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Main issues of interest: |

w Solve the eigenvalue problem efficiently [specificity: large number

of eigenvalues]

w Find alternatives [avoid eigenvectors, eigenvalues]

w Solve various related computational problems [TDDFT, computa-

tion of dielectric matrix, ...]

ITAMIT - Aug. 6th, 2004




Challenges in DFT

w DFT leads to a one-electron Shrodinger equation of the form

_zh,,iv2 + Vion + Va + Vae \Il(r) — E\Il(r)

Viot
e Vg = Hartree potential local
e V.. = Exchange & Correlation potential local (LDA)
e V,,, = lonic potential Non-local

w Electron Density:
p(r) =70 |[Wi(r)|?

w Above problem can be viewed as a nonlinear eigenvalue problem.
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Initial Guess for v, v = v

|

Solve (—;V? + v)y); = €9

|

Calculate new p(r) = 59 |;

|

Find new Vg: —V?vg = 47p(r)

|

Find new v,. = f[p(r)]

|

Vnew = Vion + VH + Ve + Broyden step

|

If |vpew — v| < tol stop

|2

UV — VUnew
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w Most time-consuming part = computing eigenvalues / eigenvectors.

w- Difficulty: large number of eigenvalues/eigenvectors to compute
[number of occupied states]. For example, in real space, matrix size

can be N = 1,000,000 and the number of eigenvectors could be
2,000.

w Self-consistent loop takes a few iterations (typically 4 to 12)
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Standard methods (‘The old’)

w Lanczos method. Basis generated from 3-term recurrence:
Bj+1vjt1 = Avj — ajvj — Bivjy

w Add preconditioning: Davidson.

vjt1 = M (Au; — 0ju;);  [uy, 0;] = current eigenpair
w Add implicit restart — clever way of restarting Lanczos process.

» Software. Best-known code = ARPACK
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Issues

Preconditioning |

»w No clear-cut convincing approach for large numbers of eigenvalues.

w Simplest method: filtering by averaging..

Orthogonalization |

» Becomes problematic for large number of eigenvalues -

w ldea of spectrum sclicing may be attractive but hard to implement

The outer loop |

w Each self consistent loop should utilize previous information when

starting — not easy to do with standard packages such as ARPACK
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Current work on eigenvalue algorithms (‘The new’)

Focus: I

(1) AMLS and related methods

(2) Block versions of restarted Lanczos

Motivation: I

(1) Excellent success of AMLS in structural engineering.

Similarity: large number of eigenvectors to compute

(2) Standard packages (ARPACK) do not easily take advan-
tage of self-consistent loop. Also: not specialized for large

number of eigenvalues.
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Block-Lanczos — advantages

w Basic principle of the Block Lanczos algorithm: operate on block of

b columns instead of only one column as in standard Lanczos.
Advantages:

w Can exploit a block of several initial guesses of eigenvectors

w Deals well with clustered or multiple ('degenerate’) eigenvalues
w Can yield better cache performance (BLAS 3 instead of BLAS 2)
Issues:

» How to implement implicit restarts?

» Important to dynamically adapt block size
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Automatic Multi-Level Substructuring

Origin: Extention of substructuring for eigenvalue problems.

Background: Domain decomposition. Let A € C™*", Hermitian

B FE
E* C
Note: B is block-diagonal

A= ( ) B ¢ ¢(n—p)x(n—p)

Main Reference:

J. K. BENNIGHOF AND R. B. LEHOUCQ, An automated multilevel sub-
structuring method for eigenspace computation in linear elastodynam-

ics, To appear in SIAM. J. Sci. Comput.



Basic idea of the method for two levels

First step: | eliminate the blocks E, E*.

I —B'E
v - |
0 I

B 0

)—>U*AU=(
0O S

) . §=C—-E*B'E.

Original problem is equivalent to U*AUu = A\U*Uu —

B 0 I —B'E
u:)\( )u;M5:I+E*B‘2E
0 S —E*B™' Mg

Second step: | neglect the coupling in right-hand side matrix:

Bv = pov

Sw = n Mgw.
w Compute a few of the smallest engenvalues of the above problem.
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Third step: | Build a 'good’ subspace to approximate to eigenfunc-

tions of original problem. The basis used for this projection is of the

form

. vi\ . . 0 :
fvz-:(O) 1=1,...,mp; w; = 17=1,...,mg;,

where mp < (n — p) and mg < p.

Then use this subspace for a Rayleigh-Ritz projection applied to

P [ e AP (b

(Note: not the original problem.)

Final step: | exploit recursion —

NOTE: algorithm does only one shot of descent - ascent (no iterative

improvement).
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Issues investigated

w AMLS is a one shot algorithm - accuracy unlikely to be sufficient
for electronic structure calculations. Problem: develop an improved

version.

w AMLS can be viewed as Domain-Decomposition applied to shift-
and-invert — with one shift at zero. Problem: develop a multi-shift

version.

w Example: use AMLS with shift o — obtain approximate eigenvectors
(one shot ‘descend and ascend’). Keep in basis. Change o, add new

eigenvectors to basis, etc..
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Avoiding the eigenvalue problem

Recall: Density matrix,

p(r,r") = = f(E;)P;(r)¥;(r’) withf(\) = occupancy factor
J
f(H)

Main observation: Charge density p can be viewed as the diagonal

of the density matrix: When ;(r) is discretized w.r.t. 7 then
p(ri, ;) = pii, the diagonal entry of p(r,r’), is the charge density
at location r;. Standard methods compute this by computing explicitly
the eigenfunctions. » Any orthogonal basis of the same space can be

used. Is the eigenbasis an overkill?

w ‘Order n methods’ find approximations to p(r, ") by exploiting its

decay properties
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Previous work - Use of Chebychev polynomials (‘the old’)

Main idea: Call H the original Hamiltonian matrix. Then

P = f(H)

where f(t) is the Heaviside function:

AOCC | A’I’I’I,CLCE
‘ >

» Replace f by a polynomial using Chebyshev expansions.

w This is now done in the planewave space not real space.
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1.4 Y T Y

12 k Chebyshev-Jackson
' Chebyshev

———.MQ i

M = 256

_02 [ | [ | [ |
-1.0 -0.5 0.0 0.5 1.0

Chebyshev and Jackson polynomials of degree 64, 128, and 258

[Jackson expansions are modifications of the least-squares Chebyshev

expansions that avoid Gibbs oscillations.]
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w P is approximated by p,,(H)X where X is a matrix of size n X p

[e.g., 1st p columns of identity]

w Exploit recurrence relations of Chebyshev polynomials and near

bandedness of P in planewave basis

w Test : with (Crystalline
silicon) [See L. Jay et al. 1998]
w Times scale like n?logn

w Cost is still high but : (1)
can avoid eigenvectors com-
pletely, and (2) can still iterate

to self-consistency

CPU Time (Sec)

le+05 :
le+04 ;
le+03 ;
le+02 ;
le+01 ;

1e+00

10 100
Number of Atoms, N
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Current Approaches (‘the new’)
P = f(H)
where f is a step function. Approximate f by, e.g., a polynomial

» Result: can obtain columns of P inexpensively via:

Pej ~ pk(H)GJ

w Exploit sparsity of P (especially in planewave basis)- ideas of “prob-

ing”’ allow to compute several columns of P at once.

w Statistical approach: work of Hutchinson for estimating trace of a

matrix [used in image processing] adapted to estimating diagonals.

»w Many variants currently being investigated
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Example 1 : Statistical approach

w Let a sequence of random vectors v!,...,v* with entries satisfying

a normal distribution. Diagonal of a matrix B can be approximated by

i v* © Bv"
k=1

D* =

©

S

> v* @ "
k=1
in which ® is a componentwise product of vectors, and similarly ©

represents a componentwise division of vectors.

w Deterministic approach: For a banded matrix (bandwidth p), there

exists p vectors such the above formula yields the exact diagonal.

w These methods would require computing pi(H )v for several v’s.

Generally: method is expensive unless bandwith is small.
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Example 2 : Sparsifying the density matrix in PW basis

w Recall P = f(H) = {p(r,r")}
w Consider the expression in the G-basis
» Most entries are small —

w ldea: use technique of “probing” or “CPR” or “Sparse Jacobian”

estimators ....
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Probing in action:

(1)
(3)

1 )
(12)

1| a3
(15)

1| 0

blue columns can be computed at once by one

matrix-vector product. Then red columns can be coumputed the same

way
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Density matrix for Si64 |
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TIME DEPENDENT DFT




With A(I)ZJ(I') = —47T\Ifi\I1j(I').

.

Klij,k1]

One Poisson solve for every ij
One Integration for every kl

Coupling Matrix K



w Previous work [our group] : work in real space + use CG to solve

Poisson’s equation.

» Real space approach does not exploit specific features of the physics

when solving Poisson’s equation.
w Idea is to use FFTs: (In essence: Use “fast Poisson solvers”)

w Expand each wavefunction in planewave basis:

L Vil oy
U.(r) = Y o 1. ®d,.(r) = 4 d(1=1).r
J(r) 21:¢1 esz( I‘) 7 J(r) T (1,1,)%#1, ||l _ 1/“26

» Many improvements can now be made. For example, in practice
meaningful 'support’ of 1;1; is small
F(0:9;) (k) = L e (9;¥;)(r) = > e (PP (r).
r r € Supp(¥;¥,)
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Results

w Compare Real space code with planewave code for S:34H 36
35 T T T T

- - LDA
— — Real space
! —— Fourier space

- N [\ w
(6] o (3] o
T T T T

Photoabsorbtion cross section (A2)
o

Energy (eV)
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w Compare times for Real space code and planewave code [for S:34 H 36]

Method Wall-Clock Time (hours)
Real Space Code 15:30
PW: Initial Implementation 3:30
PW: Optimized load balancing 2:30

Wall-clock time of the parallel TDLDA code using Fourier space and

Real Space for the Si34H36 test case running on 8 processors

Note: I Gain a factor of 5-6 wrt to optimized version of TDLDA code.

Compound with another factor of 3-4 from original to optimized real-

space code — 15 to 24 faster than [Vasiliev et al. 2000]

» More to comel
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Specific Plans (TDDFT)

w 1. Optimize PW-based code — more opportunities for improvements;
w 2. Develop an efficient library for TDDFT
w 3. Do a large challenging new calculation;

w 4. In TDLDA, is it possible to better exploit the special nature of

right-hand sides in Poisson’s equation:

V2®,i5(r) = —4mihin (r)Yo(r).
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More general plans

w 1. Most costly computation currently is still: the eigenvalue prob-
lem. Q: Can the success of AMLS [Automatic Multi-Level Substrutut-
ing] be extended from structural engineering to electronic structures

calculations..

w 2. Challenge number 1 is: Can we avoid eigenvalue calculations

altogether and still get good accuracy? [at lower cost?]
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