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The PARSEC Package

• PARSEC = Pseudopotential Algorithms for Real Space Energy
Calculations

• The goal of PARSEC is to solve the electronic structure of
confined systems.

• Two-step approach:

1. Electronic structure reconstruction: The potentials and
charge densities must be self-consistent

2. Geometry optimization/structural relaxation: Find the
lowest energy conformation

• This is an iterative process.
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A Motivational Example

• There are two main cyclohexane conformations.

From http://en.wikibooks.org

• Which one occurs in nature? How do we figure this out?
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A Simpler Problem!

• Put another way - who is using less energy?!?

From Organic Chemistry by Paula Yurkanis Bruice at http://wps.prenhall.com.
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Potential Energy Minimization

• We can determine which conformation occurs in nature by
minimizing the potential energy.

From Organic Chemistry by Paula Yurkanis Bruice at http://wps.prenhall.com.
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The Geometry Optimization Problem

• The goal is to minimize the potential energy of the molecular
structure.

• We do this by repositioning the atoms based on a fixed charge
density (at a given step).

• This is a nonlinear optimization problem.

• Here f(x) = potential energy, ∇f(x) = forces.
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Characteristics of the Optimization Problem

• The objective function is highly nonlinear.

• Expensive function, gradient evaluations: evaluating f(x)
means a self-consistent loop calculation

• The objective function and gradient are noisy.

• The Hessian, i.e., ∇2f(x) is not available.

• There may be many local minima.
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Algorithms for Unconstained Minimization
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Newton’s Method: A First Approach

• Given f : Rn → R, twice continuously differentiable, x0 ∈ Rn;
at each iteration k,

solve ∇2f(xk) sN
k = −∇f(xk),

xk+1 = xk + sN
k .

• This attempts to find a zero of ∇f(x) by minimizing
mk(xk + sk) = f(xk) +∇f(xk)T sk + 1

2sk
T∇2f(xk)sk.

• One Issue: PARSEC doesn’t provide analytic Hessians.

– Impossible to get via automatic differentiation

– Too expensive to evaluate via finite-differences
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Quasi-Newton Methods: A Revised Approach

• Given f : Rn → R, twice continuously differentiable, x0 ∈ Rn;
at each iteration k,

solve Bk sN
k = −∇f(xk),

xk+1 = xk + sN
k ,

where Bk ≈ ∇2f(xk).

• Issue: How to approximate Bk?

– Several types of approximations

– Hessian updates are popular



'

&

$

%

Descent Directions

• Natural global strategy for minimization: make sure that each
step decreases the value of f .

• Choose direction p from xk such that f(x+) < f(xk), where
x+ = xk + αp for some α ∈ R. This is a descent direction.

• Mathematically, this happens when ∇f(xk)T p < 0.

• If Bk is symmetric positive definite, the quasi-Newton step is a
descent direction.
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Secant Updates

• The secant equation in 1D is B+ = f ′(x+)−f ′(xk)
x+−xk

.

• In general, B+ should satisfy B+ sk = yk, where sk = x+ − xk

and yk = ∇f(x+)−∇f(xk).

• The BFGS Update (Broyden, Fletcher, Goldfarb, Shanno):

B+ = Bk +
ykyk

T

yk
T sk

− Bksksk
T Bk

sk
T Bksk

.

– This is a symmetric, positive definite, rank-two
secant update.
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Secant Updates (continued)

• The Symmetric Rank-One (SR1) Update

B+ = Bk +
(yk −Bksk)(yk −Bksk)T

(yk −Bksk)T sk

– This secant update is NOT positive definite.

• Combined Hessian Update (Farkas and Schlegel)

B+ = Bk + φ ∆Bk
SR1 + (1− φ)∆Bk

BFGS ,

where φ =
√

φBofill =
√

(yk−Bksk)T sk(yk−Bksk)T sk

(yk−Bksk)T sksk
T (yk−Bksk)sk

T sk
.

– This update combines the best properties of each.
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Line-search Methods

• Idea of a line-search algorithm: Given a descent direction pk,
take a step in that direction that yields an “acceptable” xk+1.

• At iteration k:

1. Calculate a descent direction pk,

2. Set xk+1 = xk + λkpk for some λk > 0 that makes xk+1 an
acceptable next iterate.

• Step acceptance rules are necessary for obtaining:

– decrease in f(x)

– appropriate steplengths.

• Choose shorter steps in the quasi-Newton direction.
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Line-searches and Descent Directions

This illustrates a descent direction within a line-search method.

From Numerical Methods for Unconstrained Optimization and Nonlinear Equations by Dennis and
Schnabel

Note the importance of taking steps of appropriate length!
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Backtracking Line-search Framework

Given α ∈ (0, 1
2 ), 0 < l < u < 1

λk = 1;

while f(xk + λkdk) > f(xk) + αλk∇f(xk)T dk, do
λk = ρkλk for some ρk ∈ [l, u];

xk+1 = xk + λkdk;
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Model-Trust Region Methods

• Line-search = take a shorter step in the quasi-Newton
direction.

• Trust region = shorten steplength and choose the direction.

• Need to have an idea of maximum allowable steplength, δk.

• Choose direction by solving:
min mk(xk + s) = f(xk) +∇f(xk)T s + 1

2sT Bks,
subject to ‖s‖2 ≤ δk.

• δk provides a region in which we can trust mk to adequately
model f .
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Trust-region Method: Pictorial Version

From Numerical Methods for Unconstrained Optimization and Nonlinear Equations by Dennis and
Schnabel

The solution is either the Newton step (if it lies within the trust
region) or a modified-Newton step (of length δk).
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A Global Step of the Trust-Region Method

Given f : Rn → R, δk ∈ Rn, Hk ∈ Rn×n symmetric and
positive definite:

repeat

(1) sk := approximate solution to trust− region problem

x+ := xk + sk,

(2) decide whether x+ is acceptable, and calculate a new δk.

until x+ is an acceptable next point;

δ+ := δk.
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Tensor Methods

• Can be thought of as an extension of Newton’s Method

• Bases each iteration upon a fourth order model of the objective
function:

mT (x+) = f(xk)+∇f(xk)·d+
1
2
∇2f(xk)·d2+

1
6
Tk · d3 +

1
24

Vk · d4

• Tk and Vk are low-rank third and fourth order terms that cause
the model to interpolate the already calculated function and
gradient of the previous iterate.

• The main difficulty is in determining an accurate Hessian.
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Conclusions

1. It is important to minimize the energy of the molecular system
by optimizing the positions of the atoms.

2. This is a difficult nonlinear optimization problem.

3. Quasi-Newton and tensor methods form two categories of
approaches to finding a local minimum.

4. Finding the global minimum is a more difficult problem. For
now, we will be content with finding a local minimum.
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