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Abstract

We present a real space method for electronic structure calculations of periodic systems. Our

method is based on self-consistent solution of the Kohn-Sham equations on a uniform three-

dimensional grid. A higher-order finite difference method is combined with ab initio pseudopo-

tentials. The kinetic energy operator, the non-local term of the ionic pseudopotential and the

Hartree and exchange-correlation potentials are set up directly on the real-space grid. The local

contribution to the ionic pseudopotential is initially obtained in reciprocal space and is then trans-

ferred to the real-space grid by Fourier transform. Our method enjoys the main advantages of

real-space grid techniques over traditional plane wave representations for density-functional calcu-

lations, i.e. improved scaling and easier implementation on parallel computers. We illustrate the

method by application to liquid silicon.
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I. INTRODUCTION

Calculating the ionic and electronic structures of materials from first principles remains

a formidable task. Although the Hohenberg-Kohn-Sham density-functional theory (DFT)1,2

enormously simplifies the problem, the size of systems susceptible to current quantum com-

putation methods is limited. As such, the development of efficient DFT-based methods is

crucial for solving large-scale problems in condensed matter physics.

Plane wave pseudopotential methods have been widely used for electronic structure

calculations.3 Pseudopotential theory allows one to focus on the chemically active valence

electrons by replacing the strong all-electron atomic potential by a weak pseudopotential

which effectively reproduces the effects of the core electrons on the valence states. This

approximation significantly reduces the number of eigen pairs to be handled, especially for

heavier elements. Moreover, since the core wave functions and the core oscillatory region

of the valence wave functions are removed, the use of simple basis functions such as plane

waves is straightforward. Representing the electronic wave functions with respect to a plane

wave basis offers a number of advantages, including 1) that the basis does not depend on

atomic positions; 2) that only one parameter, the wavelength of the highest Fourier mode

used in the expansion, need be refined to control convergence; and 3) that matrix-vector

multiplication between the Hamiltonian matrix and the trial wave vectors, which is the

crucial computational step in modern pseudopotential codes, can be efficiently performed

using the fast Fourier transform (FFT), which improves scaling from the “standard” N3
a to

N2
a lnNa (where Na is the number of atoms involved in the calculations).

Also, plane waves have both “physical” and computational drawbacks. In a plane wave

representation the boundary conditions must be periodic. If one wants to study a nonperiodic

system such as a molecule or a cluster, nontrivial precautions must be taken to reproduce the

vacuum accurately, since spurious interactions between replicated images of the system must

be avoided. A periodic representation also complicates the study of charged systems: the

periodicity makes the system infinitely charged, so that an artificial uniform compensating

charge must be inserted (and subtracted) in order to prevent divergence of the total energy.

Furthermore, since FFTs involve nonlocal operations, the efficiency of their implementation

on parallel computer architectures is diminished by the need for global communications

among processors.
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During the last decade there has been increasing interest in developing real-space pseu-

dopotential methods.4 Such methods have a number of points in their favor. Firstly, im-

plementation of these approaches is simple: there is no “formal” basis, calculations being

performed directly on a real-space grid that does not depend on ion positions. The spacing

of the grid is refined until the calculation converges; the grid spacing plays the role of the

cutoff energy in the plane wave approach. Secondly, since the Hamiltonian matrix is sparse,

quadratic scaling of matrix-vector multiplication is attainable. Thirdly, there is no need to

introduce artificial periodicity in dealing with nonperiodic systems. Finally, real-space meth-

ods are inherently local, which facilitates implementation on parallel computers. In short,

real-space methods not only share the main advantages of plane wave representations, but

they can also have improved scaling and they can be easily parallelized, which makes them

highly attractive for computation of the electronic ground states of large, complex systems.

Although one of the advantages of real-space methods is their application to localized

systems, there is no reason to limit their use to such systems. Here we present a real-space

pseudopotential method for calculation of the electronic properties of periodic systems. Our

method can be considered as an extension of the real-space method developed by our group

for the study of isolated systems.5 In Section II below we describe the main characteristics

of the new method, in Section III we illustrate its performance by presenting the results of

its use in a molecular dynamics (MD) simulation of liquid silicon (as far as we know, this is

the first ab initio MD simulation of a liquid to have employed a real-space technique), and

in Section IV we summarize our main conclusions.

II. DESCRIPTION OF THE METHOD

According to DFT,1,2 the total energy Etot of a system comprising electrons and ions (the

latter in positions {Ra}) can be written as a unique functional of the electron density ρ:

Etot[ρ] = T [ρ] + Eion({Ra}, [ρ]) + EH [ρ] + Exc[ρ] + Eion−ion({Ra}) , (1)

where T [ρ] is the kinetic energy, Eion(Ra, [ρ]) is the electron-ion energy, EH [ρ] is the electron-

electron Coulomb energy or Hartree potential energy, Exc[ρ] is the exchange-correlation

energy, and Eion−ion(Ra) is the classical electrostatic energy among the ions. Finding the

electron density that minimizes the energy functional is equivalent to solving the set of
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one-particle Schrödinger (Kohn-Sham) equations[
−∇

2

2
+ Vion(r) + VH(r) + Vxc(r)

]
ψn(r) = εnψn(r) (2)

and setting

ρ(r) =
∑
n

|ψn(r)|2 , (3)

where the sum runs over the occupied states. Vion and VH are the ionic and Hartree po-

tentials, respectively; Vxc = δExc/δρ. Here and in the rest of the text we use atomic units

(e = m = h̄ = 1) unless otherwise stated. Solving Eqs. 2 and 3 requires finding a self-

consistent solution for the charge density, and constitutes the most computationally intensive

part of the electronic structure calculation.

Molecular Dynamics simulations and the extraction of dynamical properties therefrom

require accurate calculation of the ionic forces {Fa}. If the system has been brought to the

Born-Oppenheimer surface (i.e. if the single-particle wave functions are very close to the

exact eigenstates), the forces can be calculated from the Hellmann-Feynman theorem6:

Fa = −∂Etot

∂Ra

(4)

A. Solving the Kohn-Sham equations

We represent wave functions, the electron density and potentials on a uniform orthogonal

three-dimensional real-space grid. For simplicity, we assume the grid to be cubic, but the

extension to a general orthorhombic grid is straightforward. In order to construct the grid,

only two parameters need be specified: the grid spacing h (the distance between adjacent

points in each of the three Cartesian directions) and the size L of the unit cell or supercell

described by the cubic grid. The points of the grid are then described in a finite domain by

(xi, yj, zk), with the integers i, j and k having values from 1 to Ngrid = L/h. The system is

made periodic by replicating the unit cell and the atoms it contains (the basis) throughout

space. We assume that all the atoms belong to the same species.

In order to model Eq. 2 on a real-space grid, we use a higher-order finite difference

expansion7 for the Laplacian operator. We approximate the partial derivatives of the wave

function at a given point of the grid by a weighted sum over its values at that and neighboring

points.
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In each iteration of the algorithm for self-consistent solution of the Kohn-Sham equations,

the Hartree and exchange-correlation potentials are set up directly on the real-space grid

using the approximation to the electron density obtained in the previous iteration. For Vxc

we use the local density approximation, according to which the value of Vxc at a given point

is a function of the electron density at that point. To construct VH , we solve the Poisson

equation [∇2VH(r) = −4πρ(r)] using the matrix formalism corresponding to the higher-order

finite difference method,5 first setting the total charge in the supercell to zero in order to

prevent the system from becoming infinitely charged due to the required periodicity.

The remaining potential term in Eq. 2, the ionic term, is determined using pseudopotential

theory. We employ nonlocal norm-conserving ionic pseudopotentials cast in the Kleinman-

Bylander form.8 The ionic contribution due to one atom of the system, V a
ion, is obtained

as the sum of a local term and a nonlocal term, the latter corresponding to an angular-

momentum-dependent projection.5,8 Its effect on the wave function in Eq. 2 is

V a
ion(r)ψn(r) = Vloc(ra)ψn(r) +

∑
lm

Ga
n,lmulm(ra)∆Vl(ra) , (5)

where ra = r − Ra; ulm is the atomic pseudopotential wave function corresponding to the

angular momentum quantum numbers l and m; ∆Vl = Vl − Vloc is the difference between

Vl (the l component of the ionic pseudopotential) and the local potential Vloc; and the

projection coefficients Ga
n,lm given by

Ga
n,lm =

1

〈∆V a
lm〉

∫
ulm(ra)∆Vl(ra)ψn(r)d3r (6)

include the normalization factor

〈∆V a
lm〉 =

∫
ulm(ra)∆Vl(ra)ulm(ra)d

3r . (7)

The local and nonlocal terms in Eq. 5 must in principle be evaluated and accumulated

for all the atoms in the system, i.e. for both the atoms in the basis and their periodic

images. However, the summation of nonlocal terms is actually limited to the basis, because

at distances greater than the pseudopotential core radius (a fraction of a bond length) Vl

is −Z/r for all l, where Z is the number of electrons acting as valence electrons in the

pseudopotential;9 this makes ∆Vl short-ranged, so that the nonlocal terms need only be

evaluated for atoms belonging to the basis. Furthermore, the integrals in Eqs. 6 and 7 can

be efficiently calculated in real space by direct summation over the grid points surrounding

each atom.
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The situation is different for the local contribution to the ionic potential, which involves a

divergent summation of the long-range Coulomb term −Z/r. However, this divergence can

be avoided by making use of the fact that the pseudopotentials are short-ranged functions in

reciprocal space.9 The local ionic potential, Vion,loc, can be calculated efficiently in reciprocal

space and transferred to the real-space grid by an FFT. We obtain the local ionic potential

in reciprocal space as in a plane wave calculation with an energy cutoff of π2/2h2, the cutoff

for which FFTs of the wave functions and potentials require a grid of size N3
grid.

10 We first

calculate the structure factor Sion(q) at wave vector q = (2π/L)(nx, ny, nz) (where nx, ny

and nz are integers):

Sion(q) =
∑
a

exp (iq ·Ra) , (8)

where the sum is taken over the positions of all the atoms in a single unit cell.11 Vion,loc is

then calculated as

Vion,loc(q) =
1

L3
Sion(q)Vloc(q) (9)

and transferred to the real-space grid by FFT. Note that we need to perform this trans-

formation once, just before we enter the loop for self-consistent solution of the Kohn-Sham

equations; since the local ionic potential is determined by the positions of the ions, it does

not change during the process of finding a self-consistent solution for ρ.

When discretized as above, Eq. 2 adopts the form

−1

2

 N∑
n1=−N

Cn1ψn(xi + n1h, yj, zk) +
N∑

n2=−N

Cn2ψn(xi, yj + n2h, zk) +
N∑

n3=−N

Cn3ψn(xi, yj, zk + n3h)

 +

[Vion(xi, yj, zk) + VH(xi, yj, zk) + Vxc(xi, yj, zk)]ψn(xi, yj, zk) = εnψn(xi, yj, zk) . (10)

N is the order of the finite difference expansion. Typically, we use N=6. Since ∆Vl differs

from zero only inside the pseudopotential core radius and the Laplacian operator extends

only to a few neighbors around each grid point, the matrix representation of Eq. 10 is very

sparse. Consequently, highly efficient diagonalization procedures can be employed to extract

the required eigenvalue/eigenfunction pairs.12,13
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B. Calculation of the forces

The total ground-state energy (Eq. 1) is given by

Etot[ρ] = T [ρ]+
∫
ρ(r)Vion,loc(r)d

3r+
∑

a,n,lm

〈∆V a
lm〉

[
Ga

n,lm

]2
+EH [ρ]+Exc[ρ]+Eion−ion({Ra})+α ,

(11)

where the sum on n is over the occupied states and α is the contribution of the non-Coulomb

part of the pseudopotential at q = 0:

α =
ZN2

a

L3

∫ (
Vloc(r) +

Z

r

)
4πr2dr . (12)

By Eq. 4, the force on ion a is

Fa = −
∫
ρ(r)

∂Vloc(ra)

∂Ra

d3r − 2
∑
n,lm

〈∆V a
lm〉Ga

n,lm

∂Ga
n,lm

Ra

− ∂Eion−ion

Ra

. (13)

The first term on the right-hand side of Eq. 13 is the contribution from the local ionic poten-

tial, Fa,loc. It involves the integral of a long-range function (Z/r2), but is easily calculated

in reciprocal space, where there is no long-range tail:14

Fa,loc = −iL3
∑
q

q exp (iq ·Ra)Vloc(q)ρ(q) , (14)

where ρ(q) is obtained by an FFT from the solution of the Kohn-Sham equations on the real-

space grid. The other electronic contribution to the force is due to the nonlocal components

of the pseudopotential. Taking advantage of its short range, we calculate this term in real

space, in which its computation scales as the square of the system size (whereas in reciprocal

space it scales as N3
a ).15 The remaining term in Eq. 13 is the force exerted on the ion by other

ions. As usual for periodic systems,3 we evaluate this term by performing two convergent

summations, one over lattice vectors and the other over reciprocal lattice vectors, using

Ewald’s method.

The procedure we use to evaluate the expression given in Eq. 13 gives very accurate

values of the ionic forces, as we demonstrate in Section III. Note that Eq. 13 contains no

term representing the derivative of the basis set with respect to the position of the ion (the

“Pulay force”16).
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III. APPLICATION TO LIQUID SILICON

As a test of our method we performed an MD simulation of liquid silicon at a temperature

of 1800 K and a density of of 2.59 g/cm3, a thermodynamic state that is close to the

experimental melting point, Tm = 1680 K and density. This simulation constitutes a severe

test because silicon is one of the most complex elemental liquids. Upon melting, silicon

undergoes a transition from a semiconducting covalent structure to a rather unusual metallic

phase that, in spite of the coordination number having increased from 4 to over 6 during the

transition, still has a very loosely packed structure when compared with more usual liquid

metals, which have coordination numbers of about 12 (Ref. 17). The existence of covalent

bonds in the metallic phase is indicative of the “many-body” nature of the interactions in

liquid silicon, realistic description of which requires a quantum-mechanical treatment. We

compare the results of our simulation with available experimental data and with results

obtained from previous MD simulations based on well-established plane wave methods.

We considered a system of 64 atoms in a cubic supercell with L = 19.80 a.u. The

real-space grid was constructed with a spacing of h = 0.71 a.u. The core electrons were

represented by norm-conserving pseudopotentials generated for the reference configuration

[Ne]3s23p2 using the Troullier-Martins prescription9, with a radial cutoff of 2.5 a.u. for both

s and p. The potential was made separable by the procedure of Kleinman and Bylander,8

with the s potential chosen to be the local component. The local density functional of

Ceperley and Alder18 was used as parameterized by Perdew and Zunger,19 and the single Γ

point was employed in sampling the Brillouin zone.20

We initially simulated the melting of solid silicon with a simple cubic structure. The

temperature of the system was controlled by coupling to a virtual heat bath via a Langevin

equation of motion.21 The time step was 165 a.u. (4 fs). After the temperature had stabi-

lized at the desired value, the system was gradually decoupled from the virtual heat bath,

and a microcanonical MD simulation was performed over 750 time steps (3 ps). Only the

microcanonical data were used for our analysis of the properties of liquid silicon.

A microcanonical MD run constitutes a stringent test of the accuracy of calculated ionic

forces because the trajectory of the system through configuration space is deterministic. Any

systematic error in the force calculations will prevent conservation of the total energy of the

system. Fig. 1 shows that there is no such error in our simulation. The kinetic and potential
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energies perform bounded oscillations around stable mean values, and the oscillations of one

almost cancel those of the other, resulting in very good conservation of the total energy.

The rms noise in the energy conservation is less than 0.003 eV/atom. No drift in the total

energy was observed. Highly accurate forces implies more than the validity of the scheme

used in their calculation (Section II B). Since errors in the Hellmann-Feynman forces are

first-order with respect to errors in the wave functions, accurate forces can only be obtained

when the wave functions are very nearly exact eigenstates, which implies that the procedure

used to discretize and solve the Kohn-Sham equations (Section IIA) is also very accurate.

It should be noted that we were able to use relatively long time steps in integrating the

equations of motion. This is a characteristic of ab initio MD methods that restrict the

simulation to the Born-Oppenheimer surface (BOMD). The philosophy is different in the

Car-Parrinello method (CPMD).22 In CPMD the construction of a fully self-consistent field

at each time step is avoided by using fictitious dynamics for the electrons, but accurate

integration of the equations of motion requires the use of time steps more than an order of

magnitude smaller than those employed in BOMD.

Figure 2 shows results on the static structure23 of liquid silicon obtained from the sim-

ulation and by experiment.24 The two sets of data for the radial distribution function g(r)

agree well (upper panel); the simulation results give the correct position of the principal

peak of the function, 2.43 Å, and exhibit the correct trend at greater distances (though

without dispersion). Integrating g(r) up to the position of the first minimum determined by

experiment, 3.10 Å, affords a value for the average coordination number that is identical to

experimental estimates, ∼ 6.4 (Ref. 24).

Comparison between the results of simulation and experiment for the static structure

factor S(q) (Fig. 2, lower panel) is a stronger test than comparison of g(r) results because

it is S(q) that is obtained directly from experimental measurements. g(r) is obtained by

Fourier transform of S(q), and is more susceptible to numerical errors. S(q) was calculated

from the simulation results using the expression23

S(q) =
1

Na

〈∑
i

∑
j

exp [−iq · (Ri −Rj)]

〉
, (15)

where the sums are taken over the ions in the unit cell and the angle brackets denote aver-

aging over both the trajectories of the particles during the microcanonical MD run and over

all the wave vectors q with the same modulus q (we assume that liquid silicon is macroscop-
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ically isotropic). In terms of S(q) the agreement between simulation and experiment is very

good, the simulation results correctly predicting all the successive maxima and minima of

the function. Note, in particular, the successful prediction of the shoulder to the right of

the first peak, which is not shown by the S(q) functions of simple liquid metals.25,26

As examples of time-dependent functions we calculated the mean square displacement,

〈∆R2(t)〉, and the velocity autocorrelation function Z(t) (Fig. 3).23 Except for very small

values of t, 〈∆R2(t)〉 is perfectly linear, in keeping with the theoretical expression23

〈
∆R2(t)

〉
∼ 6Dt+ c , as t→∞ , (16)

in which D is the self-diffusion coefficient and c is a constant. Z(t) tends to zero with

increasing time due to the absence of correlation between the velocity of each particle and

its initial value. It is interesting that Z(t) does not take negative values; this contrasts

with the typical behavior of simple liquid metals, which near the melting point exhibit the

so-called “cage effect” [the atoms surrounding any given atom allow the latter to move over

short distances but then reflect it, causing Z(t) to change sign].27,28 The absence of such

backscattering in liquid silicon is likely related to its small average coordination number.

Like 〈∆R2(t)〉, the velocity autocorrelation function is related to the self-diffusion

coefficient:23

D =
∫ ∞
0

Z(t)dt . (17)

The values of D obtained from our simulation data via Eqs. 16 and 17 are both the same,

2.1 Å2/ps. This value is consistent with those afforded by previous ab initio calculations

using plane wave representations: BOMD results for 〈∆R2(t)〉 have given a value of D =

1.9 Å2/ps,29,30 and a CPMD study has yielded values of 2.3 Å2/ps [from 〈∆R2(t)〉] and

2.0 Å2/ps [from Z(t)].31 A simulation based on interatomic potentials gave D = 1.0 Å2/ps,32

a value significantly smaller than the quantum mechanical estimates.

Figure 4 shows the electronic density of states distribution for liquid silicon. This dis-

tribution was obtained by constructing a histogram of the eigenvalues every 10 time steps

during the microcanonical MD run and averaging these results. For comparison, the density

of states obtained in an earlier CPMD study31 of the same thermodynamic state is also

shown (both studies only considered the Kohn-Sham states at the single Γ point). The

agreement between the two approaches is quite good, bearing in mind the technical differ-

ences between BOMD and CPMD calculations. Both studies clearly show liquid silicon to
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be a good metal with a large density of states at the Fermi level.

IV. SUMMARY AND CONCLUSIONS

This paper presents a method for self-consistent ab initio calculation of electronic struc-

tures of periodic systems. Our method employs pseudopotentials to construct the electron-

ion potential, and solves the Kohn-Sham equations on a uniform real-space grid. The only

FFT performed is used to set up the local ionic potential on the real-space grid following

its calculation in reciprocal space. The efficiency deriving from inherent parallelizability

and the use of sparse matrices makes this method eminently suitable for the study of large

complex systems. Calculation of the forces on ions has also been implemented.

We have successfully tested the accuracy of the method by performing an MD simulation

of liquid silicon and comparing the results with available experimental data and with previous

ab initio results. This simulation constitutes the first application of an ab initio real-space

technique to the study of a liquid, and proves the ability of these approaches to simulate

the liquid state.
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31 I. Štich, R. Car, and M. Parrinello, Phys. Rev. Lett. 63, 2240 (1989); I. Štich, R. Car, and M.
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FIG. 1: Time courses of the kinetic, potential and total energies of liquid silicon during our

microcanonical real-space MD simulation. The equations of motion of the ions were integrated for

a time step of 165 a.u. using the Beeman algorithm (Ref. 34). No velocity rescaling was performed.

The potential and total energies have been shifted by a constant so that the total energy averages

zero.

FIG. 2: Radial distribution function (upper panel) and static structure factor (lower panel) of liquid

silicon. The continuous curves represent our real-space MD results, the dashed curves experimental

data from Ref. 24

FIG. 3: Normalized velocity autocorrelation function Z(t)/Z(0) and mean square displacement〈
∆R2(t)

〉
(inset) of liquid silicon as obtained from our real-space MD simulation.

FIG. 4: Electronic density of states of liquid silicon as obtained from our real-space MD simulation.

The histogram is from a previous plane wave MD simulation (Ref. 31). Fermi levels are set to zero.
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