Summary on unit 4(update: 11/21/10)

Sec 10.1-7 Collisions: Interaction over a short time. $\Delta \mathbf{P} = \mathbf{F} \Delta t \approx 0$, $\Delta E = \Delta (K + E_{int}) = W + Q \approx 0$. 3 types: Elastic: $\Delta K=0$. Inelastic: $\Delta K < 0$. Maximally inelastic: stuck together, or $K_{rel} = 0$. Change of internal energy: $E = K + E_{int}$. $\Delta E = 0$ implies $\Delta E_{int} = -\Delta K = -\Delta K_{rel}$ (Verify last step) Changing reference frames. Notations: $\mathbf{p}_1 + \mathbf{p}_2 = \mathbf{p}'_1 + \mathbf{p}'_2$, where $\mathbf{p}'_1 \equiv \mathbf{p}_{1f}$ and $\mathbf{p}'_2 \equiv \mathbf{p}_{2f}$.

- Bowling ball (Bb) hits pingpong ball(Pb) at rest. In lab frame: $Mv_1 + mv_2(0) = Mv'_1 + mv'_2$.
- Bb-frame is where Bb at rest. Velocities in Bb-frame and in lab-frame are related by $V^* = V v_{Bb}$, Pb in Bb-frame $v*_2 = v_2 - v_{Bb} = -v_{Bb}$.
- After elastic bounce, the Bb-frame velocity is: $v_2^{\prime *} = -v_2^* = v_{Bb}$.
- In lab frame: Since in general $V = V^* + v_{Bb}$, final lab-frame Pb velocity is $v'_2 = v'^*_2 + v_{Bb} = 2v_{Bb}$.

What is the sign of v'_1 in elastic collisions where $v_2=0$ in 3 cases: $m_1 < m_2$, $m_1 = m_2$, and $m_1 > m_2$?

Elastic headon collisions for arbitray m_1 , m_2 , v_1 v_2 : $v'_1 = 2v_{cm} - v_1$ and $v'_2 = 2v_{cm} - v_2$. Derive.

Ballistic Pendulum 1d collision: (i) Initial; (A) after collision $m+M$ stuck together $m+M$; (B) block reached final height. Steps to determine v_1 . Geometry: From L, θ to h. From h to K_A . From K_A to v_1 .

(i) to (A): $\Delta P = P_A - P_i$, $P_i = mv_1$, $P_A = (m+M)v_A$. (A) to (B): $\Delta E = \Delta K + \Delta U = 0$. $\Delta E_{int} = 0$, why? Beyond 1d collisions:

Impact parameter b: b decreases, scattering angle increases.

Rutherford scattering: It led to the discovery of nuclei in atoms.

Sec 11.1-9 Angular momentum in rotational motion

Translational rotation: $\mathbf{L} \equiv \mathbf{L}_O = \mathbf{r} \times \mathbf{p} = rpsin\theta \hat{\mathbf{n}} = r_\perp p \hat{\mathbf{n}}$

Angular momentum Principle (AMP) about O (subscript suppressed): $d\mathbf{L}/dt = \vec{\tau}, \vec{\tau} = d(\mathbf{r} \times \mathbf{p})/dt = r_{\perp}F\hat{\mathbf{n}}$.

Planetary motion: $d\mathbf{L}_Q/dt = \mathbf{r} \times \mathbf{F} = 0$, since $\mathbf{F} = -GMm\hat{\mathbf{r}}/r^2$. This implies that $\mathbf{L}_Q = const$.

Kepler's 2nd law:
$$
\frac{\Delta A}{\Delta t} = const.
$$
 $\Delta A = \frac{1}{2}r_{\perp}v\Delta t.$ $\frac{\Delta A}{\Delta t} = \frac{r_{\perp}p}{2m} = \frac{L}{2m}.$

Angular momentum of multiparticle system: $\mathbf{L}_{tot} = \mathbf{L}_{trans} + \mathbf{L}_{rot}$.

Example: A dumbbell has masses $m_1 = m_2 = m$, separated by 2a. Rotational angular velocity: $\omega_1 \hat{\mathbf{n}}$. Assume its cm rotates along $\hat{\mathbf{n}}$, with a uniform velocity along a ciculr arc, where $v_{cm} = r_{cm}\omega_2$. The two angular momenta vectors are $L_{rot} = 2ma^2\omega_1\hat{\mathbf{n}}$ and $\mathbf{L}_{cm} = 2mr_{cm}^2\omega_2\hat{\mathbf{n}}$. Angular momentum of rotation of a rigid body. $\mathbf{L}_{tot,A}\hat{\mathbf{n}} = (\mathbf{L}_{cm,A} + \mathbf{L}_{rot})\hat{\mathbf{n}}$. AMP for rigid body rotation about A. $\frac{d\mathbf{L}_A}{dt} = \frac{d\mathbf{L}_{trans,A}}{dt} + \frac{d\mathbf{L}_{rot}}{dt} = \mathbf{r}_{cm,A} \times \mathbf{F}_{cm} + \tau_{rot} \hat{\mathbf{n}}.$ Boy+MGR: Torque, negligible: $\frac{\Delta L}{\Delta t} \approx 0$. $L_i = amv_i$, $L_f = ma^2\omega_f + I_{MGR} \cdot \omega_f$. Meteorite hits a satellite. Collisions: $\Delta \mathbf{P} = 0$, $\Delta \mathbf{L} = \Delta L \hat{\mathbf{n}} = 0$. Use $\Delta E = 0$ to find ΔE_{int} . Prediction on θ . Linear to rotation: $v = \frac{ds}{dt}$ to $\omega = \frac{d\theta}{dt}$, $p = mv$ to $L = I\omega$, F to τ . AMP for Rigid body rotation: $\Delta L = \tau \Delta t$ leads to $L_f - L_i = \tau \Delta t$, or $\omega_f - \omega_i = \frac{\tau \Delta t}{I}$. Position update: $\theta_f = \theta_i + \omega_{avg} \Delta t$, where for constant F, $\omega_{avg} = \frac{\omega_f + \omega_i}{2}$.