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Main issues of interest:

II Solve the eigenvalue problem efficiently [specificity: large number

of eigenvalues]

II Find alternatives [avoid eigenvectors, eigenvalues]

II Solve various related computational problems [TDDFT, computa-

tion of dielectric matrix, ...]
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Challenges in DFT

II DFT leads to a one-electron Shrödinger equation of the form

− h2

2m
∇2 + Vion + VH + Vxc︸ ︷︷ ︸

Vtot

 Ψ(r) = EΨ(r)

• VH = Hartree potential local

• Vxc = Exchange & Correlation potential local (LDA)

• Vion = Ionic potential Non-local

II Electron Density:

ρ(r) = ∑occup
i |Ψi(r)|2

II Above problem can be viewed as a nonlinear eigenvalue problem.
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Initial Guess for v, v = vat

Solve (−1
2
∇2 + v)ψi = εiψi

Calculate new ρ(r) = ∑occ
i |ψi|2

Find new VH: −∇2vH = 4πρ(r)

Find new vxc = f [ρ(r)]

vnew = vion + vH + vxc + Broyden step

If |vnew − v| < tol stop

v = vnew

?

?

?

?

?

?

6

�
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II Most time-consuming part = computing eigenvalues / eigenvectors.

II Difficulty: large number of eigenvalues/eigenvectors to compute

[number of occupied states]. For example, in real space, matrix size

can be N = 1, 000, 000 and the number of eigenvectors could be

2,000.

II Self-consistent loop takes a few iterations (typically 4 to 12)

ITAMIT - Aug. 6th, 2004

6



Standard methods (‘The old’)

II Lanczos method. Basis generated from 3-term recurrence:

βj+1vj+1 = Avj − αjvj − βjvj−1

II Add preconditioning: Davidson.

vj+1 = M−1
j (Auj − θjuj); [uj, θj] = current eigenpair

II Add implicit restart – clever way of restarting Lanczos process.

II Software. Best-known code = ARPACK
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Issues

Preconditioning

II No clear-cut convincing approach for large numbers of eigenvalues.

II Simplest method: filtering by averaging..

Orthogonalization

II Becomes problematic for large number of eigenvalues -

II Idea of spectrum sclicing may be attractive but hard to implement

The outer loop

II Each self consistent loop should utilize previous information when

starting – not easy to do with standard packages such as ARPACK
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Current work on eigenvalue algorithms (‘The new’)

Focus:

(1) AMLS and related methods

(2) Block versions of restarted Lanczos

Motivation:

(1) Excellent success of AMLS in structural engineering.

Similarity: large number of eigenvectors to compute

(2) Standard packages (ARPACK) do not easily take advan-

tage of self-consistent loop. Also: not specialized for large

number of eigenvalues.
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Block-Lanczos – advantages

II Basic principle of the Block Lanczos algorithm: operate on block of

b columns instead of only one column as in standard Lanczos.

Advantages:

II Can exploit a block of several initial guesses of eigenvectors

II Deals well with clustered or multiple (’degenerate’) eigenvalues

II Can yield better cache performance (BLAS 3 instead of BLAS 2)

Issues:

II How to implement implicit restarts?

II Important to dynamically adapt block size
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Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let A ∈ Cn×n, Hermitian

�

�1 �2

→ A =


B E

E∗ C

 B ∈ C(n−p)×(n−p)

Note: B is block-diagonal

Main Reference:

J. K. Bennighof and R. B. Lehoucq, An automated multilevel sub-

structuring method for eigenspace computation in linear elastodynam-

ics, To appear in SIAM. J. Sci. Comput.
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Basic idea of the method for two levels

First step: eliminate the blocks E,E∗.

U =


I −B−1E

0 I

 → U∗AU =


B 0

0 S

 ; S = C − E∗B−1E.

Original problem is equivalent to U∗AUu = λU∗Uu →
B 0

0 S

 u = λ


I −B−1E

−E∗B−1 MS

 u ;MS = I + E∗B−2E

Second step: neglect the coupling in right-hand side matrix:

Bv = µ v

Sw = η MSw.

II Compute a few of the smallest engenvalues of the above problem.
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Third step: Build a ’good’ subspace to approximate to eigenfunc-

tions of original problem. The basis used for this projection is of the

form v̂i =
vi
0

 i = 1, . . . ,mB; ŵj =


0

wj

 j = 1, . . . ,mS

 ,

where mB < (n− p) and mS < p.

Then use this subspace for a Rayleigh-Ritz projection applied to
B 0

0 S



uB

uS

 = λ


I −B−1E

−E∗B−1 MS



uB

uS


(Note: not the original problem.)

Final step: exploit recursion –

NOTE: algorithm does only one shot of descent - ascent (no iterative

improvement).
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Issues investigated

II AMLS is a one shot algorithm - accuracy unlikely to be sufficient

for electronic structure calculations. Problem: develop an improved

version.

II AMLS can be viewed as Domain-Decomposition applied to shift-

and-invert – with one shift at zero. Problem: develop a multi-shift

version.

II Example: use AMLS with shift σ – obtain approximate eigenvectors

(one shot ‘descend and ascend’). Keep in basis. Change σ, add new

eigenvectors to basis, etc..
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Avoiding the eigenvalue problem

Recall: Density matrix,

ρ(r, r′) =
∑
j
f(Ej)Ψj(r)Ψj(r′) withf(λ) = occupancy factor

≡ f(H)

Main observation: Charge density ρ can be viewed as the diagonal

of the density matrix: When ψj(r) is discretized w.r.t. r then

ρ(ri, ri) ≡ ρii, the diagonal entry of ρ(r, r′), is the charge density

at location ri. Standard methods compute this by computing explicitly

the eigenfunctions. II Any orthogonal basis of the same space can be

used. Is the eigenbasis an overkill?

II ‘Order n methods’ find approximations to ρ(r, r′) by exploiting its

decay properties
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Previous work - Use of Chebychev polynomials (‘the old’)

Main idea: Call H the original Hamiltonian matrix. Then

P = f(H)

where f(t) is the Heaviside function:

6

-
λocc λmax

1

II Replace f by a polynomial using Chebyshev expansions.

II This is now done in the planewave space not real space.
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II P is approximated by pm(H)X where X is a matrix of size n× p

[e.g., 1st p columns of identity]

II Exploit recurrence relations of Chebyshev polynomials and near

bandedness of P in planewave basis

II Test : with (Crystalline

silicon) [See L. Jay et al. 1998]

II Times scale like n2 logn

II Cost is still high but : (1)

can avoid eigenvectors com-

pletely, and (2) can still iterate

to self-consistency
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Current Approaches (‘the new’)

P = f(H)

where f is a step function. Approximate f by, e.g., a polynomial

II Result: can obtain columns of P inexpensively via:

Pej ≈ pk(H)ej

II Exploit sparsity of P (especially in planewave basis)- ideas of “prob-

ing” allow to compute several columns of P at once.

II Statistical approach: work of Hutchinson for estimating trace of a

matrix [used in image processing] adapted to estimating diagonals.

II Many variants currently being investigated
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Example 1 : Statistical approach

II Let a sequence of random vectors v1, . . . , vs with entries satisfying

a normal distribution. Diagonal of a matrix B can be approximated by

Ds =
 s∑
k=1

vk �Bvk
 �

 s∑
k=1

vk � vk


in which � is a componentwise product of vectors, and similarly �

represents a componentwise division of vectors.

II Deterministic approach: For a banded matrix (bandwidth p), there

exists p vectors such the above formula yields the exact diagonal.

II These methods would require computing pk(H)v for several v’s.

Generally: method is expensive unless bandwith is small.
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Example 2 : Sparsifying the density matrix in PW basis

II Recall P = f(H) = {ρ(r, r′)}

II Consider the expression in the G-basis

II Most entries are small –

II Idea: use technique of “probing” or “CPR” or “Sparse Jacobian”

estimators ....
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Probing in action: blue columns can be computed at once by one

matrix-vector product. Then red columns can be coumputed the same

way
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Density matrix for Si64
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TIME DEPENDENT DFT
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TDLDA: Use of planewave bases and FFT

Recall :

Kij,kl =
∫
Ω

Ψi(r)Ψ̄j(r)
dVxc(r)

dρ(r)
+ Φij(r)

 Ψk(r)Ψ̄l(r)dr.

With 4Φij(r) = −4πΨiΨ̄j(r).

ij

kl

One Poisson solve for every ij
One Integration for every kl

ijK[  ,   ]kl

Coupling Matrix K

27



II Previous work [our group] : work in real space + use CG to solve

Poisson’s equation.

II Real space approach does not exploit specific features of the physics

when solving Poisson’s equation.

II Idea is to use FFTs: (In essence: Use “fast Poisson solvers”)

II Expand each wavefunction in planewave basis:

Ψj(r) =
∑
l
ψjl exp i(l.r) → Φij(r) = 4π

∑
(l,l′)l6=l′

ψil ψ̄
j
l′

‖l − l′‖2
ei(l−l′).r.

II Many improvements can now be made. For example, in practice

meaningful ’support’ of ψiψj is small

F(ΨiΨ̄j)(k) =
∑
r
eik.r(ΨiΨ̄j)(r) =

∑
r ∈ Supp(ΨiΨ̄j)

eik.r(ΨiΨ̄j)(r).
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Results

II Compare Real space code with planewave code for Si34H36
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II Compare times for Real space code and planewave code [for Si34H36]

Method Wall-Clock Time (hours)

Real Space Code 15:30

PW: Initial Implementation 3:30

PW: Optimized load balancing 2:30

Wall-clock time of the parallel TDLDA code using Fourier space and

Real Space for the Si34H36 test case running on 8 processors

Note: Gain a factor of 5-6 wrt to optimized version of TDLDA code.

Compound with another factor of 3-4 from original to optimized real-

space code → 15 to 24 faster than [Vasiliev et al. 2000]

II More to come!
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Specific Plans (TDDFT)

II 1. Optimize PW-based code – more opportunities for improvements;

II 2. Develop an efficient library for TDDFT

II 3. Do a large challenging new calculation;

II 4. In TDLDA, is it possible to better exploit the special nature of

right-hand sides in Poisson’s equation:

∇2Φijσ(r) = −4πψiσ(r)ψjσ(r).
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More general plans

II 1. Most costly computation currently is still: the eigenvalue prob-

lem. Q: Can the success of AMLS [Automatic Multi-Level Substrutut-

ing] be extended from structural engineering to electronic structures

calculations..

II 2. Challenge number 1 is: Can we avoid eigenvalue calculations

altogether and still get good accuracy? [at lower cost?]
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