theorem 6.15 (Glazman).
Let ψj , j = 1, 2, . . ., be a system of unit eigenvectors corresponding to distinct eigenvalues λj
of a dissipative operator such that

∞∑
j, k = 1
j ̸= k

ℑλj ℑλk
|λj − λk|2

<∞ .

Then the system ψj forms a Riesz basis for the closure of its span,

span{ψj , j = 1, 2, . . .} .

Note that the theorem does not provide results on the completeness of the basis forX , we still
need Keldysh’s results for this. The criterion is expressed only in terms of the eigenvalues so, in
principle, we do not need to check any conditions for the eigenvectors. Finally, the eigenvalues
are not assumed to be simple.

In what follows, we will prove a more general result that will cover the Glazman’s Theo-
rem as a special case. Let λj be the system of non-real eigenvalues of a continuous operator
A with a compact imaginary component, with corresponding generalized eigenspaces Xj . By
Theorem ??, the numbers λj are isolated and spaces Xj are finite-dimensional. Recall the Riesz
projectors,

Pk = − 1

2πi

∫
|λ−λk|=rk

(A− λI)−1 dλ k = 1, 2 . . .

where radius rk is sufficiently small so the circle does not contain any of the other eigenvalues.
We have:

PkX = Xk and PkXj = 0 for j ̸= k .

Lemma 6.16. A sequence ψj made up of bases of spaces Xk is ω-linearly independent.

Proof. Let ∑
j

cjψj = 0, {cj}∞1 ∈ ℓ2 .

Then

Pk

∑
j

cjψj

 =

mk+1∑
j=mk+1

cjψj
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where {ψj : j = mk + 1, . . . ,mk+1} is a basis for Xj . Consequently, cj = 0. QED.

Lemma 6.17. Let ψj , j = 1, . . . be a sequence of ω-linearly independent vectors in a Hilbert
space. Then, for any N > 0,

span{ψj}N1︸ ︷︷ ︸
=:XN

⊕ span{ψj}∞N+1︸ ︷︷ ︸
=:YN

= span{ψj}∞1︸ ︷︷ ︸
=:X

.

Proof.

Step 1: (XN + YN ⊂ X). Indeed,

x ∈ XN , yn ∈ YN , yn → y ⇒ x+ yn ∈ X, x+ yn → x+ y ∈ X .

Step 2: The algebraic sum on the left is indeed a direct sum. Suppose to the contrary that we have

0 ̸= x =

N∑
j=1

xjψj ∈ span{ψj}∞N+1 .

Assume xk ̸= 0 for some 1 ≤ k ≤ N . By Step 1 result,

xkψk ∈ span{ψj , 1 ≤ j ≤ N, j ̸= k}+ span{ψj}∞N+1 ⊂ span{ψj , j ∈ N, k ̸= l} .

But this contradicts the ω-linear independence of ψj’s.

Step 3: (XN ⊕ YN ⊃ X). Once we have established that the algebraic sum of the two closed
subspaces on the left is a direct sum, we can introduce a linear (skewed) projection P
projecting the space on the left-hand side onto XN (in the direction of YN ). Let now z ∈
X . There exists thus a sequence zn ∈ X, zn → z. Trivially, zn ∈ XN ⊕YN ⊂ XN ⊕YN .
From the uniqueness of the direct sum decomposition,

zn =

mn∑
j=1

zjnψj =

N∑
j=1

zjnψj︸ ︷︷ ︸
=:xn

+

mn∑
j=N+1

zjnψj︸ ︷︷ ︸
=:yn

,

follows that xn = Pzn. As zn is Cauchy, so must be xn (P is continuous) and, therefore,
xn → x ∈ XN , for some x. Consequently,

x+ yn = x− xn︸ ︷︷ ︸
→0

+xn + yn︸ ︷︷ ︸
=zn→z

→ z

which proves that z ∈ XN + YN .

QED

Theorem 6.18.
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(i) Let A be a linear, continuous and dissipative operator with a compact imaginary compo-
nent. Let λj , j = 1, 2 . . . be the eigenvalues of the operator with corresponding eigenspaces18

Xj , nj = dimXj . If

∞∑
j, k = 1
j ̸= k

min{nj , nk}
ℑλjℑλk
|λj − λk|2

<∞19 , (6.4.8)

then a sequence made up of orthonormal basis for Xj forms a Bari basis for the closure
of its linear span.

(ii) If a weaker condition holds:

∞∑
j, k = 1
j ̸= k

ℑλjℑλk
|λj − λk|2

<∞ , (6.4.9)

then the sequence is a Riesz basis for the closure of its span.

Proof. The strategy in the first case is to show that the Gram matrix is a Hilbert-Schmidt matrix,
i.e., it satisfies (6.3.7), and invoke Theorem 6.14. The strategy for the second case is to show that
the Gram matrix represents a bounded invertible operator in ℓ2, and utilize Theorem 6.5.

Part (i). Let ℑA := 1
2i (A+A∗) be the imaginary part of operatorA. By the Cauchy-Schwarz

inequality,
|(ℑAϕ,ψ)|2 ≤ (ℑAϕ, ϕ) (ℑAψ,ψ) .

Pick unit vectors ϕ ∈ Xj , ψ ∈ Xk. We have,

(ℑAϕ,ψ) = 1

2i
|(Aϕ,ψ)− (ϕ,Aψ)| = 1

2i
(λj − λk)(ϕ, ψ)

and
(ℑAϕ, ϕ) = ℑλj , (ℑAψ,ψ) = ℑλk .

Consequently,

|(ϕ, ψ)|2 ≤ 4
ℑλjℑλk
|λj − λk|2

=: cjk .

Let ϕr, r = 1, . . . , nj , and ψq, q = 1, . . . , nk be orthonormal bases forXj andXk, respectively.
Then for vectors ψ =

∑
q(ϕr, ψq)ψq ∈ Xk, we have:

cjk ≥ |(ψ, ϕr)|2 =

nk∑
q=1

|(ψq, ϕr)|2, r = 1, 2, . . . , nj

and, therefore,
nj∑
r=1

nk∑
q=1

|(ψq, ϕr)|2 ≤ njcjk .

18Not generalized eigenspaces.
19We assume that, if ℑλjℑλk = 0, the corresponding contribution vanishes, even in the case when min{nj , nk} =

∞.
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Interchanging the roles of Xj and Xk, we obtain an analogous inequality with nj and nk
switched. Consequently,

nj∑
r=1

nk∑
q=1

|(ψq, ϕr)|2 ≤ min{nj , nk}
4ℑλjℑλk
|λj − λk|2

.

Let Aij = (ψi, ψj) be the Gram matrix for the sequence of vectors ψj . It follows from the
assumption (6.4.8) that matrix A− I is of Hilbert-Schmidt class. Consequently, by Lemma 6.16
and Theorem 6.14, the first part of the theorem is proved.

Part (ii). Let ϕp, p = 1, . . . , nj , and ψq, q = 1, . . . , nk be again orthonormal bases for Xj

and Xk, respectively. Consider the orthogonal projection Pjk from Xj into Xk. Equivalently,

Pjkϕp =

nk∑
q=1

(ϕp, ψq)ψq p = 1, . . . , nj .

Thus, the Gram matrix

(ϕp, ψq) p = 1, . . . , nj , q = 1, . . . , nk

is the matrix representation of the orthogonal projection map in bases ϕp and ψq . We have,

∥Pjk∥2 = max
∥ϕ∥=1

∥Pjkϕ∥2

= max
∥ϕ∥=1

max
∥ψ∥=1

|(Pjkϕ, ψ)|2

≤ ℑλjℑλk
|λj − λk|2

.

By Exercise 6.4.1, the Gram matrix Aij = (ψi, ψj) corresponding to the union of eigenvectors
ψi generates a discrete operator A : ℓ2 → ℓ2 such that

∥A− I∥2 ≤
∞∑

j, l = 1
j ̸= l

cjl <∞ .

In order to apply Theorem 6.5(iv), we need operator A to have a bounded inverse as well. To
apply the Neumann series argument, we need the sum above to be strictly bounded by one. This
may not be true for the whole series but it is certainly true for its remainder,

∞∑
j, l = N + 1

j ̸= l

cjl < 1 ,

for sufficiently large N . However, by Lemma 6.17,

span{ψj , j = 1, 2, . . .} = span{ψ1, . . . , ψN} ⊕ span{ψj , j = N + 1, . . .} (6.4.10)

and, therefore, it is sufficient to show that ψj , j = N + 1, . . . provide a Riesz basis for the the
closure of its span, for sufficiently large N . QED.
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Exercises
6.4.1. Let x = {xj}∞1 where xj = {xjl}

nj

1 , and y = {yk}∞1 where yk = {ykm}nk
1 . Define

discrete ℓ2 norms:

∥x∥2 =

∞∑
j=1

∥xj∥2 =

∞∑
j=1

nj∑
l=1

|xjl|2, ∥y∥2 =

∞∑
k=1

∥yk∥2 =

∞∑
k=1

nk∑
m=1

|ykm|2 .

Prove the inequality:

sup
∥x∥=1

sup
∥y∥=1

|
∞∑
j=1

nj∑
l=1

∞∑
k=1

nk∑
m=1

Akmjlxjlȳkm| ≤
∞∑
j=1

∞∑
k=1

∥Akj∥2

where Akj : Cnj → Cnk is the map generated by matrix Ak·j·, i.e.

Akjxj = Akj({xjl}) :=
nk∑
m=1

(

nj∑
l=1

Akmjlxjl)em

with em denoting the canonical basis in Cnk .
(5 points)

6.4.2. (5 points)
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