Summary on unit 1 (update: 9/11/10)

Constants: $c=3 \times 10^8 \text{m/s}$, $1u \approx m_p \approx m_n \approx 1.7 \times 10^{-27} \text{kg}$, $G = 6.7 \times 10^{-11} Nm^2/kg^2$. Sec 1.1-1.9. Coord-vector: $\mathbf{r} = \langle x, y, z \rangle = r\hat{\mathbf{r}}$, $r = \sqrt{x^2 + y^2 + z^2}$, $\hat{\mathbf{r}} = \langle \cos\theta_x, \cos\theta_y, \cos\theta_z \rangle$. For 2D case, $r = \sqrt{x^2 + y^2}$, $\hat{\mathbf{r}} = \langle \cos\theta, \sin\theta \rangle = \langle \cos\theta_x, \cos\theta_y \rangle$.

Vectors (Sec. 1.5): Addition, substraction, magnitude of a vector, unit vector, \cdots . Displacement: $\Delta \mathbf{r} = \mathbf{r}_f - \mathbf{r}_i$. (Average velocity) = (Total distance traveled)/(travel time), or $\mathbf{v}_{avg} = \Delta \mathbf{r}/\Delta t = (\mathbf{v}_1 \Delta t_1 + \mathbf{v}_2 \Delta t_2 + \cdots)/(\Delta t_1 + \Delta t_2 + \cdots)$. Position up date: $\mathbf{r}_f = \mathbf{r}_i + \mathbf{v}_{avg} \Delta t$. Instantaneous velocity: $\mathbf{v} = Lim_{\Delta t \to 0}(\Delta \mathbf{r}/\Delta t)$. Instantaneous acceleration: $\mathbf{a} = d\mathbf{v}/dt$.

For constant acceleration, $\mathbf{v}_{avg} = \left(\frac{\mathbf{v}_f + \mathbf{v}_i}{2}\right)$. Otherwise, for sufficiently small Δt , use e.g. $\mathbf{v}_{avg} \sim \mathbf{v}_f$. Momentum: $\mathbf{p} = \gamma m \mathbf{v}, \ \gamma = 1/\sqrt{1 - \beta^2}, \ \beta = |\mathbf{v}|/c$.

- Nonrelativistic approximation(NR): $\gamma \to 1$, $\mathbf{p} = m\mathbf{v}$.
- Identity: $\beta = \beta \gamma / \sqrt{1 + (\beta \gamma)^2}$, where $\beta \gamma = p/cm$. $\beta = v/c = (\Delta s/c)/\Delta t$. $\Delta s = \beta c \Delta t$.

The extended Newton's law of motion: $\mathbf{F} = \Delta \mathbf{p} / \Delta t$.

- If $\mathbf{F} = 0$, $\mathbf{p} = p\hat{\mathbf{p}} = constant$, which is Newton's first law.
- If $\mathbf{F} \neq 0$, for NR case, it leads to $\mathbf{F} = \Delta \mathbf{p}/\Delta t = m\mathbf{a}$, where $\mathbf{a} = \Delta \mathbf{v}/\Delta t$ is acceleration. This is Newton's second law. For the R case, $\mathbf{F} = \Delta \mathbf{p}/\Delta t = (\Delta \gamma/\Delta t) m\mathbf{v} + \gamma m\mathbf{a}$, with $\mathbf{a} = \Delta \mathbf{v}/\Delta t$.

Sec 2.1-2.8, also read 2.9.

Momentum principle: $\Delta \mathbf{p} = \mathbf{p}_f - \mathbf{p}_i = \mathbf{F} \Delta t$

Momentum Principle is given by a vector equation. The equation is valid for each Cartesian component. A special case: 1d, NR and F=constant, or a = F/m = constant.

- From momentum principle: $\Delta \mathbf{p} = F_{net} \Delta t$. With a = F/m, it leads to $v_f = v_i + at$.
- For a constant acceleration case, $v_{avg} = (v_i + v_f)/2$. (Why?)
- Position update: $\Delta s = v_{avg}\Delta t = (v_i + v_f)/2\Delta t$. This leads to $\Delta s = v_i\Delta t + (1/2)a\Delta t^2$. (Derive)

Sec 3.1-3.5. Four kinds of forces(or interactions): Gravitational, electromangetic, strong and weak. Gravitational force: $\mathbf{F} = -\frac{GMm}{r^2}\hat{\mathbf{r}}$. Near surface of earth (with radius R) $F = mg = m\left(\frac{GM}{(R+h)^2}\right) \approx m\left(\frac{GM}{R^2}\right)$. Iterative procedure(3d):

- Begin with the object's momentum and position $(\mathbf{p}_i, \mathbf{r}_i)$, and the force $\mathbf{F}(\mathbf{r}_i)$ at $t = t_i$
- IL, Iterative Loop: Take time step $t_f = t_i + \Delta t$. Apply Momentum principle to update \mathbf{p}_i to \mathbf{p}_f .
- Position update moves the object from \mathbf{r}_i to \mathbf{r}_f .
- Set present $(\mathbf{p}_f, \mathbf{r}_f)$, $\mathbf{F}(\mathbf{r}_i)$, t_f to next step $(\mathbf{p}_i, \mathbf{r}_i)$, $\mathbf{F}(\mathbf{r}_i)$, t_i Go to IL.

Principle of reciprocity (Newton's third law): Force on 2 due to 1 and force on 1 due to 2 satisfies the relationship: $\mathbf{F}_{1 on 2} = -\mathbf{F}_{2 on 1}$.

Spring force(1d): Magnitude satisfies the relationship |F| = k|s|. With sign: F = -ks, $s = L - L_0$. The stretched case has s > 0, leading to attraction. The compressed case has s < 0, leading to repulsion.