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/ The PARSEC Package' \

e PARSEC = Pseudopotential Algorithms for Real Space Energy
Calculations

e The goal of PARSEC is to solve the electronic structure of
confined systems.

e Two-step approach:

1. Electronic structure reconstruction: The potentials and

charge densities must be self-consistent

2. Geometry optimization/structural relaxation: Find the

lowest energy conformation

e This is an iterative process.
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/ A Motivational Examplel \

e There are two main cyclohexane conformations.

Hw

Boat conformation Chair conformation

From http://en.wikibooks.org

\o Which one occurs in nature? How do we figure this out? /
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A Simpler Problem!'

e Put another way - who is using less energy?!?

From Organic Chemistry by Paula Yurkanis Bruice at http://wps.prenhall.com.
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/ Potential Energy Minimization' \

e We can determine which conformation occurs in nature by

minimizing the potential energy.
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Qom Organic Chemistry by Paula Yurkanis Bruice at http://wps.prenhall.com. /




The Geometry Optimization Problem'

The goal is to minimize the potential energy of the molecular

structure.
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We do this by repositioning the atoms based on a fixed charge

density (at a given step).
This is a nonlinear optimization problem.

Here f(x) = potential energy, V f(x) = forces.
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Characteristics of the Optimization Problem'

e The objective function is highly nonlinear.

e Expensive function, gradient evaluations: evaluating f(x)

means a self-consistent loop calculation

e The objective function and gradient are noisy.
e The Hessian, i.e., V2 f(x) is not available.

e There may be many local minima.
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Algorithms for Unconstained Minimization'




Newton’s Method: A First Approach'

e Given f :R"™ — R, twice continuously differentiable, xy € R";

at each iteration k,

solve V2 f(xp)sy = —Vf(rw),

N
Tkl = Tk T Si -

e This attempts to find a zero of V f(x) by minimizing
myp(zr + sk) = fxr) + Vf(xe)! s, + %skTV2f(xk)sk..

e One Issue: PARSEC doesn’t provide analytic Hessians.
— Impossible to get via automatic differentiation

— Too expensive to evaluate via finite-differences
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Quasi-Newton Methods: A Revised Approach'

e Given f :R"™ — R, twice continuously differentiable, xy € R";

at each iteration k,

solve By sy = —Vf(x),

N
xk+sk,

Lk+1

where By, ~ V2 f(xy).

e Issue: How to approximate Bj?
— Several types of approximations

— Hessian updates are popular
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Descent Directions '
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Natural global strategy for minimization: make sure that each

step decreases the value of f.

Choose direction p from xj such that f(zy) < f(xx), where
x4 = x, + ap for some a € R. This is a descent direction.

Mathematically, this happens when V f(z)%p < 0.

If By is symmetric positive definite, the quasi-Newton step is a

descent direction.
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Secant Updates I

_ fe)=f ()

T4 —Tk

e The secant equation in 1D is B

e In general, B, should satisty B. si = yi, where s = x1 — g
and yr, = Vf(zy) — Vf(zg).

e The BFGS Update (Broyden, Fletcher, Goldfarb, Shanno):

T Bis.s. T B
B+:Bk+ykyk kSkSk k

YL Sk St B sk

— This is a symmetric, positive definite, rank-two

secant update.
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Secant Updates (continued)'

e The Symmetric Rank-One (SR1) Update
yr — Brsi)(yr — Brsi)”

(
B, = B, +
" ¢ (yx — Brsk)! sk

— This secant update is NO'T positive definite.

e Combined Hessian Update (Farkas and Schlegel)

B_|_ :Bk+¢ABkSR1—|—(1—¢)AB]€BFGS,

T T
— ./ ABofill — (Y —Brsk)” sk(Yr—BrSk)~ sk
where ¢ ¢ \/(yk_Bksk)Tskssz(yk_Bk:Sk:)Sk:TSk '

— This update combines the best properties of each.
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Line-search Methods .

Idea of a line-search algorithm: Given a descent direction py,

take a step in that direction that yields an “acceptable” x. .

At iteration k:

1. Calculate a descent direction py,

2. Set xpy1 = x) + \ppr for some A\ > 0 that makes x;11 an

acceptable next iterate.

Step acceptance rules are necessary for obtaining:
— decrease in f(x)

— appropriate steplengths.

Choose shorter steps in the quasi-Newton direction.
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/ Line-searches and Descent Directions' \

This illustrates a descent direction within a line-search method.

Flag = Mgy )

7 fxe) oy <0

=0

Figure 6.3.1 A cross section of f(x); R"— R from x; in the direction p,

From Numerical Methods for Unconstrained Optimization and Nonlinear Equations by Dennis and
Schnabel

\Note the importance of taking steps of appropriate length! /




Backtracking Line-search Framework'

Given a € (0,3), 0<l<u<1
A = 1;

while f(xy + Aedi) > f(xr) + a eV f(zk)" di, do
A = prAg for some py € [I, ul;

Tpa1 = Tk + Apdy;
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Model-Trust Region Methods'

Line-search = take a shorter step in the quasi-Newton

direction.
Trust region = shorten steplength and choose the direction.
Need to have an idea of maximum allowable steplength, oy.

Choose direction by solving:
min my(zy + s) = f(zg) + Vf(zg)'s + 557 Bys,
subject to ||s||2 < k.

0 provides a region in which we can trust m; to adequately
model f.
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Trust-region Method: Pictorial Version'

Figure 6.4.1 'L'he solution to (6.4.1)

From Numerical Methods for Unconstrained Optimization and Nonlinear Equations by Dennis and
Schnabel

The solution is either the Newton step (if it lies within the trust

region) or a modified-Newton step (of length dy).
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A Global Step of the Trust-Region Method'

Given f: R" — R, 0 € R™, Hp € R™ "™ gymmetric and

positive definite:

repeat

(1) sy := approximate solution to trust — region problem
ry = Ik -+ Sk,
(2) decide whether z is acceptable, and calculate a new d.

until =4 is an acceptable next point;

(5_|_ = 5k
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Tensor Methods '

Can be thought of as an extension of Newton’s Method

Bases each iteration upon a fourth order model of the objective

function:

1 1 1
mr(ry) = f(xk)+Vf(a:k)-d+§V2f(xk)-d2+6 - dd ﬂVk . d*

T). and V. are low-rank third and fourth order terms that cause
the model to interpolate the already calculated function and

gradient of the previous iterate.

The main difficulty is in determining an accurate Hessian.
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Conclusions .

. It is important to minimize the energy of the molecular system
by optimizing the positions of the atoms.

. This is a difficult nonlinear optimization problem.

. Quasi-Newton and tensor methods form two categories of
approaches to finding a local minimum.

. Finding the global minimum is a more difficult problem. For

now, we will be content with finding a local minimum.
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