Electrical response of molecular chains and the exact exchange approach

Leeor Kronik Department of Materials and Interfaces <u>Weizmann Institute of Science, Rehovoth, Israel</u>

Stephan Kümmel Max-Planck-Institut für Physik Komplexer Systeme, Dresden, Germany

> John P. Perdew Deparment of Physics, Tulane University, New Orleans, LA, USA

ITAMIT meeting, Minneapolis, Aug. 6-7, 2004

Outline

> (Hyper)polarizability of molecular chains

- When LDA/GGA fails...
- Exact exchange within DFT
 - Optimized effective potential
- > The real space approach PARSEC
 - Calculations with exact exchange
 - The electrical response

> Results

- Problem solved
- Why it works

> Conclusions

Electrical response of molecular chains

Organic oligomers and polymers possess large and directional linear and non-linear electrical response \Rightarrow optical applications!

e.g., polyacetylene C_{2n}H_{2n+2}

Many electrons \Rightarrow

DFT should be method of choice

Static limit

Linear response – polarizability (α)

Non-linear response – 2nd hyperpolarizability (γ)

$\partial \vec{\mu} = \partial^2 F$	$a^3 \vec{\mu}$ $a^4 F$	μ - dipole
$\alpha \equiv \frac{\partial \mu}{\partial z} = \frac{\partial L}{\partial z}$	$\gamma \equiv \frac{\sigma \mu}{R} = \frac{\sigma E}{R}$	E- Total energy
$\partial F = \partial F^2$	$\partial F^3 = \partial F^4$	F – electric field

(semi) local functionals (LDA/GGA) make large errors in linear and <u>huge errors</u> in non-linear response in the direction of the chain

 $C_{20}H_{22}$: α_{LDA}≈2α $C_{44}H_{46}$: γ_{LDA}≈60γ

... but Hartree-Fock surprisingly good!

Gisbergen et al., Phys. Rev. Lett. 83, 694 (1999).

Problems with (semi) local xc functionals 1. Asymptotic decay is wrong – exponential vs. ~1/r ... but not the problem!

2. Self-interaction error:

$$\frac{1}{2} \iint \frac{\rho(\vec{r})\rho(\vec{r}')}{|\vec{r}-\vec{r}'|} d^3\vec{r} d^3\vec{r}' + E_{xc}[\rho] \stackrel{\text{1electron}}{\neq} 0$$

Hartree-Fock is self-interaction free! What's the DFT equivalent?

Exact exchange within DFT

$$E_x^{ex} = -\frac{1}{2} \sum_{\sigma=\uparrow,\downarrow} \sum_{i,j=1}^{N_\sigma} \iint d^3 \vec{r} d^3 \vec{r}' \frac{\varphi_{i\sigma}^*(\vec{r})\varphi_{j\sigma}^*(\vec{r}')\varphi_{j\sigma}(\vec{r})\varphi_{i\sigma}(\vec{r}')}{|\vec{r}-\vec{r}'|}$$

Advantages:

- Self interaction free
- One more ingredient treated exactly a "third generation functional"
- Correct asymptotic form, derivative discontinuity

Disadvantages:

- Correlation? Lack of "fortunate error cancellation".
- Orbital dependence. Density dependence implicit.

The optimized effective potential

$$V_{xc\sigma}(\vec{r}) = \frac{\delta E_{xc}[\{\varphi_{j\tau}\}]}{\delta n_{\sigma}(\vec{r})} = \sum_{\substack{i=1\\\alpha=\uparrow,\downarrow}} \int \frac{\delta E_{xc}[\{\varphi_{j\tau}\}]}{\delta \varphi_{i\alpha}(\vec{r}')} \frac{\delta \varphi_{i\alpha}(\vec{r}')}{\delta n_{\sigma}(\vec{r})} d^{3}\vec{r}' + c.c. = \dots$$

The OEP integral equation:

$$\sum_{i=1}^{N_{\sigma}} \int \varphi_{i\sigma}^{*}(\vec{r}') [V_{xc\sigma}(\vec{r}') - u_{xci\sigma}(\vec{r}')] \varphi_{i\sigma}(\vec{r}) \sum_{\substack{j=1\\j\neq i}}^{\infty} \frac{\varphi_{j\sigma}(\vec{r}') \varphi_{j\sigma}^{*}(\vec{r})}{\varepsilon_{i\sigma} - \varepsilon_{j\sigma}} d^{3}\vec{r}' + c.c = 0$$

Where

$$u_{xci\sigma}(\vec{r}) = \frac{1}{\varphi_{i\sigma}^{*}(\vec{r})} \frac{\delta E_{xc}[\{\varphi_{j\tau}\}]}{\delta \varphi_{i\sigma}(\vec{r})}$$

A *local* potential. Not Hartree-Fock !!

Grabo et al., Mol. Eng. 7, 20 (1997).

The KLI approximation

$$V_{xc\sigma}(\vec{r}) = \frac{1}{2n_{\sigma}(\vec{r})} \sum_{i=1}^{N_{\sigma}} \left\{ \varphi_{i\sigma}(\vec{r}) \Big|^2 \left[u_{xci\sigma}(\vec{r}) + \overline{V}_{xci\sigma} - \overline{u}_{xci\sigma} \right] - \nabla \cdot \left[\psi_{i\sigma}^*(\vec{r}) \nabla \varphi_{i\sigma}(\vec{r}) \right] \right\} + c.c$$
KLI

Where

$$\psi_{i\sigma}^{*}(\vec{r}) = \sum_{\substack{j=1\\j\neq i}}^{\infty} \frac{\int \varphi_{i\sigma}^{*}(\vec{r}') [V_{xc\sigma}(\vec{r}') - u_{xci\sigma}(\vec{r}')] \varphi_{j\sigma}(\vec{r}') d^{3}\vec{r}'}{\varepsilon_{i\sigma} - \varepsilon_{j\sigma}} \varphi_{j\sigma}^{*}(\vec{r})$$

$$\overline{u}_{xci\sigma} = \int \varphi_{i\sigma}^*(\vec{r}) u_{xci\sigma}(\vec{r}) \varphi_{i\sigma}(\vec{r}) d^3r \qquad \overline{V}_{xci\sigma} = \int \varphi_{i\sigma}^*(\vec{r}) V_{xc\sigma}(\vec{r}) \varphi_{i\sigma}(\vec{r}) d^3r$$

Very accurate for ground state properties! Krieger, Li, and lafrate, *Phys. Rev. A* <u>46</u>, 5453 (1992)

Model hydrogen molecular chains

---- H — H---- H — H---- H — H-----

Same problem! e.g. H₁₂

method	α [a.u.]	γ [a.u.]
CI	127	179,000
HF	138	147,000
xKLI	157	277,000
LDA	211	1.27 10 ⁶

Grüning et al., J. Chem. Phys. 116, 6440 (2002).

Why does KLI fail?

Option 1: DFT exact exchange too different from HF. If so: Correlation??

Option 2: KLI response too different from that of OEP. If so: why??

Need to do exact OEP !

OEPs made simple

A simple iterative procedure towards an exact OEP solution

$$(\hat{h}_{KS} - \varepsilon_{i\sigma})\psi_{i\sigma}^{*}(\vec{r}) = -\left[V_{xc\sigma}(\vec{r}) - u_{xci\sigma}(\vec{r}) - (\overline{V}_{xci\sigma} - \overline{u}_{xci\sigma})\right]\phi_{i\sigma}^{*}(\vec{r})$$

$$V_{xc\sigma}^{\text{new}}(\vec{r}) = V_{xc\sigma}^{\text{old}}(\vec{r}) + c \sum_{i=1}^{N_{\sigma}} \psi_{i\sigma}^{*}(\vec{r}) \varphi_{i\sigma}(\vec{r}) + c.c$$
0 when exact

Kümmel and Perdew, Phys. Rev. Lett. 90, 43004 (2003)

Calls for an all-purpose 3d implementation

(hyper)polarizabilities \Rightarrow real space !!

The Real Space Approach

•System of interest placed in large domain and wave functions evaluated only at fixed grid points.

•Grid need not be cubic.

PARSEC:

Using *high order* finite differencing to approximate the Laplacian operator

$$\frac{\partial^2 \psi}{\partial x^2} \bigg|_{x=x_0} = \frac{1}{h^2} \sum_{m=-M}^{M} C_m \psi(x_0 + mh)$$

Real Space Approach (2)

Advantages:

The "basis" is objective
Convergence is trivial
Easy to implement
No recurring basis setup and no spurious forces
Natural, massive parallelization
Resulting secular equation involves sparse matrices, which are never stored explicitly
Can examine very large systems

Computing (hyper)polarizabilities

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{eff} - \underline{\vec{F}\cdot\vec{r}}\right)\psi_n = E_n\psi_n$$

$$\alpha = \frac{\partial \vec{\mu}}{\partial \vec{F}} = \frac{\partial^2 E}{\partial \vec{F}^2} \quad \gamma = \frac{\partial^3 \vec{\mu}}{\partial \vec{F}^3} = \frac{\partial^4 E}{\partial \vec{F}^4}$$

- F=0.0015 a.u., 0.003 a.u., ..., 0.012 a.u.
- Polynomial fit
- Accuracy: α to better than 1%, γ to a few %.

xOEP works!

	Polarizability α				Hyperpolarizability γ			
	[a.u.]				[a.u.] 10 ⁻³			
	H_4	H ₆	H ₈	H ₁₂	H ₄	H ₆	H ₈	H ₁₂
LDA	37.6	72.2	114.6	210.5	23.5	101	280	1200
xKLI	33.1	60.2	90.6	156.3	10.7	36	90	300
XOEP	32.2	56.6	84.2	138.1	9.3	30	68	144
HF		56.4		137.6		29.7		147
CC/CI		50.5		123.6		31.3		179

Field Counteracting behavior

LDA – follows the field (via density) xKLI, xOEP – counteract the field

xOEP vs. xKLI – no field

Different barriers! Hardly affects ground state

xOEP vs. xKLI with F=0.005 a.u.

Exchange hole

Response exchange

Exchange response drastically different!

What's at work?

 Functional derivative discontinuity – response to fractional charge

Orbital mixing and orbital averages

The KLI approximation

$$V_{xc\sigma}(\vec{r}) = \frac{1}{2n_{\sigma}(\vec{r})} \sum_{i=1}^{N_{\sigma}} \left\{ \varphi_{i\sigma}(\vec{r}) \Big|^2 \left[u_{xci\sigma}(\vec{r}) + \overline{V}_{xci\sigma} - \overline{u}_{xci\sigma} \right] - \nabla \cdot \left[\psi_{i\sigma}^*(\vec{r}) \nabla \varphi_{i\sigma}(\vec{r}) \right] \right\} + c.c$$
KLI

Where

$$\psi_{i\sigma}^{*}(\vec{r}) = \sum_{\substack{j=1\\j\neq i}}^{\infty} \frac{\int \varphi_{i\sigma}^{*}(\vec{r}') [V_{xc\sigma}(\vec{r}') - u_{xci\sigma}(\vec{r}')] \varphi_{j\sigma}(\vec{r}') d^{3}\vec{r}'}{\varepsilon_{i\sigma} - \varepsilon_{j\sigma}} \varphi_{j\sigma}^{*}(\vec{r})$$

$$\overline{u}_{xci\sigma} = \int \varphi_{i\sigma}^*(\vec{r}) u_{xci\sigma}(\vec{r}) \varphi_{i\sigma}(\vec{r}) d^3r \qquad \overline{V}_{xci\sigma} = \int \varphi_{i\sigma}^*(\vec{r}) V_{xc\sigma}(\vec{r}) \varphi_{i\sigma}(\vec{r}) d^3r$$

Very accurate for ground state properties! Krieger, Li, and lafrate, *Phys. Rev. A* <u>46</u>, 5453 (1992)

Conclusions

- Optimized effective potentials implemented simply and robustly within a real space high order finite difference approach. An all-purpose tool!
- Hyperpolarizabilities of molecular chains computed for the first time using xOEP. Quality comparable to HF. Kohn-Sham exact exchange works!
- xOEP works when xKLI fails because it sets higher barriers between units. Functional derivative discontinuity!