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Chapter §

Electronic Structure of Clusters

and Nanocrystals

§.1 Introduction

Frequently one categorizes material properties at the macroscopic scale by

terms such as intensive and extensive. An intensive property is not dependent

on the sample size, or mass. For example, if one specifies the temperature of

a sample as that of room temperature, the description is complete. One does

not need to specify the size of the sample. Other intensive properties include

pressure and density. In contrast, an extensive property does depend on the

size of the sample. For example, the volume of a sample depends on the

size. Two moles of a gas occupies twice the volume as one mole. Therefore,

one often specifies volume is terms of the volume per mole, or the specific
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6 CLUSTERS AND NANOCRYSTALS

volume. Other extensive properties include thermodynamics properties like

the heat capacity, enthalpy, entropy and free energy of the system.

Matter at the nanoscale is different. Properties that are intensive at

the macroscopic scale may not be intensive at the “nano-” or “subnano-”

scale. In fact, such properties may be hard to define at very small length

scales. Consider a small cluster of atoms, e.g., a dozen silicon atoms. Such

an ensemble contains so few atoms that it is difficult to define a property

such as temperature or volume. While extensive properties such as the heat

capacity or free energy of the system remain so in the sense of changing with

the size of the system, such properties may no longer scale linearly with size.

For example, the free energy of two dozen atoms of silicon may not be twice

the free energy of one dozen atoms of silicon.

In this latter example, one can make some simple arguments to explain

this behavior. Suppose we consider the scaling of the free energy for a spheri-

cal sample of matter whose radius is R. The volume energy term would scale

as R3; the surface term as R2. As R tends towards the nanoscale, the surface

terms can become the dominant term in the free energy. This surface term

does not scale linearly with the volume or mass of the sample. This different

scaling between volume and surface terms is well known in nucleation the-

ory. A manifestation of this effect is that particles must exceed a certain size

before they are stable.

One definition of the nanoscale is the size at which deviations from in-

trinsic intensive and extensive properties at the macroscopic scale occur.
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Consider an intensive electronic property such as the band gap of silicon.

For specificity, let us consider a spherical sample of silicon whose radius is

R. If R changes from 10 cm to 1 cm, the optical gap will remain unchanged,

as expected for an intensive property. However, if one considers values of

R changing from 10 nm to 1 nm, the optical gap will be strongly altered.

In this size regime, the optical gap is no longer an intensive property; the

properties of such systems are said to characterize nanoscale. One of the first

manifestations of this effect was observed in porous silicon, which exhibits

remarkable room temperature luminescence [1]. This is in strong contrast to

crystalline silicon, which is optically inactive. It is widely accepted that the

localization of optical excitations at the nanoscale results in the lumiescence

of porous silicon.

In this chapter, the cornerstones of theoretical methods for understanding

the electronic and structural properties of matter at the nanoscale will be

reviewed.
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Figure §.1: Atomic and electronic coordinates. The electrons are illustrated
by filled circles; the nuclei by open circles.

§.2 Quantum descriptions of matter

Quantum mechanical laws that describe the behavior of matter at the nanoscale

were discovered in the early part of the twentieth century. These laws mark

one of the greatest scientific achievements of humankind. Using these laws,

it is possible to predict the electronic properties of matter from the nanoscale

to the macroscale, at least in principle.

While it is relatively easy to write down the Hamiltonian for interacting

fermions, obtaining a solution to the problem that is sufficiently accurate to

make predictions is another matter.

Consider N nucleons of charge Zn at positions {~Rn} for n=1, ..., N and

I electrons at positions {~ri} for i=1, ..., M. This is shown schematically in
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Figure §.1. The Hamiltonian for this system in its simplest form can be

written as

H(~R1, ~R2, ~R3, ...;~r1, ~r2, ~r3...) =

N
∑

n=1

−~
2∇2

n

2Mn
+

1

2

N
∑

n,m=1,n6=m

ZnZme
2

|~Rn − ~Rm|

+
M

∑

i=1

−~
2∇2

i

2m
−

N
∑

n=1

M
∑

i=1

Zne
2

|~Rn − ~rj|
+

1

2

M
∑

i,j=1,i6=j

e2

|~ri − ~rj|
(§.1)

Mn is the mass of the nucleon, ~ is Planck’s constant divide by 2π, m is the

mass of the electron. This expression omits some terms such as those involv-

ing relativistic interactions, but captures the essential features for nanoscale

matter.

Using the Hamiltonian in Eq. §.1, the quantum mechanical equation

known as the Schrödinger equation for the electronic structure of the sys-

tem can be written as:

H(~R1, ~R2, ~R3, ...;~r1, ~r2, ~r3...)Ψ(~R1, ~R2, ~R3, ...;~r1, ~r2, ~r3...)

= EΨ(~R1, ~R2, ~R3, ...;~r1, ~r2, ~r3...) (§.2)

where E is the total electronic energy of the system and Ψ is the many body

wavefunction.

Soon after the discovery of the Schrödinger equation, it was recognized

that this equation provided the means of solving for the electronic and nuclear

degrees of freedom. Using the variational principle which states that an
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approximate wave function will always have a less favorable energy than the

true ground state energy, one had an equation and a method to test the

solution. One can estimate the energy from

E =

∫

Ψ∗HΨ d3R1 d
3R2 d

3R3.... d
3r1 d

3r2 d
3r3...

∫

Ψ∗Ψ d3R1 d3R2 d3R3.... d3r1 d3r2 d3r3...
(§.3)

However, a solution of Eq. §.2 for anything more complex than a few

particles becomes problematic even with the most powerful computers. Ob-

taining an approximate solution for systems with many atoms is difficult,

but considerable progress has been made since the advent of reliable digit

computers.

A number of highly successful approximations have been made to solve for

the both the ground state and excited state energies. For the most part, these

approximations used are to remove as many “irrelevant” degrees of freedom

from the system as possible. One common approximation is to separate the

nuclear and electronic degrees of freedom. Since the nuclei are considerably

more massive than the electrons, it can be assumed that the electrons will

respond “instantaneously” to the nuclear coordinates. This approximation

is called the Born-Oppenheimer or adiabatic approximation. It allows one

to treat the nuclear coordinates as classical parameters. For most condensed

matter systems, this assumption is highly accurate [2, 3].
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§.2.1 The Hartree approximation

Another common approximation is to construct a specific form for the many

body wavefunction. If one can obtain an accurate wave function, then via the

variational principle an accurate estimate for the energy will emerge. The

most difficult part of this exercise is to use physical intuition to define a trial

wave function close to the true wave function.

One can utilize some simple limiting cases to illustrate the construction

of many body wave functions. Suppose one considers a solution for non-

interacting electrons, i.e., in Eq. §.1 the last term in the Hamiltonian is

ignored. In this limit, it is possible to write the many body wave function

as a sum of independent Hamiltonians. Using the adiabatic approximation,

the electronic part of the Hamiltonian becomes:

Hel(~r1, ~r2, ~r3...) =

M
∑

i=1

−~
2∇2

i

2m
−

N
∑

n=1

M
∑

i=1

Zne
2

|~Rn − ~ri|
(§.4)

Let us define a nuclear potential, VN , which the ith electron sees as

VN(~ri) = −
N

∑

n=1

Zne
2

|~Rn − ~ri|
(§.5)

One can now rewrite our simplified Schrödinger equation as

Hel(~r1, ~r2, ~r3...)ψ(~r1, ~r2, ~r3...) =
M

∑

i=1

H iψ(~r1, ~r2, ~r3...) (§.6)
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where the Hamiltonian for the ith electron is

H i =
−~

2∇2
i

2m
+ VN(~ri) (§.7)

For this simple Hamiltonian, let us write the many body wave function as

ψ(~r1, ~r2, ~r3...) = φ1(~r1)φ2(~r2)φ3(~r3).... (§.8)

The φi(~r) orbitals can be determined from a “one-electron” Hamiltonian

H iφi(~r) = (
−~

2∇2

2m
+ VN(~r)) φ(~r)

= Eiφi(~r)

(§.9)

The index i for the orbital φi(~r) can be taken to include the spin of the

electron plus any other relevant quantum numbers. This type of Schrödinger

equation can be easily solved for fairly complex condensed matter systems.

The many body wave function in Eq. §.8 is known as the Hartree wave

function. If one uses this form of the wave function as an approximation

to solve the Hamiltonian including the electron-electron interactions, this

is known as the Hartree Approximation. By ignoring the electron-electron

terms, the Hartree approximation treats the electrons moving independently

in the nuclear potential. The total energy of the system is given by the sum

of the eigenvalues, Ei.

To obtain a realistic Hamiltonian, the electron-electron interactions must
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be reinstated in Eq. §.6:

Hel(~r1, ~r2, ~r3...)ψ(~r1, ~r2, ~r3...) =

M
∑

i=1

(H i +
1

2

M
∑

j=1,j 6=i

e2

|~ri − ~rj|
) ψ(~r1, ~r2, ~r3...)

(§.10)

In this case, the individual orbitals, φi(~r), can be determined by by using

the minimizing the total energy as per (Eq. §.3) with the constraint that

the wave function be normalized. This minimization procedure results in the

following Hartree equation:

H iφi(~r) =
( −~

2∇2

2m
+ VN(~r) +

M
∑

j=1,j 6=i

∫

e2 |φj(~r ′)|2
|~r − ~r ′| d3r ′

)

φi(~r) = Eiφi(~r)

(§.11)

Using the orbitals, φ(~r), from a solution of Eq. §.11, the Hartree many body

wave function can be constructed and the total energy determined from

(Eq. §.3).

The Hartree approximation is useful as an illustrative tool, but it is not a

very accurate approximation. A significant failing of the Hartree wave func-

tion is that it does not reflect the anti-symmetric nature of the electrons as

required by the Pauli principle [4]. Moreover, the Hartree equation is difficult

to solve. The Hamiltonian is orbitally dependent because the summation in

Eq. §.11 does not include the ith orbital. This means that if there are M

electrons, then M Hamiltonians must be considered and Eq. §.11 solved for

each orbital.
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§.2.2 The Hartree-Fock approximation

It is possible to write down a many body wavefunction that reflects the

antisymmetric nature of the wave function. In this approach, the spin coor-

dinate of each electron is explicitly treated. The coordinates of an electron

may be specified by ~risi where si represents the spin coordinate. Starting

with one-electron orbitals, φi(~rs), the following form can be invoked:

Ψ(~r1s1, ~r2s2, ~r3s3, ...) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φ1(~r1s1) φ1(~r2s2) ... ... φ1(~rMsM)

φ2(~r1s1) φ2(~r2s2) ... ... ...

... ... ... ... ...

φM(~r1s1) ... ... ... φM(~rMsM)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(§.12)

This form of the wave function is called a Slater determinant. It reflects

the proper symmetry of the wave function and the Pauli principle. If two

electrons occupy the same orbit, two rows of the determinant will be iden-

tical and the many body wave function will have zero amplitude. Likewise,

the determinant will vanish if two electrons occupy the same point in gen-

eralized space (i.e., ~risi = ~rjsj) as two columns of the determinant will be

identical. If two particles are exchanged, this corresponds to a sign change

in the determinant. The Slater determinant is a convenient representation,

but it is an ansatz. It is probably the simplest many body waved function

that incorporates the required symmetry properties for fermions, or particles

with non-integer spins.
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If one uses a Slater determinant to evaluate the total electronic energy

and maintains wave function normalization, the orbitals can be obtained

from the following Hartree-Fock equations:

H iφi(~r) =
( −~

2∇2

2m
+ VN(~r) +

M
∑

j=1

∫

e2 |φj(~r ′)|2
|~r − ~r ′| d3r ′

)

φi(~r)

−
M

∑

j=1

∫

e2

|~r − ~r ′| φ
∗
j(~r

′)φi(~r
′) d3r ′ δsi,sj

φj(~r) = Eiφi(~r) (§.13)

It is customary to simplify this expression by defining an electronic charge

density, ρ:

ρ(~r) =

M
∑

j=1

|φj(~r )|2 (§.14)

and an orbitally dependent exchange-charge density, ρHFi for the ith orbital:

ρHFi (~r, ~r ′) =

M
∑

j=1

φ∗
j(~r

′) φi(~r
′) φ∗

i (~r ) φj(~r )

φ∗
i (~r ) φi(~r )

δsi,sj
(§.15)

This “density” involves a spin dependent factor which couples only states

(i, j) with the same spin coordinates (si, sj).

With these charge densities defined, it is possible to define corresponding

potentials. The Coulomb or Hartree potential, VH , is defined by

VH(~r) =

∫

ρ(~r)
e2

|~r − ~r ′| d
3r′ (§.16)
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and an exchange potential can be defined by

V i
x(~r) = −

∫

ρHFi (~r, ~r ′)
e2

|~r − ~r ′| d
3r′ (§.17)

This combination results in the following Hartree-Fock equation:

( −~
2∇2

2m
+ VN(~r) + VH(~r) + V i

x(~r)
)

φi(~r) = Eiφi(~r) (§.18)

Once the Hartree-Fock orbitals have been obtained, the total Hartree-Fock

electronic energy of the system, EHF , can be obtained from

EHF =
M

∑

i

Ei −
1

2

∫

ρ(~r)VH(~r) d3r− 1

2

M
∑

i

∫

φ∗
i (~r ) φi(~r )V i

x(~r) d
3r (§.19)

EHF is not a sum of the Hartree-Fock orbital energies, Ei. The factor of 1
2

in

the electron-electron terms arises because the electron-electron interactions

have been double counted in the Coulomb and exchange potentials. The

Hartree-Fock Schrödinger equation is only slightly more complex than the

Hartree equation. Again, the equations are difficult to solve because the

exchange potential is orbitally dependent.

There is one notable difference in the Hartree-Fock summations compared

to the Hartree summation. The Hartree-Fock sums include the i = j terms in

Eq. §.13. This difference arises because the exchange term corresponding to

i = j cancels an equivalent term in the Coulomb summation. The i = j term

in both the Coulomb and exchange term is interpreted as a “self-screening” of
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the electron. Without a cancellation between Coulomb and exchange terms

a “self-energy” contribution to the total energy would occur. Approximate

forms of the exchange potential often do not have this property. The total

energy then contains a self-energy contribution which one needs to remove

to obtain a correct Hartree-Fock energy.

The Hartree-Fock equation is an approximate solution to the true ground

state many body wave functions. Terms not included in the Hartree-Fock

energy are referred to as correlation contributions. One definition for the

correlation energy, Ecorr is to write it as the difference between the exact

total energy of the system, Eexact and the Hartree-Fock energies: Ecorr =

Eexact − EHF . Correlation energies may be included by considering Slater

determinants composed of orbitals which represent excited state contribu-

tions. This method of including unoccupied orbitals in the many body wave

function is referred to as configuration interactions or “CI” [5].

Applying Hartree-Fock wave functions to systems with many atoms is

not routine. The resulting Hartree-Fock equations are often too complex

to be solved for extended systems, except in special cases. The number of

electronic degrees of freedom grows rapidly with the number atoms often

prohibiting an accurate solution, or even one’s ability to store the resulting

wave function. As such, it has been argued that a “wave function” approach

to systems with many atoms does not offer a satisfactory approach to the

electronic structure problem. An alternate approaches is based on density

functional theory.
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§.3 Density functional approaches

Descriptions of quantum states based on a knowledge of the electronic charge

density (Eq. §.14) have existed since the 1920’s. For example, the Thomas-

Fermi description, based on a knowledge of ρ(~r), was on the first attempts at

quantitative theory for the electronic structure of atoms [6–8]. However, most

treatments of density functional theory begin by considering a free electron

gas of uniform charge density. The justification for this starting point comes

from the observation that simple metals like aluminum and sodium have

properties that appear to resemble those of a free electron gas. A “free

electron” model cannot be applied to systems with localized electrons such

as highly covalent materials like carbon or highly ionic materials like sodium

chloride.

§.3.1 Free electron gas

Perhaps the simplest descriptions of a condensed matter system is to imag-

ine non-interacting electrons contained within a box of volume, Ω. The

Schrödinger equation for this system is similar to Eq. §.9 with the potential

set to zero.

−~
2∇2

2m
φ(~r) = E φ(~r) (§.20)

Ignoring spin for the moment, the solution of Eq. §.20 is

φ(~r) =
1√
Ω

exp(i~k · ~r) (§.21)
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~k is called a wave vector. The energy is given by E(k) = ~
2k2/2m and the

charge density by ρ = 1/Ω.

A key issue in describing systems with a very large number of atoms

is to account properly for the number of states. In the limit of systems

corresponding to crystalline states, the eigenvalues are closely spaced and

essentially “infinite” in number. For example, if one has a mole of atoms,

then one can expect to have ∼ 1023 occupied states. In such systems, the

number of states per unit energy is a natural measure to describe the energy

distribution of states.

It is easy to do this with periodic boundary conditions. Suppose one

considers a one dimensional specimen of length L. In this case the wave

functions obey the rule: φ(x+L) = φ(x) as x+L corresponds in all physical

properties to x. For a free electron wave function, this requirement can be

expressed as exp(ik(x + L)) = exp(ikx) or as exp(ikL) = 1 or k = 2π n/L

where n is an integer.

Periodic boundary conditions force k to be a discrete variable with allowed

values occurring at intervals of 2π/L. For very large systems, one can describe

the system as continuous in the limit of L → ∞. Electron states can be

defined by a density of states defined as follows:

D(E) = lim
∆E→0

N(E + ∆E) −N(E))

∆E

=
dN

dE

(§.22)
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where N(E) is the number of states whose energy resides below E. For

the one-dimensional case, N(k) = 2k/(2π/L) (the factor of two coming from

spin) and dN/dE = (dN/dk) ·(dk/dE). Using E(k) = ~
2k2/2m, we have k =

√
2mE/~ and dk/dE = 1

2

√

2m/E/~. This results for this one-dimensional

density of states as

D(E) =
L

2π~

√

2m/E (§.23)

The density of states for a one-dimensional system diverges as E → 0. This

divergence of D(E) is not a serious issue as the integral of the density of

states remains finite. In three dimensions, it is straightforward to show

D(E) =
Ω

2π2
(
2m

~2
)3/2

√
E (§.24)

The singularity is removed, although a discontinuity in the derivative exists

as E → 0.

One can determine the total number of electrons in the system by inte-

grating the density of states up to the highest occupied energy level. The

energy of the highest occupied states is called the Fermi level or Fermi En-

ergy, Ef :

N =
Ω

2π2
(
2m

~2
)3/2

∫ Ef

0

√
E dE (§.25)

and

Ef =
~

2

2m

(3π2N

Ω

)2/3
(§.26)

By defining a Fermi wave vector as kf = (3π2nel)
1/3 where nel is the electron
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density, nel = N/Ω, of the system, one can write:

Ef =
~

2k2
f

2m
(§.27)

It should be noted that typical values for Ef for simple metals like sodium

or potassium are on the order of several eV ’s. If one defines a temperature,

Tf , where Tf = Ef/kb and kb is the Boltzmann constant, typical values for

Tf might be 104K. At ambient temperatures one can often neglect the role

of temperature in determining the Fermi Energy.

§.3.2 Hartree-Fock exchange in a free electron gas

For a free electron gas, it is possible to evaluate the Hartree-Fock exchange

energy directly [9,10]. The Slater determinant is constructed using free elec-

trons orbitals. Each orbital is labeled by a ~k and a spin index. The Coulomb

potential for an infinite free electron gas diverges, but this divergence can be

removed by imposing a compensating uniform positive charge. The resulting

Hartree-Fock eigenvalues can be written as

Ek =
~

2k2

2m
− 1

Ω

∑

k ′<kf

4πe2

|~k − ~k ′|2
(§.28)

where the summation is over occupied ~k-states. It is possible to evaluate the

summation by transposing the summation to an integration. This transposi-

tion is often done for solid state systems as the state density is so high that
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the system can be treated as a continuum:

1

Ω

∑

k ′<kf

4πe2

|~k − ~k ′|2
=

1

(2π)3

∫

k′<kf

4πe2

|~k − ~k ′|2
d3k (§.29)

This integral can be solved analytically [10]. The resulting eigenvalues are

given by

Ek =
~

2k2

2m
− e2kf

π

(

1 +
1 − (k/kf)

2

2(k/kf)
ln

∣

∣

∣

k + kf
k − kf

∣

∣

∣

)

(§.30)

Using the above expression and Eq. §.19, the total electron energy, EFEG
HF ,

for a free electron gas within the Hartree-Fock approximation is given by:

EFEG
HF = 2

∑

k<kf

~
2k2

2m
− e2kf

π

∑

k<kf

(

1 +
1 − (k/kf)

2

2(k/kf)
ln

∣

∣

∣

k + kf
k − kf

∣

∣

∣

)

(§.31)

The factor of 2 in the first term comes from spin. In the exchange term,

there is no extra factor of 2 because one can subtract off a “double counting

term” (see Eq. §.19). The summations can be executed as per Eq. §.29 to

yield:

EFEG
HF /N =

3

5
Ef −

3e2

4π
kf (§.32)

The first term corresponds to the average energy per electron in a free electron

gas. The second term corresponds to the exchange energy per electron. The

exchange energy is attractive and scales with the cube root of the average

density. This form provides a clue as to what form the exchange energy

might take in an interacting electron gas or non-uniform electron gas.
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Slater was one of the first to propose that one replace V i
x in Eq. §.18 by

a term that depends only on the cube root of the charge density [11–13]. By

analogy to Eq. §.32, he suggested that V i
x be replaced by

V Slater
x [ρ(~r)] = −3e2

2π
(3πρ(~r))1/3 (§.33)

This expression is not orbitally dependent. As such, a solution of the Hartree-

Fock equation (Eq. §.18) using V Slater
x is much easier to implement. Although

Slater exchange was not rigorously justified for non-uniform electron gases,

it has been quite successful in replicating the essential features of atomic and

molecular systems as determined by Hartree-Fock calculations [11–13].

§.3.3 Density functional theory

In a number of classic papers Hohenberg, Kohn and Sham established a theo-

retical basis for justifying the replacement of the many body wavefunction by

one-electron orbitals [8, 14, 15]. In particular, they proposed that the charge

density play a central role in describing the electronic structure of matter. A

key aspect of their work is the local density approximation or LDA. Within

this approximation, one can express the exchange energy as

Ex[ρ(~r)] =

∫

ρ(~r)Ex[ρ(~r)] d3r (§.34)
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where Ex[ρ] is the exchange energy per particle of uniform gas at a density

of ρ. Within this framework, the exchange potential in Eq. §.18 is replaced

by a potential determined from the functional derivative of Ex[ρ]:

Vx[ρ] =
δEx[ρ]

δρ
(§.35)

One serious issue is the determination of the exchange energy per particle,

Ex, or the corresponding exchange potential, Vx. The exact expression for

either of these quantities is unknown, save for special cases. If one assumes

the exchange energy is given by Eq. §.32, i.e., the Hartree-Fock expression

for the exchange energy of the free electron gas. Then one can write:

Ex[ρ] = −3e2

4π
(3π2)1/3

∫

[ρ(~r)]4/3 d3r (§.36)

and taking the functional derivative, one obtains:

Vx[ρ] = −e
2

π
(3π2ρ(~r))1/3 (§.37)

Comparing this to the form chosen by Slater, this form, known as Kohn-

Sham exchange, V KS
x differs by a factor of 2/3, i.e. V KS

x = 2V Slater
x /3. For a

number of years, some controversy existed as to whether the Kohn-Sham or

Slater exchange was more accurate for realistic systems [8]. Slater suggested

that a parameter be introduced which would allow one to vary the exchange

between the Slater and Kohn-Sham values [13] The parameter, α, was often
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placed in front of the Slater exchange: Vxα = αV Slater
x . α was often chosen to

replicate some known feature of a exact Hartree-Fock calculation, such as the

total energy of an atom or ion. Acceptable values of α were viewed to range

from α = 2/3 to α = 1. Slater’s so called “Xα” method was very successful

in describing molecular systems [13]. Notable drawbacks of the Xα method

center on its ad hoc nature through the α parameter and the omission of an

explicit treatment of correlation energies.

In contemporary theories, α, is taken to be 2/3, and correlation ener-

gies are explicitly included in the energy functionals [8]. Numerical studies

have been performed on uniform electron gases resulting in local density ex-

pressions of the form: Vxc[ρ(~r)] = Vx[ρ(~r)] + Vc[ρ(~r)] where Vc represents

contributions to the total energy beyond the Hartree-Fock limit [16]. It is

also possible to describe the role of spin explicitly by considering the charge

density for up and down spins: ρ = ρ↑ +ρ↓. This approximation is called the

local spin density approximation [8].

The Kohn-Sham equation [15] for the electronic structure of matter is

given by

( −~
2∇2

2m
+ VN(~r) + VH(~r) + Vxc[ρ(~r)]

)

φi(~r) = Eiφi(~r) (§.38)

This equation is usually solved “self-consistently.” An approximate charge

is assumed to estimate the exchange-correlation potential and this charge is

used to determine the Hartree potential from Eq. §.16. These approximate
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potentials are inserted in the Kohn-Sham equation and the total charge den-

sity determined as in Eq. §.14. The “output” charge density is used to

construct new exchange-correlation and Hartree potentials. The process is

repeated until the input and output charge densities or potentials are iden-

tical to within some prescribed tolerance.

Once a solution of the Kohn-Sham equation is obtained, the total energy

can be computed from

EKS =
M

∑

i

Ei − 1/2

∫

ρ(~r)VH(~r) d3r +

∫

ρ(~r)
(

Exc[ρ(~r)] − Vxc[ρ(~r)]
)

d3r

(§.39)

where Exc is a generalization of Eq. §.34, i.e., the correlation energy den-

sity is included. The electronic energy as determined from EKS must be

added to the ion-ion interactions to obtain the structural energies. This is

a straightforward calculation for confined systems. For extended systems

such as crystals, the calculations can be done using Madelung summation

techniques [17].

Owing to its ease of implementation and overall accuracy, the local density

approximation is a popular choice for describing the electronic structure of

matter. It is relatively easy to implement and surprisingly accurate. Recent

developments have included so-called gradient corrections to the local density

approximation. In this approach, the exchange-correlation energy depends

on the local density the gradient of the density. This approach is called the

generalized gradient approximation or GGA [18].
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When first proposed, density functional theory was not widely accepted

within the chemistry community. The theory is not “rigorous” in the sense

that it is not clear how to improve the estimates for the ground state energies.

For wave function based methods, one can include more Slater determinants

as in a configuration interaction approach. As the wave functions improve via

the variational theorem, the energy is lowered. The Kohn-Sham equation is

variational, but owing to its approximate form it need not approach the true

ground state energy. This is not a problem provided that one is interested

in relative energies and any inherent density functional errors cancel in the

difference. For example, if the Kohn-Sham energy of an atom is 10% too high

and the corresponding energy of the atom in a crystal is also 10% too high,

the cohesive energies which involve the difference of the two energies can be

better than the nominal 10% error of the absolute energies. An outstanding

fundamental issue of using density functional theory is obtaining an ab initio

estimate of the cancellation errors.

In some sense, density functional theory is an a posteri theory. Given

the transference of the exchange-correlation energies from an electron gas,

it is not surprising that errors would arise in its implementation to highly

non-uniform electron gas systems as found in realistic systems. However,

the degree of error cancellations is rarely known a priori. The reliability

of density functional theory has been established by numerous calculations

for a wide variety of condensed matter systems. For example, the cohesive

energies, compressibility, structural parameters and vibrational spectra of el-
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emental solids have been calculated within the density functional theory [19],

The accuracy of the method is best for systems in which the cancellation of

errors is expected to be complete. Since cohesive energies involve the differ-

ence in energies between atoms in solids and in free space, error cancellations

are expected to be significant. This is reflected in the fact that historically

cohesive energies have presented greater challenges for density functional

theory: the errors between theory and experiment are typically ∼ 5-10%,

depending on the nature of the density functional. In contrast, vibrational

frequencies which involve small structural changes within a given crystalline

environment are easily reproduced to within 1-2 %.

§.3.4 Time-dependent density functional theory

One of the most significant limitations of “conventional” density functional

formalism is its inability to deal with electronic excitations. Within time-

independent, or static, density functional theory, a quantum mechanical sys-

tem is described through the ground state electronic charge density. While

this approach can be accurate for the ground state of a many-electron sys-

tem, unoccupied electronic states cannot be identified as those belonging to

electroinc, or quasi-particle, excitations [20, 21]. The inability of “conven-

tional” density functional theory to describe excitations severely restricts its

range of applications as many important physical properties such as optical

absorption and emission are associated with excited states.

Explicit calculations for excited states present enormous challenges for
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theoretical methods. Accurate calculations for excitation energies and ab-

sorption spectra typically require computationally intensive techniques, such

as the configuration interaction method [22, 23], quantum Monte Carlo sim-

ulations [24–26] or the Green’s function methods [27–29]. While these meth-

ods describe electronic excitations properly, they are usually limited to very

small systems because of high computational demands. An alternative ap-

proach is to consider methods based on time dependent density functional

theory such as those using the time dependent local density approximation

(TDLDA) [20, 21, 30–38].

The TDLDA technique can be viewed as a natural extension of the ground

state density-functional LDA formalism, designed to include the proper rep-

resentation of excited states. TDLDA excitation energies of a many-electron

system are usually computed from conventional, time independent Kohn-

Sham transition energies and wave functions. Compared to other theoretical

methods for excited states, the TDLDA technique requires considerably less

computational effort. Despite its relative simplicity, the TDLDA method

incorporates screening and relevant correlation effects for electronic excita-

tions. [20,21,30,31] In this sense, TDLDA represents a fully ab initio formal-

ism for excited states.

As in the case of time-independent density functional theory, the time-

dependent formalism reduces the many-electron problem to a set of self-
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consistent single particle equations, [39, 40]

(

−∇2

2
+ veff [ρ(r, t)]

)

ψi(r, t) = i
∂

∂t
ψi(r, t). (§.40)

In this case, the single particle wave functions, ψi(r, t), and the effective

potential, veff [ρ(r, t)], explicitly depend on time. The effective potential is

given by

veff [ρ(r, t)] =
∑

a

vion(r− ra) + vH [ρ(r, t)] + vxc[ρ(r, t)]. (§.41)

The three terms on the right side of Eq. (§.41) describe the external ionic po-

tential, the potential Hartree, and the exchange-correlation potential, respec-

tively. In the adiabatic approximation, which is local in time, the exchange-

correlation potential and its first derivative can be expressed in terms of the

time-independent exchange-correlation energy, Exc[ρ],

vxc[ρ(r, t)] ∼=
δExc[ρ]

δρ(r)
,

δvxc[ρ(r, t)]

δρ(r′, t′)
∼= δ(t− t′)

δ2Exc[ρ]

δρ(r)δρ(r′)
. (§.42)

The LDA makes a separate local approximation, i.e., within the LDA, the

exchange-correlation energy density is local in space.

While the local density approximation in time dependent density function

theory has proven itself for molecules, clusters and small quantum dots and

small clusters, several questions remain as areas of active research. The

application of TDLDA to large, extended systems remains problematic. It
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is widely accepted that TDLDA as outlined here will approach the LDA

results for extended systems and, consequently suffer the flaws of LDA such

as exhibiting band gaps much smaller than experiment [41–43].

Most implementations of time dependent density functional theory are

based on the local density approximation or the generalized gradient ap-

proximation [44, 45]. However, these approximations are know to have the

wrong asymptotic behavior, e.g. the potential does not scale as 1/r for large

distances. It is widely believed that more accurate TDLDA methods will ne-

cessitate other forms of the density functional. Examples of such an approach

are the asymptotically corrected local density approximations introduced by

Casida and Salahub [46], and by Leeuwen and Baerends [47]. These poten-

tials have recently been investigated using the current formalism [48].

The linear response formalism within TDDFT provides a theoretical basis

for the TDLDA method. In this section, we illustrate how TDLDA excitation

energies and oscillator strengths are derived from single-electron Kohn-Sham

eigenvalues and eigen wave functions. A comprehensive analysis of time-

dependent density functional response theory can be found elsewhere [20,21,

30, 31]. The notation in the work by Casida [30, 31] is implemented within

this section.

The response of the Kohn-Sham density matrix within TDDFT is ob-

tained by introducing a time-dependent perturbation δvappl(r, t). Due to the

self-consistent nature of the Kohn-Sham Hamiltonian, the effective pertur-
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bation includes the response of the self-consistent field, δvSCF[ρ(r, t)],

δveff [ρ(r, t)] = δvappl(r, t) + δvSCF[ρ(r, t)], (§.43)

where the self-consistent field is given by the last two terms in Eq. (§.41):

vSCF[ρ(r, t)] =

∫

ρv(r
′, t)

|r− r′| dr
′ + vxc[ρ(r, t)]. (§.44)

With the frequency domain, the response of the Kohn-Sham density matrix,

δP(ω), to the perturbation can be derived using a generalized susceptibil-

ity, χ(ω). For quasi-independent Kohn-Sham particles, the sum-over-states

representation of the generalized susceptibility is given by

χijσ,klτ(ω) = δi,kδj,lδσ,τ
λlkτ

ω − ωlkτ
, (§.45)

where λlkτ = nlτ − nkτ is the difference between the occupation numbers,

and ωlkτ = εkτ − εlτ is the difference between the eigenvalues of the l-th and

k-th single particle states. The susceptibility in Eq. (§.45) is expressed in the

basis of the unperturbed Kohn-Sham orbitals {ψiσ} and the indices i, j, and

σ (k, l, and τ) refer to space and spin wave components, respectively. The

linear response of the density matrix is

δPijσ(ω) =
∑

klτ

χijσ,klτ(ω)δveff
klτ(ω) =

λjiσ
ω − ωjiσ

[

δvappl
ijσ (ω) + δvSCF

ijσ (ω)
]

.

(§.46)
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Equation (§.46) is, however, complicated by the fact that δvSCF(ω) depends

on the response of the density matrix,

δvSCF
ijσ (ω) =

∑

klτ

Kijσ,klτδPklτ (ω), (§.47)

where the coupling matrix K describes the response of the self-consistent field

to changes in the charge density. Within the adiabatic approximation, this

matrix is frequency-independent. The analytical expression for the adiabatic

coupling matrix, Kijσ,klτ = ∂vSCF
ijσ /∂Pklτ , can be derived from Eq. (§.44) by

making use of the functional chain rule,

Kijσ,klτ =

∫∫

ψ∗
iσ(r)ψjσ(r)

(

1

|r− r′| +
δ2Exc[ρ]

δρσ(r)δρτ (r′)

)

ψkτ (r
′)ψ∗

lτ (r
′)drdr′.

(§.48)

The functional derivative in Eq. (§.48) is evaluated with respect to the un-

perturbed charge densities. By using the coupling matrix, Eq. (§.46) can be

rewritten as

λklτ 6=0
∑

klτ

[

δi,kδj,lδσ,τ
ω − ωlkτ
λlkτ

−Kijσ,klτ

]

δPklτ(ω) = δvappl
ijσ (ω). (§.49)

Since the summation in Eq. (§.49) is performed over all occupied and un-

occupied orbitals, it contains both the particle-hole and hole-particle contri-

butions. These contributions can be written as two separate equations: the
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particle-hole part of vappl(ω) is given by

λklτ>0
∑

klτ

[

δi,kδj,lδσ,τ
ω − ωlkτ
λlkτ

−Kijσ,klτ

]

δPklτ(ω)−
λklτ>0
∑

klτ

Kijσ,lkτδPlkτ (ω) = δvappl
ijσ (ω)

(§.50)

and the hole-particle part of vappl(ω) is

λklτ>0
∑

klτ

[

δi,kδj,lδσ,τ
ω − ωklτ
λklτ

−Kjiσ,lkτ

]

δPlkτ(ω)−
λklτ>0
∑

klτ

Kjiσ,klτδPklτ (ω) = δvappl
jiσ (ω).

(§.51)

Combining Eqs. (§.50) and (§.51), one can separate the real and imaginary

parts of the density matrix response, δP(ω). If the basis functions {ψiσ} in

Eq. (§.48) are real, the coupling matrix K is also real and symmetric with

respect to the interchange of space indices i ↔ j and k ↔ l. Since δP(ω) is

hermitian (i.e. δPjiσ = δP ∗
ijσ), the real part of δP(ω) for a real perturbation

vappl(ω) is given by

λklτ>0
∑

klτ

[

δi,kδj,lδσ,τ
λklτωklτ

(

ω2 − ω2
klτ

)

− 2Kijσ,klτ

]

<(δPklτ)(ω) = δvappl
ijσ (ω), (§.52)

where <(δPijσ)(ω) denotes the Fourier transform of the real part of δPijσ(t).

Equation (§.52) can be used to obtain the density functional expression

for the dynamic polarizability. This is accomplished by introducing a pertur-

bation δv̂appl(t) = γ̂Eγ(t), where Eγ is an external electric field applied along

the γ-axis, γ = {x, y, z}. The linear response of the dipole moment, δµ(ω),
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is expressed through of the real part of δP(ω) as

δµβ(ω) = − 2

λijσ>0
∑

ijσ

βjiσ<(δPijσ)(ω) , β = {x, y, z}. (§.53)

The components of the dynamic polarizability tensor are given by

αβγ(ω) =
δµβ(ω)

Eγ(ω)
= − 2

Eγ(ω)

λijσ>0
∑

ijσ

βjiσ<(δPijσ)(ω) , β, γ = {x, y, z},

(§.54)

Solving Eq. (§.52) with respect to <(δPijσ)(ω) and substituting the result into

Eq. (§.54), one obtains the following matrix equation for the polarizability

components:

αβγ(ω) = 2 β̂R1/2
[

Q − ω21
]−1

R1/2 γ̂ , β, γ = {x, y, z}, (§.55)

where the matrices R and Q are given by

Rijσ,klτ = δi,kδj,lδσ,τλklτωklτ , (§.56)

Qijσ,klτ = δi,kδj,lδσ,τω
2
klτ + 2

√

λijσωijσKijσ,klτ

√

λklτωklτ . (§.57)

The TDLDA expressions for excitation energies and oscillator strengths

can be derived by comparing Eq. (§.55) with the general sum-over-states

formula for the average dynamic polarizability, 〈α(ω)〉 = tr(αβγ(ω))/3 =
∑

I fI/(Ω
2
I − ω2). The true excitation energies, ΩI , which correspond to the

poles of the dynamic polarizability, are obtained from the solution of the
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eigenvalue problem,

QFI = Ω2
I FI . (§.58)

The oscillator strengths, fI , which correspond to the residues of the dynamic

polarizability, are given by

fI =
2

3

3
∑

β=1

|BT
β R1/2 FI |2, (§.59)

where FI are the eigenvectors of Eq. (§.58), (Bβ)ij =
∫

ψ∗
i rβψjdr, and {r1, r2, r3} =

{x, y, z}.

The adiabatic TDLDA calculations for optical spectra require only the

knowledge of the time-independent single-electron Kohn-Sham transition en-

ergies and wave functions. The most computationally demanding part in such

calculations is the evaluation of the coupling matrix given by Eq. (§.48). This

equation can be split into two parts: K = K(I) + K(II). The first term rep-

resents a double integral over 1 / |r− r′|. Instead of performing the costly

double integration by direct summation, we calculate this term by solving

the Poisson equation within the boundary domain. The conjugate-gradient

method is employed to solve

∇2Φijσ(r) = −4πψiσ(r)ψjσ(r). (§.60)
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The first term in Eq. (§.48) is calculated as

K
(I)
ijσ,klτ =

∫

Φijσ(r)ψkτ (r)ψlτ (r)dr. (§.61)

The Poisson equation method provides a considerable speed-up as compared

to the direct summation. The second term in Eq. (§.48) represents a double

integral over the functional derivative of the exchange-correlation energy,

δ2Exc[ρ] / δρσ(r)δρτ (r
′). Within the local approximation of the exchange-

correlation potential this term is reduced to a single integral,

K
(II)
ijσ,klτ =

∫

ψiσ(r)ψjσ(r)
δ2Exc[ρ]

δρσ(r)δρτ (r)
ψkτ (r)ψlτ (r)dr, (§.62)

where the LDA exchange-correlation energy, Exc[ρ], in analogy to Eq. (§.34).

Eq. (§.62) requires the evaluation of the second derivatives for the LDA

exchange-correlation energy with respect to spin-up and spin-down charge

densities. The LDA exchange energy per particle is normally approximated

by that of the homogeneous electron gas, [49]

εx[ρσ(r)] = − 3

4π

(

6π2ρσ(r)
)1/3

, σ = {↑, ↓}. (§.63)

The first derivative of the total exchange energy determines the LDA ex-

change potential,

δEx[ρ]

δρσ
= vx[ρσ] = − 1

π

(

6π2ρσ
)1/3

, σ = {↑, ↓}. (§.64)
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The second derivatives are:

δ2Ex[ρ]

δρ↑δρ↑
= −

(

2

9π

)1/3

ρ
−2/3
↑ ,

δ2Ex[ρ]

δρ↑δρ↓
= 0. (§.65)

A parameterized form of Ceperley-Alder functional [16,50,51] can be used

for the LDA correlation energy. This functional is based on two different

analytical expressions for rs < 1 and rs ≥ 1, where rs = (3/4πρ)1/3 is the

local Seitz radius and ρ = ρ↑ + ρ↓. One can adjust the parametrization for

rs < 1 to guarantee a continuous second derivative of the correlation energy.

The adjusted interpolation formula for the correlation energy per particle is

given by [52]

εU,Pc =















A ln rs +B + Crs ln rs +Drs +Xr2
s ln rs, rs < 1

γ/(1 + β1
√
rs + β2rs), rs ≥ 1,

(§.66)

where two separate sets of coefficients are used for the polarized spin (P ) and

unpolarized spin (U) cases. The numerical values of all fitting parameters

appearing in Eq. (§.66) can be found in Ref. [53]. The adjusted interpolation

formula for the correlation energy is continuous up to its second derivative,

while the original Perdew-Zunger parametrization is not [51].

Equations (§.63) − (§.66) describe only the cases of the completely po-

larized and unpolarized spin. For intermediate spin polarizations, the corre-
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lation energy can be obtained with a simple interpolation formula,

εc = εUc + ξ(ρ)[εPc − εUc ], (§.67)

where

ξ(ρ) =
1

1 − 2−1/3

(

x
4/3
↑ + x

4/3
↓ − 2−1/3

)

; x↑ =
ρ↑
ρ
, x↓ =

ρ↓
ρ
, (§.68)

The expression for the second derivative of the correlation energy in case of

an arbitrary spin polarization can be written as

δ2Ec[ρ]

δρσδρτ
=

δ2EU
c

δρ2
+ ξ(ρ)

(

δ2EP
c

δρ2
− δ2EU

c

δρ2

)

+

(

∂ξ(ρ)

∂ρσ
+
∂ξ(ρ)

∂ρτ

) (

δEP
c

δρ
− δEU

c

δρ

)

+
∂2ξ(ρ)

∂ρσ∂ρτ
ρ

(

εPc − εUc
)

, σ, τ = {↑, ↓},

(§.69)

where the spin polarization function, ξ(ρ), and its derivatives are given by

∂ξ(ρ)

∂ρ↑
=

4

3ρ(1 − 2−1/3)

(

x
1/3
↑ − x

4/3
↑ − x

4/3
↓

)

, (§.70)

∂2ξ(ρ)

∂ρ↑∂ρ↑
=

4

9ρ2(1 − 2−1/3)

(

x
−2/3
↑ − 8x

1/3
↑ + 7(x

4/3
↑ + x

4/3
↓ )

)

, (§.71)

∂2ξ(ρ)

∂ρ↑∂ρ↓
=

4

9ρ2(1 − 2−1/3)

(

7(x
4/3
↑ + x

4/3
↓ ) − 4(x

1/3
↑ + x

1/3
↓ )

)

. (§.72)

The TDLDA formalism presented in previous sections can be further

simplified for systems with the unpolarized spin. In this case, the spin-up
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and spin-down charge densities are equal, ρ↑ = ρ↓, and Eqs. (§.68), (§.70) −

(§.72) yield

ξ(ρ) = 0,
∂2ξ(ρ)

∂ρ↑∂ρ↑
=

4

9ρ2(21/3 − 1)
,

∂ξ(ρ)

∂ρ↑
= 0,

∂2ξ(ρ)

∂ρ↑∂ρ↓
= − 4

9ρ2(21/3 − 1)
. (§.73)

Since the coordinate parts of spin-up and spin-down Kohn-Sham wave func-

tions for systems with the unpolarized spin are identical, ψi↑ = ψi↓, it follows

that Qij↑,kl↑ = Qij↓,kl↓ and Qij↑,kl↓ = Qij↓,kl↑. This allows us to separate “sin-

glet” and “triplet” transitions by representing Eq. (§.58) in the basis set of

{F+,F−}, chosen as

F
{+,−}
ij =

1√
2

(Fij↑ ± Fij↓) . (§.74)

In this basis, the matrix Q becomes

Q
{+,−}
ij,kl = δi,kδj,lω

2
kl + 2

√

λijωijK
{+,−}
ij,kl

√

λklωkl, (§.75)

where K
{+,−}
ij,kl = Kij↑,kl↑±Kij↑,kl↓. The components of K{+,−} in their explicit
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form are given by

K+
ij,kl = 2

∫∫

ψi(r)ψj(r)ψk(r
′)ψl(r

′)

|r− r′| drdr′+

+ 2

∫

ψi(r)ψj(r)

(

δ2EU
c

δρ2
− 1

(9π)1/3ρ2/3

)

ψk(r)ψl(r)dr, (§.76)

K−
ij,kl = 2

∫

ψi(r)ψj(r)

(

4(εPc − εUc )

9(21/3 − 1)
− 1

(9π)1/3ρ2/3

)

ψk(r)ψl(r)dr. (§.77)

For most practical applications, only “singlet” transitions represented by the

F+ basis vectors are of interest. Triplet transitions described by the F−

vectors have zero dipole oscillator strength and do not contribute to optical

absorption. By solving Eq. (§.58) for the F+ vectors only, one can reduce

the dimension of the eigenvalue problem by a factor of two. Eqs. (§.75) −

(§.77), however, can only be applied to systems with the unpolarized spin.

In case of an arbitrary spin polarization, the general form of the matrix Q

presented by Eq. (§.57) with the coupling matrix given by Eq. (§.48) and the

functional derivatives given by Eqs. (§.64) through (§.72) must be used.

Other than the adiabatic local density approximation, no other approxi-

mations have been made. The exact solution of the matrix equation (§.58)

incorporates all relevant correlations among single-particle transitions.

The frequency-domain approach presented here lends itself naturally to

a massively parallel solution within the real-space grid. A practical solution

begins with solving the Kohn-Sham equation (Eq. §.38). Once the Kohn-
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Sham equation is solved, the wave functions and eigenvalues can be used to

set up the TDLDA equation for the excited states. Forming the coupling

matrix (Eq. §.48) is the most computationally intensive step. Fortunately,

each ijσ combination defines a row in the matrix as ψijσ is fixed within each

row of the ma as such it is easy to parallelize a solution to Eq. §.60. Once

this step is accomplished, one may evaluate the integrals of Eqs. §.61 and

§.62 as simple sums, for each element within a matrix row. The evaluation

of each matrix row is completely independent of the evaluation of another

row, leading to embarrassingly simple parallelization, with no need for com-

munication between processors working on different matrix rows. Once, the

matrix is diagnolized using any off-the-shelf diagonlization approach, e.g., QR

factorization. Further implementation details can be found elsewhere [54].

§.4 Pseudopotentials

The pseudopotential model of a solid has led the way in providing a workable

model for computing the electronic properties of materials [55]. For example,

it is now possible to predict accurately the properties of complex systems such

as quantum dots or semiconductor liquids with hundreds, if not thousands

of atoms.

The pseudopotential model treats matter as a sea of valence electrons

moving in a background of ion cores (Fig. §.2). The cores are composed of

nuclei and inert inner electrons. Within this model many of the complexities
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of an all-electron calculation are avoided. A group IV solid such as C with

6 electrons is treated in a similar fashion to Pb with 82 electrons since both

elements have 4 valence electrons.

Pseudopotential calculations center on the accuracy of the valence elec-

tron wave function in the spatial region away from the core, i.e., within

the “chemically active” bonding region. The smoothly varying pseudo wave

function is taken to be identical to the appropriate all-electron wave function

in the bonding regions. A similar construction was introduced by Fermi in

1934 [56] to account for the shift in the wave functions of high lying states of

alkali atoms subject to perturbations from foreign atoms. In this remarkable

paper, Fermi introduced the conceptual basis for both the pseudopotential

and the scattering length. In Fermi’s analysis, he noted that it was not

necessary to know the details of the scattering potential. Any number of

potentials which reproduced the phase shifts of interest would yield similar

scattering events.

A significant advance in the construction of pseudopotentials occurred

with the development of density functional theory [8,14,15] . Within density

functional theory, the many body problem is mapped on to a one-electron

Hamiltonian. The effects of exchange and correlation are subsumed into a one

electron potential that depends only on the charge density. This procedure

allows for a great simplification of the electronic structure problem. Without

this approach, most electronic structure methods would not be feasible for

systems of more than a few atoms. The chief limitation of density functional
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Figure §.2: Standard pseudopotential model of a solid. The ion cores com-
posed of the nuclei and tightly bound core electrons are treated as chemically
inert. The pseudopotential model describes only the outer, chemically active,
valence electrons.
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methods is that they are appropriate only for the ground state structure and

cannot be used to describe excited states without other approximations.

In this section, the procedure for constructing an ab initio pseudopoten-

tial within density functional theory will be illustrated. Using the approach

Kohn and Sham [15], one can write down a Hamiltonian corresponding to a

one-electron Schrödinger equation. It is not difficult to solve the Kohn-Sham

equation (Eq. §.87) for an atom as the atomic charge density is taken to be

spherically symmetric. The problem reduces to solving a one-dimensional

equation. The Hartree and exchange-correlation potentials can be iterated

to form a self-consistent field. Usually the process is so quick that it can be

done on desktop or laptop computer in a matter of seconds. In three dimen-

sions, as for a complex atomic cluster, the problem is highly non-trivial. One

major difficulty is the range of length scales involved. For example, in the

case of a multi-electron atom, the most tightly bound, core electrons can be

confined to within ∼ 0.01 Å whereas the outer valence electron may extend

over ∼ 1-5 Å. In addition, the nodal structure of the atomic wave functions

are difficult to replicate with a simple basis, especially the wave function cusp

at the origin where the Coulomb potential diverges. The pseudopotential ap-

proximation eliminates this problem and is quite efficacious when combined

with density functional theory. However, it should be noted that the pseu-

dopotential approximation is not dependent on the density functional theory.

Pseudopotentials can be created without resort to density functional theory,

e.g., pseudopotentials can be created within Hartree-Fock theory.
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To illustrate the construction of an ab initio pseudopotential, let us con-

sider a sodium atom. Extensions to more complex atoms is straightforward.

The starting point of any pseudopotential construction is to solve for the

atom within density functional theory, i.e., the electronic structure problem

for the Na atom is solved, including the core and valence electrons. In partic-

ular, one extracts the eigenvalue, ε3s, and the corresponding wave function,

ψ3s(r) for the single valence electron. Several conditions for the Na pseu-

dopotential are empolyed: (1) The potential binds only the valence electron:

the 3s-electron. (2) The eigenvalue of the corresponding valence electron be

identical to the full potential eigenvalue. (The full potential is also called

the all-electron potential.) (3) The wave function be nodeless and identical

to the “all electron” wave function outside the core region. For example, we

construct a pseudo-wave function, φ3s(r) such that φ3s(r) = ψ3s(r) for r > rc

where rc defines the size spanned by the ion core, i.e., the nucleus and core

electrons. For Na, this means knowing the spatial extent of the “size” of the

ion core, which includes the 1s22s22p6 states and the nucleus. Typically, the

size of the ion core is taken to be less than the distance corresponding of

the maximum of the valence wave function as measured from the nucleus,

but greater than the distance of the outermost node from the nucleus. This

valence wave functions are depicted in Fig. §.3.

The pseudo-wave function, φp(r), must be identical to the all electron

wave function, ψAE(r), outside the core: φp(r) = ψAE(r) for r > rc. This

condition will guarantee that the pseudo-wave function possesses identical
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Figure §.3: Pseudopotential wave functions compared to all-electron wave
functions for the sodium atom. The all-electron wave functions are indicated
by the dashed lines.

properties as the all electron wave function. For r < rc, one may alter the

all-electron wave function as desired within certain limitations, e.g., the wave

function in this region must be smooth and nodeless.

Another very important criterion is mandated. Namely, the integral of

the pseudocharge density, i.e., square of the wave function |φp(r)|2, within

the core should be equal to the integral of the all-electron charge density.

Without this condition, the pseudo-wave function can differ by a scaling
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factor from the all-electron wave function, that is, φp(r) = C × ψAE(r) for

r > rc where the constant, C, may differ from unity. Since we expect the

chemical bonding of an atom to be highly dependent on the tails of the

valence wave functions, it is imperative that the normalized pseudo wave

function be identical to the all-electron wave functions. The criterion by

which one insures C = 1 is called norm conserving [57]. Some of the earliest

ab initio potentials did not incorporate this constraint [58]. These potentials

are not used for accurate computations. The chemical properties resulting

from these calculations using these non-norm conserving pseudopotentials

are quite poor when compared to experiment or to the more accurate norm

conserving pseudopotentials [55].

In 1980, Kerker [59] proposed a straightforward method for constructing

local density pseudopotentials that retained the norm conserving criterion.

He suggested that the pseudo-wave function have the following form:

φp(r) = rl exp (p(r)) for r < rc (§.78)

where p(r) is a simple polynomial: p(r) = −a0r
4 − a1r

3 − a2r
2 − a3 and

φp(r) = ψAE(r) for r > rc (§.79)

This form of the pseudo-wave function for φp assures us that the function

will be nodeless and have the correct behavior at large r. Kerker proposed

criteria for fixing the parameters (a0, a1, a2 and a3). One criterion is that
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the wave function be norm conserving. Other criteria include: (a) The all

electron and pseudo-wave functions have the same valence eigenvalue. (b)

The pseudo-wave function be nodeless and be identical to the all-electron

wave function for r > rc. (c) The pseudo-wave function must be continuous

as well as the first and second derivatives of the wave function at rc.

Other local density pseudopotentials include those proposed by Hamann,

Schluter, and Chiang [57], Bachelet, Hamann, and Schluter [60] and Green-

side and Schluter [61]. These pseudopotentials were constructed from a differ-

ent perspective. The all-electron potential was calculated for the free atom.

This potential was multiplied by a smooth, short range cut-off function which

removes the strongly attractive and singular part of the potential. The cut-off

function is adjusted numerically to yield eigenvalues equal to the all-electron

valence eigenvalues, and to yield nodeless wave functions converged to the

all electron wave functions outside the core region. Again, the pseudo-charge

within the core is constrained to be equal to the all-electron value.

As indicated, there is some flexibility in constructing pseudopotentials.

While all local density pseudopotentials impose the condition that

φp(r) = ψAE(r)

for r > rc, the construction for r < rc. is not unique. The non-uniqueness of

the pseudo wave function was recognized early in its inception [55]. This at-

tribute can be exploited to optimize the convergence of the pseudopotentials
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for the basis of interest. Much effort has been made to construct “soft” pseu-

dopotentials. By soft, one means a rapidly convergent calculation using a

simple basis such as plane waves. Typically, soft potentials are characterized

by a large core radius, rc. As the core radius becomes larger, the convergence

between the all electron and pseudo wave functions is postponed to larger

distances. The quality of the pseudo wave functions starts to deteriorate and

the the transferability of the pseudopotential between the atom and complex

environments such as a cluster of atoms becomes limited.

Several schemes have been developed to generate soft pseudopotentials

for species which extend effectively the core radius while preserving transfer-

ability. The primary motivation for such schemes is to reduce the size of the

basis. One of the earliest discussions of such issues is from Vanderbilt [62].

A common measure of pseudopotential softness is to examine the behavior of

the potential in reciprocal space. For example, a hard core pseudopotential,

i.e. one that scales as 1/r2 for small r will decay only as 1/q in reciprocal

space. This rate of decay is worse than using the bare coulomb potential

which scales as 1/q2.

The Kerker pseudopotential [59] does no better than the coulomb poten-

tial as the Kerker pseudopotential has a discontinuity in its third derivative

at the origin and at the cut-off radius. This gives rise to a slow 1/q2 decay of

the potential, although one should examine each case, as the error introduced

by truncation of such a potential in reciprocal space may still be acceptable

in terms of yielding accurate wave functions and energies. Hamann-Schluter-
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Chiang [57] potentials often converge better than the Kerker potentials [59]

in that they contain no such discontinuities.

An outstanding issue that remains unresolved is the “best” criterion to

use in constructing an “optimal” pseudopotential. An optimal pseudopoten-

tial is one that minimizes the number of basis functions required to achieve

the desired goal; it yields a converged total energy yet does not sacrifice

transferability.

One straightforward approach to optimizing a pseudopotential is to build

additional constraints into the polynomial given in Eq. (§.78). For example,

suppose we write

p(r) = co +

N
∑

n=1

cnr
n (§.80)

In Kerker’s scheme, N=4. However, there is no compelling reason for de-

manding that the series terminate at this particular point. If we extend the

expansion, we may impose additional constraints. For example, we might

try to constrain the reciprocal space expansion of the pseudo- wave function

so that beyond some momentum cut-off the function vanishes. A different

approach has been suggested by Troullier and Martins, 1991 [63]. They write

Eq. §.80 as

p(r) = co +
6

∑

n=1

c2nr
2n (§.81)

As usual, they constrained the coefficients to be norm conserving. In addi-

tion, they demanded continuity of the pseudo-wave functions and the first

four derivatives at rc. The final constraint was to demand zero curvature of
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the pseudopotential at the origin. These potentials tend to be quite smooth

and converge very rapidly in reciprocal space.

Once the pseudo wave function is defined as in Eqs. (§.78,§.79) one can

invert the Kohn-Sham equation and solve for the ion core pseudopotential,

Vion,p:

V n
ion,p(~r) = En − VH(~r) − Vxc[~r, ρ(~r)] +

~
2∇2φp,n
2mφp,n

(§.82)

This potential, when self-consistently screened by the pseudo-charge density:

ρ(~r) = − e
∑

n,occup

|φp,n(~r)|2 (§.83)

will yield an eigenvalue of En and a pseudo wave function φp,n. The pseudo

wave function by construction will agree with the all electron wave function

away from the core.

There are some important issues to consider about the details of this

construction. First, the potential is state dependent as written in Eq. (§.82),

i.e., the pseudopotential is dependent on the quantum state n. This issue

can be handled by recognizing the nonlocality of the pseudopotential. The

potential is different for an s-, p-, or d-electron. The nonlocality appears in

the angular dependence of the potential, but not in the radial coordinate.

A related issue is whether the potential is highly dependent on the state

energy, e.g., if the potential is fixed to replicate the 3s state in Na, will it

also do well for the 4s, 5s, 6s, etc.? Of course, one could also question how

dependent the pseudopotential is on the atomic state used for its construc-



§.4. PSEUDOPOTENTIALS 53

tion. For example, would a Na potential be very different for a 3s13p0 versus

a 3s1/23p1/2 configuration? Finally, how important are loosely bound core

states in defining the potential? For example, can one treat the 3d states in

copper as part of the core or part of the valence shell?

Each of this issues has been carefully addressed in the literature. In

most cases, the separation between the core states and the valence states

is clear. For example, in Si there is no issue that the core is composed of

the 1s22s2p6 states. However, the core in Cu could be considered to be the

1s22s2p63s23p63d10 configuration with the valence shell consisting of the 4s1

state. Alternatively, one could well consider the core to be the 1s22s2p63s23p6

configuration with the valence shell composed of the 3d104s1 states. It is quite

apparent that solely treating the valence state in Cu as a 4s state cannot be

correct, otherwise K and Cu would be chemically similar as K has the same

electron core as Cu, save the 3d shell. It is the outer 3d shell that distinguishes

Cu from K. Such issues need are traditionally considered on a case by case

situation. It is always possible to construct different pseudopotentials one

for each core-valence dichotomy. One can examine the resulting electronic

structure for each potential, and verify the role of including a questionable

state as a valence or core state.

Another aspect of this problem centers on “core-valence” exchange-correlation.

In the all electron exchange-correlation potential, the charge density is com-

posed of the core and valence states; in the pseudopotential treatment only

the valence electrons are included. This separation neglects terms that may
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arise between the overlap of the valence and core states. There are well de-

fined procedures for including these overlap terms. It is possible to include a

fixed charge density from the core and allow the valence overlap to be explic-

itly included. This procedure is referred to as a partial core correction [64].

This correction is especially important for elements such as Zn, Cd and Hg

where the outermost filled d-shell can contribute to the chemical bonding.

Again, the importance of this correction can be tested by performing calcu-

lations with and without the partial core. Of course, one might argue that

the most accurate approach would be to include any “loosely bound” core

states as valence states. This approach is often not computationally feasi-

ble nor desirable. For example, the Zn core without the 3d states results in

dealing with an ion core pseudopotential for Zn+12. This results in a very

strong pseudopotential, which is required to bind 12 valence electrons. The

basis must contain highly localized functions to replicate the d-states plus

extended states to replicate the s-states. Moreover, the number of occupied

eigenstates increases by a factor of six. Since most “standard” algorithms to

solve for eigenvalues scale superlinearly in time with the number of eigenval-

ues (such as N2
eig where Neig is the number of require eigenvalues), this is a

serious issue.

With respect to the state dependence of the pseudopotential, these prob-

lems can be overcome with little computational effort. Since the core elec-

trons are tightly bound, the ion core potential is highly localized and is not

highly sensitive to the ground state configuration used to compute the pseu-
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dopotential. There are well-defined tests for assessing the accuracy of the

pseudopotential, especially in terms of the phase shifts [55]. Also, it should

be noted that higher excited states sample the tail of the pseudopotential.

This pseudopotential should converge to the all electron potential outside of

the core. A significant source of error here is the local density approximation.

The LDA yields a potential that scales exponentially at large distances and

not as one would expect for an image charge, i.e., intuitively, the true poten-

tial should incorporate an image potential such that Vxc(r → ∞) → −e2/r.

Nonlocality in the pseudopotential is often treated in Fourier space, but

it may also be expressed in real space. The interactions between valence

electrons and pseudo-ionic cores may be separated into a local potential and

a Kleinman and Bylander [65] form of a nonlocal pseudopotential in real

space [63],

V p
ion(~r)φn(~r) =

∑

a

Vloc(|~ra|)φn(~r) +
∑

a, n,lm

Ga
n,lmulm(~ra)∆Vl(ra), (§.84)

Ka
n,lm =

1

< ∆V a
lm >

∫

ulm(~ra)∆Vl(ra)ψn(~r)d
3r, (§.85)

and < ∆V a
lm > is the normalization factor,

< ∆V a
lm >=

∫

ulm(~ra)∆Vl(ra)ulm(~ra)d
3r, (§.86)

where ~ra = ~r− ~Ra, and the ulm are the atomic pseudopotential wave functions

of angular momentum quantum numbers (l, m) from which the l-dependent
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ionic pseudopotential, Vl(r), is generated. ∆Vl(r) = Vl(r) − Vloc(r) is the

difference between the l component of the ionic pseudopotential and the

local ionic potential.

In the case of Na, one might choose the local part of the potential to

replicate only the l = 0 component as defined by the 3s state. The nonlocal

parts of the potential would then contain only the l = 1 and l = 2 com-

ponents. For simple metals like Na or electronic materials such as Si and

GaAs, the angular momentum components for l = 3 (or higher) are not sig-

nificant in the ground state wave functions. In these systems, one can treat

the summation over l = 0, 1, 2 to be complete.

The choice of the angular component for the local part of the potential is

somewhat arbitrary. It is often convenient to chose the highest l-component

present. This avoids the complex projections with the highest l. These issues

can be tested by choosing different components for the local potential.

In Fig. §.4, the ion core pseudopotential for Na is presented using the

Troullier-Martins formalism for creating pseudopotentials. The nonlocality of

the potential is evident by the existence of the three potentials corresponding

to the s-, p- and d-states.
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Figure §.4: Pseudopotential compared to the all electron potential for the
sodium atom.

§.5 Solving the eigenvalue problem

Once the pseudopotential has been determined, the resulting eigenvalue prob-

lem needs to be solved for the system of interest:

l(
−~

2∇2

2m
+ V p

ion(~r) + VH(~r) + Vxc[~r, ρ(~r)] ) φn(~r) = Enφn(~r) (§.87)

where V p
ion is the ionic pseudopotential for the system. Since the ion cores

can be treated as chemically inert and highly localized, it is a simple matter
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to write:

V p
ion(~r) =

∑

~Ra

V p
ion,a(~r − ~Ra) (§.88)

where V p
ion,a is the ion core pseudopotential associated with the atom, a, at

a position ~Ra.

A major difficulty in solving the eigenvalue problem in Eq. (§.87) are

the length and energy scales involved. The inner (core) electrons are highly

localized and tightly bound compared to the outer (valence electrons). A sim-

ple basis function approach is frequently ineffectual. For example, a plane

wave basis might require 106 waves to represent converged wave functions

for a core electron whereas only 102 waves are required for a valence elec-

tron [55]. The pseudopotential overcomes this problem by removing the core

states from the problem and replacing the all electron potential by one that

replicates only the chemically active, valence electron states [55]. By con-

struction, the pseudopotential reproduces the valence state properties such

as the eigenvalue spectrum and the charge density outside the ion core.

Since the pseudopotential is weak, simple basis sets such as a plane wave

basis can be quite effective for crystalline matter. For example, in the case

of crystalline silicon only 50-100 plane waves need to be used. The resulting

matrix representation of the Schrödinger operator is dense in Fourier (plane

wave) space, but it is not formed explicitly. Instead, matrix-vector product

operations are performed with the help of fast Fourier transforms. This plane

wave approach is akin to spectral techniques used in solving certain types of
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partial differential equations [66]. The plane wave method uses a basis of the

form:

ψ~k(~r) =
∑

~G

α(~k, ~G) exp(i(~k + ~G) · ~r) (§.89)

where ~k is the wave vector, ~G is a reciprocal lattice vector and α(~k, ~G)

represent the coefficients of the basis. In a plane wave basis, the Laplacian

term of the Hamiltonian is represented by a diagonal matrix. The potential

term V p
tot gives rise to a dense matrix.

In real space, it is trivial to operate with the potential term which is

represented by a diagonal matrix, and in Fourier space it is trivial to operate

with the Laplacian term, which is also represented by a diagonal matrix. The

use of plane wave bases also leads to natural preconditioning techniques that

are obtained by simply employing a matrix obtained from a smaller plane

wave basis, neglecting the effect of high frequency terms on the potential. For

periodic systems, where ~k is a good quantum number, the plane wave basis

coupled to pseudopotentials is quite effective. However, for non-periodic

systems such as clusters, liquids or glasses, the plane wave basis must be

combined with a supercell method [55]. The supercell repeats the localized

configuration to impose periodicity to the system. This preserves the validity

of ~k and Bloch’s theorem, which Eq. (§.89) obeys. There is a parallel to

be made with spectral methods that are quite effective for simple periodic

geometries, but lose their superiority when more generality is required. In

addition to these difficulties the two fast Fourier transforms performed at
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each iteration can be costly, requiring n log n operations, where n is the

number of plane waves, versus O(N) for real space methods where N is the

number of grid points. Usually, the matrix size N × N is larger than n × n

but only within a constant factor. This is exacerbated in high performance

environments where fast Fourier transforms require an excessive amount of

communication and are particularly difficult to implement efficiently.

Another popular basis employed with pseudopotentials include Gaussian

orbitals [67–70]. Gaussian bases have the advantage of yielding analytical

matrix elements provided the potentials are also expanded in Gaussians.

However, the implementation of a Gaussian basis is not as straightforward

as with plane waves. For example, numerous indices must be employed to

label the state, the atomic site, and the Gaussian orbitals employed. On the

positive side, a Gaussian basis yields much smaller matrices and requires less

memory than plane wave methods. For this reason Gaussians are especially

useful for describing transition metal systems.

An alternative approach is to avoid the use of a explicit basis. For exam-

ple, one can use a real space method that avoids the use of plane waves and

fast Fourier transforms altogether. This approach has become popular and

different versions of this general approach have been implemented [66,71–82].

A real space approach overcomes many of the complications involved with

non-periodic systems, and although the resulting matrices can be larger than

with plane waves, they are sparse and the methods are easier to parallelize.

Even on sequential machines, real space methods can be an order of magni-
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tude faster than the traditional approach.

Real space algorithms avoid the use of fast Fourier transforms by per-

forming all calculations in real physical space instead of Fourier space. Fast

Fourier transforms require global communications; as such, they are not ef-

ficient for implementation on multi-processor platforms. The only global

operation remaining in real space approaches is that of the inner products.

These inner products are required when forming the orthogonal basis used

in the generalized Davidson procedure as discussed below.

The simplest real space method utilizes finite difference discretization on

a cubic grid. A key aspect to the success of the finite difference method is the

availability of higher order finite difference expansions for the kinetic energy

operator, i.e., expansions of the Laplacian [83]. Higher order finite difference

methods significantly improve convergence of the eigenvalue problem when

compared with standard finite difference methods. If one imposes a simple,

uniform grid on our system where the points are described in a finite domain

by (xi, yj, zk), we approximate ∂2ψ
∂x2 at (xi, yj, zk) by

∂2ψ

∂x2
=

M
∑

n=−M

Cnψ(xi + nh, yj, zk) +O(h2M+2), (§.90)

where h is the grid spacing and M is a positive integer. This approximation

is accurate to O(h2M+2) upon the assumption that ψ can be approximated

accurately by a power series in h. Algorithms are available to compute the

coefficients Cn for arbitrary order in h [83].
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With the kinetic energy operator expanded as in Eq. (§.90), one can set up

a one-electron Schrödinger equation over a grid. One may assume a uniform

grid, but this is not a necessary requirement. ψ(xi, yj, zk) is computed on

the grid by solving the eigenvalue problem:

− ~
2

2m

[

M
∑

n1=−M

Cn1
ψn(xi + n1h, yj, zk) +

M
∑

n2=−M

Cn2
ψn(xi, yj + n2h, zk)

+
M

∑

n3=−M

Cn3
ψn(xi, yj, zk + n3h)

]

+ [ Vion(xi, yj, zk) + VH(xi, yj, zk)

+Vxc(xi, yj, zk) ]ψn(xi, yj, zk) = En ψn(xi, yj, zk) (§.91)

If we have L grid points, the size of the full matrix resulting from the above

problem is L× L.

The grid we use is based on points uniformly spaced in a three dimen-

sional cube as shown in Fig. §.5, with each grid point corresponding to a row

in the matrix. However, many points in the cube are far from any atoms in

the system and the wave function on these points may be replaced by zero.

Special data structures may be used to discard these points and keep only

those having a nonzero value for the wave function. The size of the Hamilto-

nian matrix is usually reduced by a factor of two to three with this strategy,

which is quite important considering the large number of eigenvectors which

must be saved. Further, since the Laplacian can be represented by a simple

stencil, and since all local potentials sum up to a simple diagonal matrix,
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Figure §.5: Uniform grid illustrating a typical configuration for examining the
electronic structure of a localized system. The dark gray sphere represents
the domain where the wave functions are allowed to be nonzero. The light
spheres within the domain are atoms.
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the Hamiltonian need not be stored. Handling the ionic pseudopotential is

complex as it consists of a local and a non-local term (Eqs. (§.84 )and (§.85)).

In the discrete form, the nonlocal term becomes a sum over all atoms, a, and

quantum numbers, (l, m) of rank-one updates:

Vion =
∑

a

Vloc,a +
∑

a,l,m

ca,l,mUa,l,mU
T
a,l,m (§.92)

where Ua,l,m are sparse vectors which are only non-zero in a localized region

around each atom, ca,l,m are normalization coefficients.

There are several difficulties in solving the eigen problems, in addition

to the size of the matrices. First, the number of required eigenvectors is

proportional to the atoms in the system, and can grow up to thousands, if not

more. Besides storage, maintaining the orthogonality of these vectors can be

a formidable task. Second, the relative separation of the eigenvalues becomes

increasingly poor as the matrix size increases and this has an adverse effect on

the rate of convergence of the eigenvalue solvers. Preconditioning techniques

attempt to alleviate this problem. On the positive side, the matrix need not

be stored as was mentioned earlier and this reduces storage requirement. In

addition, good initial eigenvector estimates are available at each iteration

from the previous self-consistency loop.

A popular form of extracting the eigenpairs is based on the generalized

Davidson [84] method, in which the preconditioner is not restricted to be

a diagonal matrix as in the Davidson method. (A detailed description can
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be found in [85].) Preconditioning techniques in this approach are typically

based on filtering ideas and the fact that the Laplacian is an elliptic operator

[86]. The eigenvectors corresponding to the few lowest eigenvalues of ∇2

are smooth functions and so are the corresponding wave functions. When

an approximate eigenvector is known at the points of the grid, a smoother

eigenvector can be obtained by averaging the value at every point with the

values of its neighboring points. Assuming a cartesian (x, y, z) coordinate

system, the low frequency filter acting on the value of the wave function at the

point (i, j, k), which represents one element of the eigenvector, is described

by:

[ ψi−1,j,k + ψi,j−1,k + ψi,j,k−1 + ψi+1,j,k + ψi,j+1,k + ψi,j,k+1

12

]

+
ψi,j,k

2
→ (ψi,j,k)Filtered (§.93)

It is worth mentioning that other preconditioners that have been tried

have resulted in mixed success. The use of shift-and-invert [87] involves solv-

ing linear systems with A− σI, where A is the original matrix and the shift

σ is close to the desired eigenvalue. These methods would be prohibitively

expensive in most situations, given the size of the matrix and the number of

times that A − σI must be factored. Alternatives based on an approximate

factorization such as ILUT [88] are ineffective beyond the first few eigenval-

ues. Methods based on approximate inverse techniques have been somewhat

more successful, performing better than filtering at additional preprocessing
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and storage cost. Preconditioning ‘interior’ eigenvalues, i.e., eigenvalues lo-

cated well inside the interval containing the spectrum, is still a very hard

problem. Current solutions only attempt to dampen the effect of eigenvalues

which are far away from the ones being computed. This is in effect what is

achieved by filtering and sparse approximate inverse preconditioning. These

techniques do not reduce the number of steps required for convergence in the

same way that shift-and-invert techniques do. However, filtering techniques

are inexpensive to apply and result in fairly substantial savings in iterations.

§.6 Properties of confined systems: clusters

The electronic and structural properties of atomic clusters stand as one of

the outstanding problems in materials physics. Clusters possess properties

that are characteristic of neither the atomic nor solid state. For example, the

energy levels in atoms may be discrete and well-separated in energy relative

to kT . In contrast, solids have continuum of states (energy bands). Clusters

may reside between these limits, i.e., the energy levels may be discrete, but

with a separation much less than kT .

Real space methods are ideally suited for investigating these systems.

In contrast to plane wave methods, real space methods can examine non-

periodic systems without introducing artifacts such as supercells. Also, one

can easily examine charged clusters. In supercell configurations, unless a

compensating background charge is added, the Coulomb energy diverges for
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charged clusters.

A closely related issue concerns electronic excitations. In periodic sys-

tems, it is nontrivial to consider localized excitation, e.g., with band theory

exciting an atom in one cell, excites all atoms in all the equivalent cells. Den-

sity functional formalisms often avoid these issues by considering localized

or non-periodic systems.

§.6.1 Structure

Perhaps the most fundamental issue in dealing with clusters is determining

their structure. Before any accurate theoretical calculations can be performed

for a cluster, the atomic geometry of a system must be defined. However, this

can be a formidable exercise. Serious problems arise from the existence of

multiple local minima in the potential-energy-surface of these systems; many

similar structures can exist with vanishingly small energy differences.

A convenient method to determine the structure of small or moderate

sized clusters is simulated annealing [89]. Within this technique, atoms are

randomly placed within a large cell and allowed to interact at a high (usu-

ally fictive) temperature. Within this temperature regime, atoms will sam-

ple a large number of configurations. As the system is cooled, the number

of high energy configurations sampled is restricted. If the anneal is done

slowly enough, the procedure should quench out structural candidates for

the ground state structures.

Langevin molecular dynamics is well suited for simulated annealing meth-
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ods. In Langevin dynamics, the ionic positions, Rj, evolve according to

Mj R̈j = F({Rj}) − γMj Ṙj + Gj (§.94)

where F({Rj}) is the interatomic force on the j-th particle, and {Mj} are

the ionic masses. The last two terms on the right hand side of Eq. (§.94) are

the dissipation and fluctuation forces, respectively. The dissipative forces are

defined by the friction coefficient, γ. The fluctuation forces are defined by

random Gaussian variables, {Gi}, with a white noise spectrum:

〈Gα
i (t)〉 = 0 and 〈Gα

i (t)G
α
j (t

′)〉 = 2γ Mi kB T δij δ(t− t′) (§.95)

The angular brackets denote ensemble or time averages, and α stands for

the Cartesian component. The coefficient of T on the right hand side of

Eq. (§.95) insures that the fluctuation-dissipation theorem is obeyed, i.e.,

the work done on the system is dissipated by the viscous medium ( [90,91]).

The interatomic forces can be obtained from the Hellmann-Feynman theorem

using the pseudopotential wave functions.

Langevin simulations using quantum forces can be contrasted with other

techniques such as the Car-Parrinello method [92,93]. Langevin simulations

as outlined above do not employ fictitious electron dynamics; at each time

step the system is quenched to the Born-Oppenheimer surface and the quan-

tum forces are determined. This approach requires a fully-self consistent

treatment of the electronic structure problem; however, because the inter-
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atomic forces are true quantum forces, the resulting molecular dynamics

simulation can be performed with much larger time steps. Typically, it is

possible to use steps an order of magnitude larger than in the Car-Parrinello

method [94]. It should be emphasized that neither of these methods is par-

ticularly efficacious without the pseudopotential approximation.

To illustrate the simulated annealing procedure, we consider a silicon

cluster of seven atoms. With respect to the technical details for this example,

the initial temperature of the simulation was taken to be about 3000 K; the

final temperature was taken to be 300 K. The annealing schedule lowered the

temperature 500 K each 50 time steps. The time step was taken to be 5 fs.

The friction coefficient in the Langevin equation was taken to be 6 × 10−4

a.u.1 After the clusters reached a temperature of 300 K, they were quenched

to 0 K. The ground state structure was found through a direct minimization

by a steepest descent procedure.

Choosing an initial atomic configuration for the simulation takes some

care. If the atoms are too far apart, they will exhibit Brownian motion, which

is appropriate for Langevin dynamics with the interatomic forces zeroed. In

this case, the atoms may not form a stable cluster as the simulation proceeds.

Conversely, if the atoms are too close together, they may form a metastable

cluster from which the ground state may be kinetically inaccessible even at

the initial high temperature. Often the initial cluster is formed by a random

11 atomic unit (a.u.) is defined by ~ = m = e = 1. The unit ofenergy is the hartree (1
hartree = 27.2 eV); the unit of length is the bohr radius (1 bohr = 0.529Å).
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placement of the atoms with a constraint that any given atom must reside

within 1.05 and 1.3 times the bond length from at least one atom where

the bond the length is defined by the crystalline environment. The cluster

in question is placed in a spherical domain. Outside of this domain, the

wave function is required to vanish. The radius of the sphere is such that

the outmost atom is at least 6 a.u. from the boundary. Initially, the grid

spacing was 0.8 a.u. For the final quench to a ground state structure, the

grid spacing was reduced to 0.5 a.u. As a rough estimate, one can compare

this grid spacing with a plane wave cutoff of (π/h)2 or about 40 Ry for h=0.5

a.u.

In Fig. §.6, we illustrate the simulated anneal for the Si7 cluster. The ini-

tial cluster contains several incipient bonds, but the structure is far removed

from the ground state by approximately 1 eV/atom. In this simulation, at

about 100 time steps a tetramer and a trimer form. These units come to-

gether and precipitate a large drop in the binding energy. After another ∼100

time steps, the ground state structure is essentially formed. The ground state

of Si7 is a bicapped pentagon, as is the corresponding structure for the Ge7

cluster. The binding energy shown in Fig. §.6 is relative to that of an iso-

lated Si atom. Gradient corrections [18, 45], or spin polarization [95] haver

not been included in this example.. Therefore, the binding energies indicated

in the Figure are likely to be overestimated by ∼ 20% or so.

In Fig. §.7, the ground state structures for Sin are presented for n ≤ 7.

The structures for Gen are very similar to Sin. The primary difference resides
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Figure §.6: Binding energy of Si7 during a Langevin simulation. The initial
temperature is 3000 K; the final temperature is 300 K. Bonds are drawn for
interatomic distances of less than 2.5Å. The time step is 5 fs.
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in the bond lengths. The Si bond length in the crystal is 2.35 Å, whereas in

Ge the bond length is 2.44 Å. This difference is reflected in the bond lengths

for the corresponding clusters; Sin bond lengths are typically a few percent

shorter than the corresponding Gen clusters.

It should be emphasized that this annealing simulation is an optimization

procedure. As such, other optimization procedures may be used to extract

the minimum energy structures. Recently, a genetic algorithm has been used

to examine carbon clusters [99]. In this algorithm, an initial set of clusters is

“mated” with the lowest energy offspring “surviving”. By examining several

thousand generations, it is possible to extract a reasonable structure for the

ground state. The genetic algorithm has some advantages over a simulated

anneal, especially for clusters which contain more than ∼20 atoms. One of

these advantages is that kinetic barriers are more easily overcome. How-

ever, the implementation of the genetic algorithm is more involved than an

annealing simulation, e.g., in some cases “mutations,” or ad hoc structural

rearrangements, must be introduced to obtain the correct ground state [99].

§.6.2 Photoemission spectra

A very useful probe of condensed matter involves the photoemission pro-

cess. Incident photons are used to eject electrons from a solid. If the energy

and spatial distributions of the electrons are known, then information can

be obtained about the electronic structure of the materials of interest. For

crystalline matter, the photoemission spectra can be related to the electronic
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Figure §.7: Ground state geometries and some low-energy isomers of Sin
(n ≤ 7) clusters. Interatomic distances are in Å. The values in parentheses
are from Ref. [96–98].
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density of states. For confined systems, the interpretation is not as straight-

forward. One of the earliest experiments performed to examine the electronic

structures of small semiconductor clusters examined negatively charged Sin

and Gen (n ≤ 12) clusters [100]. The photoemission spectra obtained in

this work were used to gauge the energy gap between the highest occu-

pied state and the lowest unoccupied state. Large gaps were assigned to

the “magic number” clusters, while other clusters appeared to have vanish-

ing gaps. Unfortunately, the first theoretical estimates [101] for these gaps

showed substantial disagreements with the measured values. It was proposed

by Cheshnovsky et al. [100], that sophisticated calculations including tran-

sition cross sections and final states were necessary to identify the cluster

geometry from the photoemission data. The data were first interpreted in

terms of the gaps obtained for neutral clusters; it was later demonstrated

that atomic relaxations within the charged cluster are important in analyz-

ing the photoemission data [102, 103]. In particular, atomic relaxations as a

result of charging may change dramatically the electronic spectra of certain

clusters. These charge induced changes in the gap were found to yield very

good agreement with the experiment.

The photoemission spectrum of Ge−10 illustrates some of the key issues.

Unlike Si−10 , the experimental spectra for Ge−10 does not exhibit a gap. Chesh-

novsky et al. interpreted this to mean that Ge−10 does not exist in the same

structure as Si−10. This is a strange result. Si and Ge are chemically similar

and the calculated structures for both neutral structures are similar. The
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lowest energy structure for both ten atom clusters is the tetracapped trig-

onal prism (labeled by I in Fig. §.8). The photoemission spectra for these

clusters can be simulated by using Langevin dynamics. The clusters are

immersed in a fictive heat bath, and subjected to stochastic forces. If one

maintains the temperature of the heat bath and averages over the eigenvalue

spectra, a density of states for the cluster can be obtained. The heat bath

resembles a buffer gas as in the experimental setup, but the time intervals

for collisions are not similar to the true collision processes in the atomic

beam. The simulated photoemission spectrum for Si−10 is in very good agree-

ment with the experimental results, reproducing both the threshold peak and

other features in the spectrum. If a simulation is repeated for Ge−10 using the

tetracapped trigonal prism structure, the resulting photoemission spectrum

is not in good agreement with experiment. Moreover, the calculated electron

affinity is 2.0 eV in contrast to the experimental value of 2.6 eV. Moreover,

there is no reason to believe that the tetracapped trigonal prism structure is

correct for Ge10 when charged. In fact, we find that the bicapped antiprism

structure is lower in energy for Ge−10 . The resulting spectra using both

structures (I and II in Fig. §.8) are presented in Fig. §.9, and compared to

the photoemission experiment. The calculated spectrum using the bicapped

antiprism structure is in very good agreement with the photoemission. The

presence of a gap is indicated by a small peak removed from the density of

states [Fig. §.9(a)]. This feature is absent in the bicapped antiprism struc-

ture [Fig. §.9(b)] and consistent with experiment. For Ge10, charging the
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(II)(I)

Figure §.8: Two possible isomers for Si10 or Ge10 clusters. (I) is a tri-capped
trigonal prism cluster and (II) is a bi-capped anti-prism cluster .

structure reverses the relative stability of the two structures. This accounts

for the major differences between the photoemission spectra.

It is difficult to assign a physical origin to a particular structure owing to

the smaller energy differences involved . However, the bicapped structure has

a higher coordination. Most chemical theories of bonding suggest that Ge is

more metallic than Si, and as such, would prefer a more highly coordinated

structure. The addition of an extra electron may induce a structure reflecting

the metallic characteristic of Ge relative to Si.
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Figure §.9: Calculated density of states for Ge−10 in the tetracapped trigonal
prism structure (a) and the bicapped antiprism structure (b). (c) Experi-
mental photoemission spectra from Ref. [100].
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§.6.3 Vibrational modes

Experiments on the vibrational spectra of clusters can provide us with very

important information about their physical properties. Recently, Raman

experiments have been performed on clusters which have been deposited on

inert substrates [104]. Since different structural configurations of a given

cluster can possess different vibrational spectra, it is possible to compare

the vibrational modes calculated for a particular structure with the Raman

experiment in a manner similar to the previous example with photoemission.

If the agreement between experiment and theory is good, this is a necessary

condition for the validity of the theoretically predicted structure.

There are two common approaches for determining the vibrational spectra

of clusters. One approach is to calculate the dynamical matrix for the ground

state structure of the cluster:

Miα,jβ =
1

m

∂2E

∂Rα
i ∂R

β
j

= − 1

m

∂F β
i

∂Rα
j

(§.96)

where m is the mass of the atom, E is the total energy of the system, F α
i is

the force on atom i in the direction α, Rα
i is the α component of coordinate

for atom i. One can calculate the dynamical matrix elements by calculating

the first order derivative of force versus atom displacement numerically. From

the eigenvalues and eigenmodes of the dynamical matrix, one can obtain the

vibrational frequencies and modes for the cluster of interest [105].

The other approach to determine the vibrational modes is to perform a
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molecular dynamics simulation. The cluster in question is excited by small

random displacements. By recording the kinetic (or binding) energy of the

cluster as a function of the simulation time, it is possible to extract the power

spectrum of the cluster and determine the vibrational modes. This approach

has an advantage for large clusters in that one never has to do a mode analysis

explicitly. Another advantage is that anaharmonic mode couplings can be

examined. It has the disadvantage in that the simulation must be performed

over a long time to extract accurate values for all the modes.

As an example, consider the vibrational modes for a small silicon cluster:

Si4. The starting geometry was taken to be a planar structure for this cluster

as established from a simulated annealing calculation [105].

It is straightforward to determine the dynamical matrix and eigenmodes

for this cluster. In Fig. §.10, the fundamental vibrational modes are illus-

trated. In Table §.1, the frequency of these modes are presented. One can

also determine the modes via a simulation. To initiate the simulation, one

can perform a Langevin simulation [102] with a fixed temperature at 300K.

After a few dozen time steps, the Langevin simulation is turned off, and the

simulation proceeds following Newtonian dynamics with “quantum” forces.

This procedure allows a stochastic element to be introduced and establish

initial conditions for the simulation without bias toward a particular mode.

For this example, time step in the molecular dynamics simulation was taken

to be 3.7 fs. The simulation was allowed to proceed for 1000 time steps or

roughly 4 ps. The variation of the kinetic and binding energies is given in
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Figure §.10: Normal modes for a Si4 cluster. The + and − signs indicate
motion in and out of the plane, respectively.
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Table §.1: Calculated and experimental vibrational frequencies in a Si4 clus-
ter. See Figure §.10 for an illustration of the normal modes. The frequencies
are given in cm−1.

B3u B2u Ag B3g Ag B1u

Experiment [104] 345 470
Dynamical Matrix [105] 160 280 340 460 480 500

MD simulation [105] 150 250 340 440 490 500
HF [96] 117 305 357 465 489 529

LCAO [106] 55 248 348 436 464 495

Fig. §.11 as a function of the simulation time. Although some fluctuations

of the total energy occur, these fluctuations are relatively small, i.e., less

than ∼ 1 meV, and there is no noticeable drift of the total energy. Such

fluctuations arise, in part, because of discretization errors. As the grid size

is reduced, such errors are minimized [105]. Similar errors can occur in plane

wave descriptions using supercells, i.e., the artificial periodicity of the su-

percell can introduce erroneous forces on the cluster. By taking the power

spectrum of either the kinetic energy (KE) or binding energy (BE) over this

simulation time, the vibrational modes can be determined. These modes can

be identified with the observed peaks in the power spectrum as illustrated in

Fig. §.12.

A comparison of the calculated vibrational modes from the molecular

dynamics simulation and from a dynamical matrix calculation are listed in

Table §.1. Overall, the agreement between the simulation and the dynamical

matrix analysis is quite satisfactory. In particular, the softest mode, i.e., the
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Figure §.11: Simulation for a Si4 cluster. The kinetic energy (KE) and
binding energy (BE) are shown as a function of simulation time. The total
energy (KE+BE) is also shown with the zero of energy taken as the average
of the total energy. The time step, ∆t, is 3.7fs.
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Figure §.12: Power spectrum of the vibrational modes of the Si4 cluster. The
simulation time was taken to be 4 ps. The intensity of the B3g and (Ag,B1u)
peaks has been scaled by 10−2.
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B3u mode, and the splitting between the (Ag, B1u) modes are well replicated

in the power spectrum. The splitting of the (Ag, B1u) modes is less than

10 cm−1, or about 1 meV, which is at the resolution limit of any ab initio

method.

The theoretical values are also compared to experiment. The predicted

frequencies for the two Ag modes are surprisingly close to Raman experi-

ments on silicon clusters [104]. The other allowed Raman line of mode B3g

is expected to have a lower intensity and has not been observed experimen-

tally [104].

The theoretical modes using the formalism outlined here are in good

accord (except the lowest mode) with other theoretical calculations given in

Table §.1: an LCAO calculation [106] and a Hartree-Fock (HF) calculation

[96]. The calculated frequency of the lowest mode, i.e., the B3u mode, is

problematic. The general agreement of the B3u mode as calculated by the

simulation and from the dynamical matrix is reassuring. Moreover, the real

space calculations agree with the HF value to within ∼ 20-30 cm−1. On

the other hand, the LCAO method yields a value which is 50− 70% smaller

than either the real space or HF calculations. The origin of this difference

is not apparent. For a poorly converged basis, vibrational frequencies are

often overestimated as opposed to the LCAO result which underestimates

the value, at least when compared to other theoretical techniques. Setting

aside the issue of the B3u mode, the agreement between the measured Raman

modes and theory for Si4 suggests that Raman spectroscopy can provide a
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key test for the structures predicted by theory.

§.6.4 Polarizabilities

Recently polarizability measurements [107] have been performed for small

semiconductor clusters. The polarizability tensor, αij, is defined as the sec-

ond derivative of the energy with respect to electric field components. For

a noninteracting quantum mechanical system, the expression for the polar-

izability can be easily obtained by using second order perturbation theory

where the external electric field, E , is treated as a weak perturbation.

Within the density functional theory, since the total energy is not the

sum of individual eigenvalues, the calculation of polarizability becomes a

nontrivial task. One approach is to use density functional perturbation the-

ory which has been developed recently in Green’s function and variational

formulations [108, 109].

Another approach, which is very convenient for handling the problem for

confined systems, like clusters, is to solve the full problem exactly within the

one electron approximation. In this approach, the external ionic potential

Vion(r) experienced by the electrons is modified to have an additional term

given by −eE · r. The Kohn-Sham equations are solved with the full external

potential Vion(r)− eE · r. For quantities like polarizability, which are deriva-

tives of the total energy, one can compute the energy at a few field values,

and differentiate numerically. Real space methods are suitable for such cal-

culations on confined systems as the position operator r is not ill-defined, as
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is the case for supercell geometries.

There is another point that should be emphasized. It is difficult to de-

termine the polarizability of a cluster or molecule owing to the need for a

complete basis in the presence of an electric field. Often polarization func-

tions are added to complete a basis and the response of the system to the

field can be sensitive to the basis required. In both real space and plane

wave methods, the lack of a “prejudice” with respect to the basis are con-

siderable assets. The real space method implemented with a uniform grid

possesses a nearly “isotropic” environment with respect to the applied field.

The response can be easily checked with respect to the grid size by varying

the grid spacing. Typically, the calculated electronic response of a cluster is

not sensitive to the magnitude of the field over several orders of magnitude.

In Fig. §.13, we illustrate the calculated polarizability as a function of the

finite electric fields. For very small fields, the polarizability calculated by the

change in dipole or energy is not reliable because of numerical inaccuracies

such as roundoff errors. For very large fields, the cluster can be ionized by

the field and again the accuracy suffers. However, for a wide range of values

of the electric field, the calculated values are stable.

In Table §.2, we present some recent calculations for the polarizability

of small Si and Ge clusters. It is interesting to note that some of these

clusters have permanent dipoles. For example, Si6 and Ge6 both have nearly

degenerate isomers. One of these isomers possesses a permanent dipole, the

other does not. Hence, in principle, one might be able to separate the one



§.6. PROPERTIES OF CONFINED SYSTEMS: CLUSTERS 87

Figure §.13: One component of the polarizability tensor of Si7 as a function
of the electric field. The dashed curve is the polarizability component from
the second derivative of the energy with respect to the field; the solid curve is
from the dipole derivative. For very small fields, the values are not accurate
owing to the strict convergence criteria required in the wave functions to get
accurate values. For high fields, the cluster is ionized. The dashed value is
the predicted value for the cluster using a small, but finite field.
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Table §.2: Static dipole moments and average polarizabilities of small silicon
and germanium clusters.

Silicon Germanium
cluster |µ| 〈α〉 cluster |µ| 〈α〉

(D) (Å3/atom) (D) (Å3/atom)
Si2 0 6.29 Ge2 0 6.67
Si3 0.33 5.22 Ge3 0.43 5.89
Si4 0 5.07 Ge4 0 5.45
Si5 0 4.81 Ge5 0 5.15
Si6 (I) 0 4.46 Ge6 (I) 0 4.87
Si6 (II) 0.19 4.48 Ge6 (II) 0.14 4.88
Si7 0 4.37 Ge7 0 4.70

isomer from the other via an inhomogeneous electric field.

§.6.5 Optical spectra

The time dependent density functional formalism (Section §.3.4) is easy to

implement in real space within the higher-order finite difference pseudopo-

tential method [72, 73, 81]. The time dependent local density approximation

(TDLDA) technique will be illustrated by considering the absorption spectra

of sodium and hydrogenated silicon clusters. The ground-state structures of

the clusters were determined by simulated annealing [102]. In all cases the

obtained cluster geometries agreed well with the structures reported in other

works [110,111]. Since the wave functions for the unoccupied electron states

are very sensitive to the boundary conditions, these calculations need to be

performed within a relatively large boundary domain.

The calculated absorption spectrum for Na4 is shown in Fig. §.14 along
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with experiment. In addition, the spectrum generated by considering tran-

sitions between the LDA eigenvalues is shown. The agreement between

TDLDA and experiment is remarkable, especially when contrasted with the

LDA spectrum. TDLDA correctly reproduces the experimental spectral

shape, and the calculated peak positions agree with experiment within 0.1−

0.2 eV. The comparison with other theoretical work demonstrates that our

TDLDA absorption spectrum is as accurate as the available CI spectra

[112,113]. Furthermore, the TDLDA spectrum for the Na4 cluster appears to

be in better agreement with experiment than the GW absorption spectrum

calculated in Ref. [114].

The study of optical excitations in hydrogen terminated silicon clusters is

essential for understanding absorption and emission of visible light in porous

silicon [1]. Over the last decade, SinHm clusters have been the subject of

intensive experimental [116–120] and theoretical [121–127] research. How-

ever, disagreements among different theoretical models used for describing

electronic excitations in these systems remain a subject of significant contro-

versy. For the most part, the disagreements arise from the formulation of the

optical gap in confined systems and the calculation of different components

comprising the optical gap [128–131].

A common approach to hydrogenated silicon clusters is to consider SinHm

clusters where the arrangement of the silicon atoms corresponds to bulk

silicon fragments. This is illustrated in Fig. §.15. The calculated absorption

spectra of SinHm clusters are shown in Fig. §.16. For the larger clusters
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Figure §.14: The calculated and experimental absorption spectrum for Na4.
(a) shows a local density approximation to the spectrum using Kohn-Sham
eigenvalues. (b) shows a TDLDA calculation. Technical details of the calcu-
lation can be found in [32]. (c) panel is experiment from [115].
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shown, only electronic transitions below a chosen energy threshold are display

owing to computational constraints. The spectra of time-independent Kohn-

Sham LDA eigenvalues will be illustrated here. As in the case of metallic and

semiconductor clusters with free surfaces [32, 132, 133], the TDLDA spectra

of SinHm clusters are blue-shifted with respect to the Kohn-Sham eigenvalue

spectra. Unlike optical spectra of “bare” semiconductor clusters considered

in previous section, the spectra of hydrogenated silicon clusters do not display

low energy transitions associated with the surface states. Photoabsorption

gaps for SinHm clusters are much larger than those of Sin clusters with open

surfaces.

In Table §.3, TDLDA values for the excitation energies of the first three

SinHm clusters are compared with experimental data [116, 126] as well as

with the values calculated using the Bethe-Salpeter technique [121]. The

last column in Table §.3 shows the Kohn-Sham LDA “ionization” energies

of the clusters, −εLDA
HOMO, given by the negative values of the energies for

the highest occupied LDA electronic orbitals. Table§.3 demonstrates that

the calculated TDLDA excitation energies for the transitions below, or close

to −εLDA
HOMO agree well with the experimental data and the Bethe-Salpeter

values. The agreement, however, deteriorates for higher excitations, which

lie above −εLDA
HOMO. As the size of clusters increases, the energy of the first

allowed excitation moves further down from the LDA “ionization” energy,

and agreement with experiment improves.

For large SinHm clusters, the first allowed optical transitions are always
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Figure §.15: Ball and stick models for hydrogenated silicon clusters.



§.6. PROPERTIES OF CONFINED SYSTEMS: CLUSTERS 93

2 4 6 8 10
Photon energy (eV)

Ph
ot

oa
bs

or
pt

io
n 

(a
rb

itr
ar

y 
un

its
)

LDA
TDLDA

SiH
4

Si
2
H

6

Si
5
H

12

Si
10

H
16

Si
14

H
20

Si
29

H
36

Si
35

H
36

Si
47

H
60

Si
71

H
84

Si
87

H
76

Si
99

H
100

Si
123

H
100

Si
147

H
100

Figure §.16: Calculated TDLDA absorption spectra of SinHm clusters (solid
lines). Spectra of time-independent Kohn-Sham LDA eigenvalues (dotted
lines) are shown for comparison. All spectra are broadened by 0.1 eV using
a Gaussian convolution.
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located below −εLDA
HOMO. On this basis, one can argue that TDLDA should

provide an accurate description for the photoabsorption gaps and the low

energy optical transitions in larger SinHm clusters.

Table §.3: Excitation energies of hydrogenated silicon clusters. The exper-
imental optical absorption energies are taken from Ref. [116] (silane and
disilane), and Ref. [126] (neopentasilane). The assignment of electronic exci-
tations for silane and disilane corresponds to the Rydberg transitions. The
Bethe-Salpeter (BS) excitation energies are adapted from Ref. [121]. −εLDA

HOMO

is the time-independent LDA “ionization” energy. All values are in eV.

Cluster Transition Experiment BS TDLDA −εLDA
HOMO

SiH4 4s 8.8 9.0 8.2 8.6
4p 9.7 10.2 9.2
4d 10.7 11.2 9.7

Si2H6 4s 7.6 7.6 7.3 7.5
4p 8.4 9.0 7.8

Si5H12 – 6.5 7.2 6.6 7.3

§.7 Quantum confinement in nanocrystals

Nanocrystals are assemblages of atoms at the nanoscale where the atomic

positions are characteristic of the crystalline state. Spherical nanocrystals

are sometimes called “quantum dots.” Understanding the role of quantum

confinement in altering optical properties of nanocrystals made from semi-

conductor materials is a problem of both technological and fundamental in-

terest. In particular, the discovery of visible luminescence from porous Si [1]

has focused attention on optical properties of confined systems. Although

there is still debate on the exact mechanism of photoluminescence in porous
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Si, there is a great deal of experimental and theoretical evidence that sup-

ports the important role played by quantum confinement in producing this

phenomenon [119, 134].

Excitations in confined systems, like porous as the building blocks of

porous Si, differ from those in extended systems due to quantum confinement.

In particular, the components that comprise the excitation energies, such as

quasiparticle and exciton binding energies change significantly with the phys-

ical extent of the system. So far, most calculations that model semiconductor

nanocrystals have been of an empirical nature owing to major challenges to

simulate these systems from first principles [120, 122–124, 135–139]. While

empirical studies have shed some light on the physics of optical excitations in

semiconductor nanocrystal, one often has to make assumptions and approx-

imations that may not be justified. Efficient and accurate ab initio studies

are necessary to achieve a better microscopic understanding of the size de-

pendence of optical processes in semiconductor quantum dots. A major goal

of our work is to develop such ab initio methods that handle systems from

atoms to dots to crystals on an equal footing.

A problem using empirical approaches for semiconductor quantum dots

centers on the transferability of the bulk interaction parameters to the nano-

crystalline environment. The validity of this assumption, which postulates

the use of fitted bulk parameters in a size regime of a few nanometers, is not

clear, and has been questioned in recent studies [138,139]. More specifically,

quantum confinement-induced changes in the self-energy corrections, which
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may affect the magnitude of the optical gaps significantly, are neglected in

empirical approaches by implicitly assuming a “size-independent” correction

that corresponds to that of the bulk. It follows that a reliable way to inves-

tigate optical properties of quantum dots would be to model them from first

principles with no uncontrolled approximations or empirical data. However,

there have been two major obstacles for the application of ab initio stud-

ies to these systems. First, due to large computational demand, accurate

first principles calculations have been limited to small system sizes, which

do not correspond to the nanoparticle sizes for which experimental data are

available. Second, ab initio calculations performed within the local density

approximation suffer from the underestimate of the band gap [29].

Recent advances in electronic structure algorithms using pseudopotentials

(as outlined earlier) [66,71–82] and computational platforms, and alternative

formulations of the optical gaps suitable for confined systems, the above-

mentioned challenges for ab initio studies of quantum dots can be overcome.

In particular, new electronic structure methods [66, 71–82], implemented on

massively parallel computational platforms allows one to model a cluster of

more than 1,000 atoms in a straightforward fashion [140]. Such approaches

can be illustrated by focusing on silicon quantum dots such as Si705H300. This

system corresponds to spherically bulk-terminated Si clusters passivated by

hydrogens at the boundaries, Fig. §.17. Computational details can be found

in the literature [140].

For an n−electron system, the quasiparticle gap εqp
g can be expressed in
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Figure §.17: Atomic structure of a Si quantum dot with composition
Si525H276. The gray and white balls represent Si and H atoms, respectively.
This bulk-truncated Si quantum dot contains 25 shells of Si atoms and is
27.2 Å in diameter.
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terms of the ground state total energies E of the (n + 1)−, (n − 1)−, and

n−electron systems as

εqp
g = E(n+ 1) + E(n− 1) − 2E(n) = εHL

g + Σ (§.97)

where Σ is the self-energy correction to the HOMO-LUMO gap εHL
g obtained

within LDA. This definition is quite convenient for the calculation of the

quasiparticle gap, as it is possible to excite individual electrons or holes from

the ground state electronic configuration of a confined system. The calcu-

lation of εqp
g requires the self-consistent solutions of three different charge

configurations of each quantum dot. The computational demand of this ap-

proach can be reduced significantly by using the wave functions of the neu-

tral cluster to extract very good initial charge densities for the self-consistent

solutions of the charged systems. Total energies for charged (n + 1)− and

(n−1)−electron systems can be calculated in a straightforward fashion [140].

Eq. (§.97) yields the correct quasiparticle gap εqp
g , if the exact exchange-

correlation functional is used. Within the local density approximation, in

the limit of very large systems (n → ∞), the gaps calculated using Eq.

(§.97) approach the HOMO-LUMO gap εHL
g [130]. However, for small sys-

tems, Eq. (§.97) captures the correction to the LDA HOMO-LUMO gap

quite accurately (Table §.4 ) when compared with available GW calcula-

tions [121]. Small deviations appear as the system size reaches approximately

1,000 atoms.



§.7. QUANTUM CONFINEMENT IN NANOCRYSTALS 99

Table §.4: HOMO-LUMO and quasiparticle gaps εqp
g (Eq. §.97) calculated

for hydrogenated Si clusters compared to quasiparticle gaps calculated within
the GW approximation [121]. All energies are in eV.

εHL
g εqp

g GW

SiH4 7.9 12.3 12.7
Si2H6 6.7 10.7 10.6
Si5H12 6.0 9.5 9.8
Si14H20 4.4 7.6 8.0

The size dependence of the quasiparticle and LDA HOMO-LUMO gaps,

and self-energy corrections are shown in Fig. §.18. Both gap values and self-

energy corrections are enhanced substantially with respect to bulk values,

and are inversely proportional to the quantum dot diameter d as a result

of quantum confinement. Specifically, εqp
g (d) − εqp

g,bulk, ε
band
g (d) − εband

g,bulk, and

Σ(d) − Σbulk scale as d−1.2, d−1.1, and d−1.5, respectively. The quasiparticle

gaps shown in the figure are significantly higher compared to the gap values

obtained in earlier semi-empirical calculations, although it is problematic in

terms of any comparisons. The empirical gaps are obtained from potentials

obtained from crystalline environments and scaled to dot sizes. The nature

of these gaps is problematic in that they do not strictly correspond to quasi-

particle gaps owing to their empirical roots. The main reason for the size

difference in the gaps is the significant enhancement of electron self-energies

due to quantum confinement, which cannot be properly taken into account

in semi-empirical approaches.
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Figure §.18: Calculated quasiparticle (�) and HOMO-LUMO gaps (+), and
self-energy corrections (×) as a function of the quantum dot diameter d (in
Å). The solid lines are power-law fits to the calculated data approaching the
corresponding bulk limits. For small deviations from the fits for large system
sizes, see the text.
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Since the quasiparticle gap refers to the energy to create a non-interacting

electron-hole (e − h) pair, one cannot compare these gaps directly to mea-

surements of the optical gap. This issue is especially important for quantum

dots in which the exciton radius becomes comparable to the size of the dot.

quantum confinement in nanostructures enhances the bare exciton Coulomb

interaction, and also reduces the electronic screening so that the exciton

Coulomb energy ECoul becomes comparable to the quasiparticle gap. In or-

der to extract the optical gaps:

εopt
g = εqp

g − ECoul (§.98)

the exciton Coulomb energy needs to be calculated accurately. Compared to

ECoul, exciton exchange-correlation energies are much smaller for the quan-

tum dots studied in this work, and will therefore be neglected. Eq.(§.98) is a

rigorous expression, provided the Coulomb energy can be properly computed.

A crude, yet commonly used, approximation to ECoul comes from the ef-

fective mass approximation [141,142]. Within the effective mass approxima-

tion, one assumes (i) an infinite potential barrier at the boundary of the quan-

tum dot, and (ii) envelope wave functions of the form ψ(r) ∼ 1
r
sin(2πr)/d

for a noninteracting e− h pair. This yields (in a.u.) ECoul = 3.572/εd. The

effective mass approximation, although commonly used, cannot be expected

to yield accurate exciton Coulomb energies, since in this approximation the

microscopic features of the electron-hole wave functions inside the quantum
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dot are neglected, and the wave functions are constrained to vanish abruptly

outside the quantum dots, instead of decaying relatively slowly into the vac-

uum.

Thus, ECoul is better calculated directly using ab initio pseudo wave func-

tions. The exciton Coulomb energy can be written as

ECoul =

∫

dr1|ψe(r1)|2V h
scr(r1)

=

∫

dr1|ψe(r1)|2
∫

drε−1(r1, r)V
h
unscr(r)

=

∫∫∫

ε−1(r1, r)
|ψe(r1)|2|ψh(r2)|2

|r− r2|
dr dr1 dr2. (§.99)

In this expression, V h
scr and V h

unscr are screened and unscreened potentials due

to the hole, ψe and ψh are the electron and hole wave functions, and ε−1 is

the inverse of the microscopic dielectric matrix. One can define ε̃−1 as

∫

ε−1(r1, r)
1

|r− r2|
dr ≡ ε̃−1(r1, r2)

1

|r1 − r2|
, (§.100)

then the exciton Coulomb energy can be written as

ECoul =

∫∫

ε̃−1(r1, r2)
|ψe(r1)|2|ψh(r2)|2

|r1 − r2|
dr1dr2. (§.101)

If ε̃ is taken to be unity, the unscreened ECoul can be determined. The

results are shown in Fig. §.19 along with the predictions of the EMA and

recent empirical calculations [143]. The ab initio and empirical calculations
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for the unscreened Coulomb energy are in quite good agreement with each

other, both predicting smaller Coulomb energies and a softer power-law decay

compared to the EMA. In particular, fitting the calculated data to a power

law of the diameter as d−β, we find β = 0.7.
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Figure §.19: Unscreened exciton Coulomb energies as a function of the quan-
tum dot diameter d (in Å) calculated by (i) effective mass approximation
(dashed line), (ii) direct empirical pseudopotential calculations (4 from
Ref. [143]), (iii) direct ab initio pseudopotential calculations (×) as explained
in the text. The solid lines are power-law fits to the calculated data.

An accurate calculation of ECoul requires the inverse dielectric matrix

ε̃−1(r1, r2) in Eq. (§.101). An ab initio calculation of ε̃−1(r1, r2) is compu-

tationally very demanding, although recent progress has been made on this
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problem [144]. Earlier calculations used either the bulk dielectric constant

or the reduced dielectric constant of the quantum dot for all e− h distances.

These are rather simple approximations, since the screening is different at

different length scales owing to the wave vector dependence of ε̃. For exam-

ple, when r1 and r2 in Eq. (§.101) are very close to each other, there will be

practically no screening, and ε̃ ≈ 1. Typically, both the hole and electron

wave functions are well localized towards the center of the quantum dot, the

screening will be reduced significantly, resulting in larger Coulomb energies

compared to the case of using a single dielectric constant for all distances.

Also, extracting the appropriate dielectric constant for these small systems

is problematic.

One can improve on these approximations by explicitly using the wave

functions as calculated by our pseudopotential approach and a realistic di-

electric function that takes spatial variations of ε̃ into account. To calculate

the screening dielectric functions ε̃(r1, r2) of a particular quantum dot, one

can proceed as follows: First, one applies a spatially modulated electric fields

at several wave vectors to calculate the q−dependent polarizability α(q) us-

ing a finite-field method. The q−dependent dielectric function ε̃(q) can be

obtained using a dielectric sphere model [145]. The results for ε̃(q) of the

Si87H76 quantum dot are shown in Fig. §.20. After fitting the calculated

ε̃(q) to a rational polynomial function of q and Fourier-transforming to real

space [146], we obtained the dielectric function ε̃(r = |r1 − r2|). Implicitly,

we are assuming spatial isotropy in writing ε̃(r1, r2) ≈ ε̃(r = |r1 − r2|). As
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Figure §.20: Wavevector dependence of the dielectric function for the Si87H76

quantum dot.

shown in Fig. §.20, the calculated ε̃(q) has a very sharp drop to ≈ 1 beyond

q = 0.2 a.u., which corresponds roughly to the wavevector set by the linear

dimension (or diameter) of this quantum dot. This sharp drop is typical for

all quantum dots studied. In real space, this implies that the e−h interaction

is very inefficiently screened inside the dot resulting in substantial excitonic

Coulomb energies.

The resulting optical gaps εopt
g = εqp

g − ECoul along with the quasiparti-

cle gaps and experimental absorption data [117] from Si:H nanocrystals are

shown in Fig. §.21. Although the calculated quasiparticle gaps are ∼ 0.6 to

1.0 eV larger than the experimental absorption data, the calculated optical

gaps are in very good agreement with experiment.
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Figure §.21: Calculated quasiparticle gaps (dotted line), optical gaps, and
experimental absorption data from Si:H nanocrystals (× and � from Ref.
[117]) as a function of the quantum dot diameter d (in Å). The two sets of
experimental data (× and �) differ by the method to estimate the nanocrystal
size.

At this point, an interesting observation can be made about the good

agreement of previous semi-empirical calculations with experiment [134–136].

In the above semi-empirical approaches, it is the underestimate of both the

excitation gap and the exciton Coulomb energies (through the use of a static

dielectric constant of either the bulk or the quantum dot), that results in

calculated values in agreement with experiment. As a matter of fact, the

bare gaps of Refs. [135] and [136] without the exciton Coulomb energies are

in better agreement with the experiment. The ab initio pseudopotential re-

sults demonstrate that (i) the quasiparticle gaps in Si quantum dots are
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actually higher than previously thought, and (ii) the exciton Coulomb ener-

gies, because of the wavevector dependence of the dielectric response function

ε(r1, r2), are higher than previously calculated, resulting in optical gap values

that are in good agreement with the experimental absorption data.

TDLDA methods can be used to examine hydrogenated silicon quantum

dots. For large clusters or quantum dots, the absorption spectra become

essentially quasi-continuous and it is incumbent to use care in defining the

optical gap. In particular, a large number of low intensity transitions exist

near the absorption edge. Taken individually, the oscillator strengths of these

transitions would be located far below the experimentally detectable limit.

As a result, identifying the first allowed optical transition in the case of large

clusters is not a trivial task.

As the size of clusters increases, the absorption gaps gradually decrease,

and the discrete spectra for small clusters evolve into quasi-continuous spec-

tra for silicon nanocrystals. Fig. §.22 demonstrates that oscillator strength of

dipole-allowed transitions near the absorption edge decreases with increasing

cluster size. This fact is consistent with the formation of an indirect band

gap in the limit of bulk silicon [126].

Rather than associating the optical gaps with the individual transitions,

one can define a procedure for fixing the optical gap, Eopt
gap, via an integral

of the oscillator strength. In particular, the following prescription has been
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Figure §.22: Oscillator strength for optical transitions in hydrogenated sil-
icon clusters as a function of cluster size. The strength is determined by
considering transitions near the gap. The dashed line is a linear fit.

suggested [147] to define the gap:

pF =

∫ Eopt
gap

0

σ(ω) dω (§.102)

where F is the total optical cross section, σ(ω) is the optical cross section

for a given frequency, ω and p is some prescribed fraction of the total cross-

section for the fixing the gap. For the photoabsorption gaps, a typical value
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of p might be 10−4. This definition for the absorption gap does not affect

the values of the optical gaps for small SinHm clusters, since the intensity of

their first allowed transitions is much higher than the selected threshold. An

order of magnitude change in p, does not typically change the gap size by

more than ±10 meV. At the same time, Eq. §.102 offers a convenient way

for the evaluation of optical gaps in large clusters.

The variation of the optical absorption gaps as a function of cluster size

is shown in Fig. §.23. Along with the TDLDA values, we include optical gaps

calculated by the Bethe-Salpeter (BS) technique [121]. For very small clus-

ters, SiH4, Si2H6, and Si5H12, the gaps computed by the TDLDA method are

close to the Bethe-Salpeter values, although for Si10H16 and Si14H20 our gaps

are considerably smaller than the gaps calculated using the Bethe-Salpeter

equation. At the same time, the TDLDA gaps for clusters in the size range

from 5 to 71 silicon atoms are larger by ∼ 1 eV than the gaps calculated by

the Hartree-Fock technique with the correlation correction included through

the configuration-interaction approximation (HF-CI) [127].

These differences are consistent with the fact that the BS calculations

systematically overestimate and the HF-CI calculations of Ref. [127] under-

estimate the experimental absorption gaps. For example, for the optical

absorption gap of Si5H12 the BS, TDLDA, and HF-CI methods predict the

values of 7.2, 6.6, and 5.3 eV, respectively, compared to the experimental

value of 6.5 eV. However, it is not clear whether the gaps of Ref. [127] re-

fer to the optically-allowed or optically-forbidden transitions, which may of-
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Figure §.23: Variation of optical absorption gaps as a function of cluster
diameter. Theoretical values shown in the plot include the gaps calculated by
the TDLDA method (this work), by the Bethe-Salpeter technique (BS) [121]
and by the Hartree-Fock method with the correlation included through the
configuration-interaction approximation (HF-CI) [127]. Experimental values
are taken from Refs. [116–118,126]. The dashed lines are a guide to the eye.
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fer a possible explanation for the observed discrepancy. For large clusters,

we find the TDLDA optical gaps to be in generally good agreement with

the photoabsorption gaps evaluated by the majority of self-energy corrected

LDA [103, 126] and empirical techniques [124, 125, 136]. At present, the full

TDLDA calculations for clusters larger than a few nm can exceed the ca-

pabilities of most computational platforms. Nevertheless, the extrapolation

of the TDLDA curve in the limit of large clusters comes very close to the

experimental values for the photoabsorption gaps. Software and hardware

advances should make a direct verification of this possible in the near future.

In determining the optical gaps within a linear response approach, only

excitations with an induced dipole are incorporated. In real time methods,

the induced dipole term is calculated directly [36–38]. Within our frequency

domain description, two factors enter in the ascertaining the existence of

an induced dipole: the existence of a transition energy and the correspond-

ing oscillator strength. Within TDLDA, these terms can be obtained from

Eq. §.58 as ΩI and FI . These terms must always be considered together

when predicting optical properties, although sometimes this is not done [26].

In Fig. §.24, we illustrate the lowest transitions without regard to oscilla-

tor strength for both LDA and TDLDA calculations. Transitions as defined

by Eq. §.102 are shown. For these transitions, the gap is defined when the

oscillator strength assumes a value of at least 10−4 of the total optical cross-

section. The main difference between LDA and TDLDA for these system is

a strong blue-shift of the oscillator strength.
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Figure §.24: Gaps determined from LDA and TDLDA for hydrogenated sili-
con clusters. (a) The gaps plotted without regard to the oscillator strength.
(b) The gaps determined using the criteria from Eq. §.102.

It should be noted that real time methods for TDLDA do not involve

unoccupied eigenvalues [36–38]. In this formalism, the absorption spectrum

evolves from taking the power spectrum of the instantaneous induced dipole.

The resolution of an optical transition is determined by the length of the time

integration [36–38]. Since the frequency domain method and the real time

method should yield the same spectrum, “virtual transitions,” i.e., transi-

tions that do not couple to the dipole, are not physically meaningful within

frequency domain implementation of TDLDA.
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§.7.1 The role of oxygen in silicon quantum dots

Porous and nanocrystalline silicon studied in experiments are prepared un-

der a variety of surface conditions determined by the etching technique and

external chemical environments employed. Only a fraction of published ex-

perimental data refers to ”pure” hydrogenated silicon dots [117]. Other mea-

surements are performed on partially oxidized nanocrystals [148, 149]. For

many cases, a precise chemical composition of nanocrystalline surfaces is not

known [118, 150, 151]

However, most calculations for optical absorption and emission in silicon

dots do not take into account differences in structure and chemical compo-

sition of the dot surface. This creates an ambiguity in the interpretation of

experimental data. Almost all ab initio and empirical simulations available

in literature use silicon dots passivated with hydrogen [103, 121, 122, 125–

127, 136, 152], although some notable exceptions exist [153, 154]. This limi-

tation also is true for structural issues, where only a few systems have been

examined for reconstructed surfaces [155, 156].

Theoretical calculations [103,121,122,125–127,136,152] based on a quan-

tum confinement model show general agreement with experimental measure-

ments [117] for optical absorption in hydrogen-passivated silicon clusters. In

contrast, experiments performed on oxidized samples often display photolu-

minescence with energies significantly below the values of optical gaps pre-

dicted by the confinement model for clusters in the same size range [148,149].

This disagreement could be greater than 1 eV. It has been suggested that the
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onset of photoluminescence in silicon nanocrystals may be associated with

the optical Stokes shift [157] and excitonic exchange splitting [158]. While

these effects could be significant in small silicon dots, it appears that neither

the Stokes shift, nor the excitonic exchange splitting alone could explain such

a large disagreement between experiment and theory.

Recent experimental data present strong evidence that surface effects

produce a very substantial impact on the electronic and optical properties of

nanocrystalline silicon. Specifically, Wolkin et al. observed a large redshift

of photoluminescence in porous silicon after exposure to open air [119]. The

study reported a shift of photoluminescence of the order of 1 eV for samples

composed of crystallites smaller than 2 nm in size. The observed redshift

has been attributed to surface oxidation of silicon nanocrystals. According

to the interpretation proposed in Ref. [119], oxygen creates trapped elec-

tron and hole states on nanocrystalline surfaces. The trapped surface states

reduce the effective size of the optical gap. This mechanism can explain

the difference between the energy of the measured photoluminescence and

theoretical predictions based on the quantum confinement model.

Owing to a very large number of possible configurations for oxidized sili-

con clusters, current studies are often limited to the case of a single oxygen

atom attached to the cluster surface. Oxidized clusters were prepared from

regular hydrogen-terminated spherical dots by replacing two hydrogen atoms

on the surface with a single atom of oxygen, followed by relaxation of all in-

teratomic forces. The model geometries for oxidized clusters are illustrated
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in Fig. §.25.

The calculated absorption spectra of oxidized silicon dots are shown in

Figs. §.27 and §.28. In Fig. §.27 the spectra of small oxidized and nonoxi-

dized clusters are illustrated. The addition of oxygen creates new absorption

bands in the region of lower transition energies. Optical excitations with

higher energies are also affected by oxidation, although some intense absorp-

tion peaks observed in nonoxidized clusters (such as the peaks at 6.6 and

7.8 eV for Si5H12) appear to be only slightly shifted. Fig. §.28 shows the

calculated spectra of the Si29OH34 and Si35OH34 clusters.

The overall change in optical absorption caused by the addition of a single

oxygen atom is less apparent larger clusters. To make the effect of oxida-

tion more evident, we plot in Fig. §.28 the differential spectra calculated

as the difference in optical absorption of the same cluster before and af-

ter oxidation. Positive values of differential photoabsorption correspond to

the new absorption peaks that appear only after oxidation. The differential

absorption spectra for Si29OH34 and Si15OH34 clearly show the presence of

low- energy optical transitions associated with surface oxygen. The calcu-

lated optical absorption gaps in oxidized and nonoxidized silicon dots are

compared in Fig. §.26. The TDLDA gaps for nonoxidized Si7H7 clusters are

adapted from our previous work [152]. The spectra are essentially quasi-

continuous and exhibit a large number of low-intensity transitions near the

absorption edge. As such, the effective optical gaps were evaluated at a very

small but nonzero fraction of the complete electronic oscillator strength as
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Figure §.25: Model geometries for hydrogenated silicon with oxygen.
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in Eq. §.102. The same criterion in defining the gap for silicon quantum dots

was used for the oxidized silicon clusters. Fig. §.26 demonstrates that surface

oxidation reduces optical gaps in hydrogenated silicon clusters by as much as

1-2 eV. The change in the size of optical gaps is consistent with the redshift

of photoluminescence observed in Ref. [119] and is likely responsible for the

disagreement between experimental photoluminescence from oxidized silicon

nanocrystals and theoretical estimates based on the quantum confinement

model.
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A surprising result of oxygen absorption is the small difference observed

in the optical gaps between cluster isomers with Si=O and Si-O-Si bonds

on the surface. At the same time, Figs. §.27 and §.28 reveal substantial

differences in the shape of optical spectra for these clusters. One can under-

stand this difference by examining the mechanism of the gap formation in two

selected clusters: Si35OH34 (I) and (II). The order of electronic levels near

the gap is illustrated for both isomers in Figs. §.29 and §.30, respectively.
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These diagrams represent simplified schemes that show only the dominant

single-electron Kohn-Sham transitions within the TDLDA description and do

not account for correlations among individual excitations. The energies of

optical transitions shown in these figures correspond to one-electron singlet

TDLDA excitations [32]. They differ from transition energies of the TDLDA

optical spectra shown in Figs. §.27 and §.28, which correspond to collective

electronic excitations. Nevertheless, the single-electron diagrams are useful

for the qualitative analysis of optical transitions in oxidized silicon dots.

The authors of Ref. [119] proposed that photoluminescence in small ox-

idized silicon clusters occurs between the trapped electron and hole states,

both of which are associated with the double Si=O bond on the cluster sur-

face. Specifically, the trapped electron state is a p-state localized on silicon

and the trapped hole state is a p-state localized on oxygen. Spatial dis-

tributions of electron densities for the lowest unoccupied molecular orbital

(LUMO) and the highest occupied molecular orbital (HOMO) of the Si35

OH34 (II) cluster plotted in Fig. §.27 confirm that these states are indeed

represented by p- states mainly localized on the silicon and oxygen atoms.

However, the distributions of HOMO and LUMO electron densities for the

Si35 OH34 (I) cluster shown in Fig.§.28 reveal a different picture. The LUMO

state is, for the most part, localized on two silicon atoms that form the

Si-O-Si bonds. At the same time, the HOMO state is not localized on the

oxygen atom. Instead, this electronic state is spread among the layers of

silicon atoms surrounding the Si-O-Si fragment. In both cases, the direct
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Figure §.30: Schematic representation of electronic levels in the vicinity of
the gap for Si35OH34 (II) clusters. Spatial distributions of electron densities
are shown for the HOMO and LUMO states.
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dipole transitions between the HOMO and LUMO states are forbidden. The

absorption edge for Si35OH34 (II) is formed mainly by transitions from lower

occupied orbitals to the LUMO state. For this cluster, transitions from the

HOMO state to higher unoccupied orbitals do not contribute to optical ab-

sorption near the gap. For Si35OH34 (I), however, both of these types of

electronic transitions are involved in the formation of the absorption edge.

Such calculations show that even a low concentration of oxygen on the

surface can substantially alter the optical properties of silicon nanoclusters.

However, experimental studies are not always limited to clusters with low

oxygen content. Some limited studies have been performed on dots with a

higher concentration of oxygen, e.g, Si35O6H24. This cluster was prepared

from the hydrogen-terminated dot Si35H36 by replacing 12 outer-shell hy-

drogen atoms with oxygen to form six double Si=O bonds at the positions

symmetrically equivalent to that shown in Fig. §.25 for Si35OH34 (II). The

increase in oxygen coverage caused a further reduction of the absorption gap

to 2.4 eV. This value was approximately 0.4 eV lower than the absorption gap

for Si35OH34 (II), and almost 1.6 eV lower than the gap for the nonoxidized

cluster Si35H36. The principal mechanism of gap formation for Si35O6H24

appears to be similar to that for Si35OH34. The additional reduction of the

absorption gap in case of Si35O6H24 could be explained by interactions among

oxygen-induced electronic states. The absorption gap for Si35OH34 is reduced

by the presence of localized oxygen-induced levels. In the limit of large clus-

ters, the positions of these levels should be essentially independent of the
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cluster size. Since the gaps in silicon dots decrease with increasing clus-

ter size as a result of diminishing quantum confinement, at some point the

oxygen-induced states are expected to cross over the electronic levels from

the body of the cluster. After this point, the oxygen-induced states would

no longer be located inside the gap. Calculations suggest that depending on

the fraction of oxygen coverage, the oxygen-induced states should not cross

over the levels from the body of the cluster for silicon dots up to approxi-

mately 20-25 A in diameter [153]. For larger dots, the overall effect of surface

oxidation on the optical properties is likely to be less important.

§.7.2 Doping quantum dots

Electronic and optical properties of semiconductor nanostructures are strongly

affected by quantum confinement due to the reduced dimensionality of these

systems [159]. In nanocrystals or quantum dots, where motion of electrons

(or holes) is limited in all three dimensions, quantum confinement results in

a strong increase of the optical excitation energies when compared to the

bulk. One expects that other electronic and optical properties such as the

dielectric properties will be affected as well.

In bulk semiconductors, shallow donors (or acceptors) are crucial in de-

termining the transport properties required to construct electronic devices.

However, these properties are expected to be significantly altered in highly

confined systems such as quantum dots. As a consequence, important ques-

tions exit as to whether dopants will continue to play a role similar to that
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in bulk semiconductors and on whether new applications such as quantum

computation [160, 161] will become possible in the nano regime.

Experimental studies of shallow impurities in quantum dots, such as P

in Si nanocrystals, have been slow to address such issues. In part, this is

due to difficulties in preparation of samples in a controllable manner, e.g., it

is hard to ensure that a quantum dot contains only one impurity. For such

reasons, only a few experimental studies have focused on doping of quan-

tum dots. These studies have utilized photoluminescence and electron spin

resonance measurements most of which have been performed on silicon quan-

tum dots. Increasing the dopant concentration results in distinct changes in

its photoluminescence properties such as suppression of the signal [162] and

a blue-shift of photoluminescence maxima with decreasing particle size in

heavily p-doped porous silicon [163]. It is also not clear whether or not the

doping of Si nanocrystals provides a generation of free charge carriers in these

systems [163, 164].

Electron spin resonance measurements are a popular tool for examining

impurities in semiconductors and have recently been applied to these systems.

Spin resonance experiments determine the hyperfine splitting (HFS) of the

defect electron levels, which are directly related to localization of the dopant

electron density on the impurity site [165]. In Si nanocrystals with radii of 10

nm doped with P, a hyperfine splitting of 110 G has been observed [166]. This

splitting is in sharp contrast to the bulk value of 42 G. A size dependence

of the HFS also exits in Si dots with radii around 50 nm [167], although in
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this case it is likely influenced by an asymmetrical shape of Si crystalites.

Recently, a strong size dependence of the HFS of P atoms was observed in

much smaller nanocrystallites with radii of 2 - 3 nm [168].

Theoretical studies of shallow impurities in quantum dots have also lagged

relative to calculations for macroscopic systems. The large number of atoms

and low symmetry hinder such studies. Some empirical studies have been

performed for impurities in quantum dots [138, 169, 170]. These calculations

involve various parameters, which are commonly assumed to have bulk-like

values. A common drawback in these studies is the use of a generic hydrogen-

like potential to model the impurity atom.

The real-space, ab initio pseudopotential density functional method [171]

has been applied to the electronic properties of a single phosphorus impurity

in a hydrogenated Si quantum dot containing hundreds of atoms [172]. The

nanocrystals were modeled as spherical, bulk-terminated Si clusters whose

surface is passivated by hydrogen atoms. One silicon atom is substituted by

a phosphorus atom.

P, Si and H atoms were modeled using ab initio Troullier-Martins pseu-

dopotentials [63,65]. Parameters for the Si and H pseudopotentials and other

technical details are given elsewhere [171, 172].

Several substitutional geometries for the P atom have been explored,

e.g., a P placed at the center of the dot, off center, and on the surface. No

significant relaxations of the Si atoms were found in the vicinity of the P

atom. The largest change in position occurred when the P was positioned off
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center. In this case, the P atom was shifted by about 0.1 a.u. in the outward

direction.

In contrast to supercell approach, real space method allows one to exam-

ine charged clusters in a straightforward manner [171]. Ionization energies

Id for P-doped nanocrystals and affinity energies Ap for pure Si nanocrystals

have been determined using charged systems:

Id = E(n− 1) − E(n), (§.103)

Ap = E(n) − E(n+ 1), (§.104)

where E is the ground state total energies of the n−, (n + 1)− and (n −

1)−electron systems. The binding energy EB for the donor atom can be

calculated as a difference between these two quantities:

EB = Id − Ap. (§.105)

This definition of the binding energy EB corresponds to two separate pro-

cesses: The doped dot is ionized, i.e. the electron is physically removed from

the nanocrystal. The affinity energy may be calculated by considering an

isolated neutral dot of equal size and adding an electron. A similar approach

has been utilized in the tight-binding calculations [138], where the binding

energy was calculated as a difference between the lowest conduction levels of

the same crystallite with one excess electron with and without impurity.
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This definition of the binding energy for the donor atom can be con-

trasted with that for a bulk system, where this quantity is defined as the

difference between the dopant electron level and conduction band contin-

uum, i.e., the binding energy is equal to the ionization energy of the defect

atom. In nanocrystals or quantum dots, such a definition is problematic since

an electron being excited into an unoccupied state (below the vacuum level)

will be confined by the physical size of the dot and will continue to interact

strongly with the impurity atom.

The calculated ionization, affinity and binding energy as a function of

quantum dot radius R are shown in Fig. §.31. The ionization energies for pure

hydrogenated Si nanocrystals are also given for comparison. The ionization

and affinity energies for pure Si quantum dots have values close to those

calculated recently for hydrogenated Ge nanocrystals. A surprising feature

in Fig. §.31 a is that the ionization energy Id shows virtually no dependence

on the size of the dot.

The dependence of Id(R) is different from the behavior of the ionization

energy in Si quantum dots where this quantity is very large at small radii

and gradually decreases, scaling as R−1.1, to its bulk value. Although this

dependence of the ionization energy on radius is weaker than R−2 law pre-

dicted by effective mass theory [173, 174], it is, nevertheless, a consequence

of spatial confinement of electrons (holes) in quantum dots. It is surpris-

ing that this behavior is absent in the functional dependence of Id(R). The

binding energy EB, which scales as R−0.8, is shown in Fig. §.31 b. These
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Figure §.31: (a) Ionization energy Id for phosphorus-doped nanocrystal (H)
and electron affinity Ap (N) as a function of nanocrystal’s radius R. Ioniza-
tion energy for pure hydrogenated Si nanocrystals (�) is also shown. Solid
lines are the best fits to calculated points, dotted line is a guide to an eye.
(b) Binding energy EB (�) and energy difference between defect level with
single occupancy and highest occupied state with double occupancy (�) as
a function of the dot’s radius.



130 CLUSTERS AND NANOCRYSTALS

values are close to results of the tight-binding method [138] even though the

ionization energy has a constant value in this range of sizes. Also plotted in

Fig. §.31 b is the dependence of the “band gap”, i.e. the difference between

the lowest level with single occupancy and the highest doubly occupied level,

in P-doped systems. This quantity is blue-shifted with respect to the bulk

values where it should be approximately equal to Si band gap. Comparison

with results for pure hydrogenated Si dots [140] of the same radius shows

that it is smaller by about 10% than values of the HOMO-LUMO gaps. The

large values of the binding energy suggest that for dots in this size regime,

the donors cannot be considered as shallow. This is largely due to the weak

screening present in quantum dots and the physical confinement of the donor

electron within the dot.

The nature of the Si-P bond can be clarified by examining the charge

density of the dopant electron |Ψ(r)|2 for several dot sizes. In Fig. §.32,

we illustrate the charge profile for the case when the impurity is at the dot

center. The density is plotted along [100] direction; results in other direc-

tions are similar. At all dots radii, the dopant wave function is strongly

localized around the impurity site, i.e., the majority of the charge is within

the P-Si bond length. From effective mass calculations [173, 174], it fol-

lows that the envelope wave function of the dopant electron is given by

j0(πr/R) ∝ sin(πr/R)/r. The calculated charge profile in Fig. §.32 is at

variance with this description. This difference in the spatial distributions

can be attributed to the is weaker screening in quantum dots. At these sizes,
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the dielectric constant is several times smaller than the bulk value [140,144],

giving rise to the increase of the effective electron-impurity potential and

stronger localization of the electron around the defect atom.

Given the charge distribution of the dopant electron, one can evaluate

the isotropic hyperfine parameter which determines the contact interaction

between the electron and defect nuclei. The method of Van de Walle and

Blöchl [175] is used to extract the hyperfine parameters from pseudo-charge

densities. The hyperfine parameters for a P atom positioned in the dot center

are given in Fig. §.33. At small sizes, the hyperfine parameter is very large

owing to strong localization of the electron around impurity. As the radius

increases, the value of A decreases. Our calculated results scale with radius

R of the dot as R−1.5 (effective mass theory gives R−3). In Figure 3, we

also present the experimental data of Ref. [168]. The measured values of the

hyperfine parameter falls on the best fit to calculated results; computational

limitations prevent us from comparing directly to measured values.

The hyperfine values are not strongly dependent on the choice of the

P site. Other sites have been tested by replacing one of Si atoms in each

shell with a P atom while retaining the passivating hydrogen atoms. The

ionization and binding energies were unchanged to within ∼5 %, independent

of the impurity atom position [172].

The value of the isotropic hyperfine parameter also remains largely un-

changed, save for the outermost layers of the dot. This behavior is demon-

strated in Fig. §.34, where hyperfine parameter is plotted as a function of



132 CLUSTERS AND NANOCRYSTALS

-12 -8 -4 0 4 8 12
0.00

0.01 Si292H172P

x (  )

0.00

0.02

C

C Si146H100P

| Ψ
(x

)|2  (
-3

 ) 0.00

0.04
Si34H36P
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Figure §.34: Isotropic hyperfine parameter A in Si86H76P quantum dot as a
function of the normalized position r0/R of the P atom in the quantum dot.
The dotted line is the average value of the hyperfine parameter.

defect position in a representative dot Si86H76P. Near the surface, the P

atom density becomes more delocalized and the hyperfine parameter shows

a notable decrease in value from the value when P resides in the dot center.

However, the average value of the hyperfine parameter over all sites is only

about 15 % lower than the value obtained when the P atom is at the center of

the nanocrystal which further increases agreement with experimental data.
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[57] D. R. Hamann, M. Schlüter, and C. Chiang, Phys. Rev. Lett. 43, 1494

(1979).

[58] A. Zunger and M. L. Cohen, Phys. Rev. B 18, 5449 (1978).

[59] G. P. Kerker, J. Phys. C 13, L189 (1980).

[60] G. Bachelet, D. R. Hamann, and M. Schlüter, Phys. Rev. B 26, 4199
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