UNIVERSITY OF MINNESOTA TWIN CITIES

Numerical Methods in Electronic Structures Calculations

Yousef Saad

Department of Computer Science and Engineering

ITAMIT meeting – July 29th, 2005

Current & recent team members team: (CS side)

- **Costas Bekas Post-Doc**
- **Yunkai Zhou Post-Doc**
- **Susanne Shontz Post-Doc**
-
- **Emmanuel Lorin**

 Shiv Gowda Masters student [Now at NEC, Houston]

de La Grandmaison Post-doc [Now in Montreal]

What we do:

II **We develop Numerical Algorithms**

II **We test them along with materials science researchers**

II **We optimize them**

II **We install them in materials code (s) – e.g., PARSEC**

 \blacktriangleright ... a few years later ...

What we do:

II **We develop Numerical Algorithms**

II **We test them along with materials science researchers**

II **We optimize them**

II **We install them in materials code (s) – e.g., PARSEC**

 \blacktriangleright .. a few years later ...

We throw them away and repeat

II **Algorithms for solving eigenvalue problems**

II **Find alternatives [avoid eigenvectors, eigenvalues]**

II **Solve various related computational problems [TDDFT, computation of dielectric matrix, ...]**

Electronic structures and Schrödinger's equation

II **Determining matter's electronic structure can be ^a major challenge:**

Number of particules is large [a macroscopic $|$ amount contains $\approx 10^{23}$ electrons and nuclei] and **the physical problem is intrinsically complex.**

▶ Solution via the many-body Shrödinger equation: $H\Psi = E\Psi$

 \blacktriangleright In original form the above equation is very complex

\blacktriangleright **Hamiltonian** H is of the form :

$$
H=-\frac{\hbar^2\nabla_i^2}{2M_i}-\frac{\hbar^2\nabla_j^2}{2m}+\frac{1}{2}\sum\limits_{i,j}\frac{Z_iZ_je^2}{|\vec{R}_i-\vec{R}_j|}\\-\frac{\Sigma}{i,j}\frac{Z_ie^2}{|\vec{R}_i-\vec{r}_j|}+\frac{1}{2}\sum\limits_{i,j}\frac{e^2}{|\vec{r}_i-\vec{r}_j|}
$$

 $\Psi = \Psi(r_1, r_2, \ldots, r_n, R_1, R_2, \ldots, R_N)$ depends on co**ordinates of all electrons/nuclei.**

II **Involves sums over all electrons / nuclei and their pairs**

 \blacktriangleright Note $\nabla^2 \Psi$ is Laplacean of Ψ = sum of second deriva**tives of** Ψ **in each direction. Represents kinetic energy.**

A hypothetical calculation: (dont try this at home) II **10 Atoms each having 14 electrons [Silicon]** II **... ^a total of 15*10= 150 particles** II **... Assume each coordinate will need 100 points for discretization..** \blacktriangleright ... you will get # <code>Unknowns</code> $=$ $\,\,\underline{100}\,\times\,\underline{100}\,\times\cdots\times\,\,\,\underline{100}$ part.1 part.2 $part.150$ $= 100^{150}$ II **Methods based on this basic formulation are limited to**

a few atoms.

Several approximations/ theories used

Problem can be viewed from the angle of optimization: Find Ψ **Minimize energy** $<\Psi$ | H | $\Psi>$ $<\Psi|\Psi>$

.. or from the angle of eigenvalue problems: Find eigenfunction Ψ **associated with smallest eigenvalue of** H

 \blacktriangleright **Methods have been developed on both camps**

II **Our camp: eigenvalue problems**

A brief history of diagonalization methods

II **First: what is an eigenvalue problem? Given ^a matrix** A**, find ^a scalar** λ **and a nonzero vector** ^x **such that** $Ax = \lambda x$

Quiz: what are the main uses of eigenvalues/ eigenvectors

Eigenvalue Problems. Their origins

- \bullet Structural Engineering [$Ku = \lambda Mu$]
- **Stability analysis [e.g., electrical networks, mechanical system,..]**
- **Bifurcation analysis [e.g., in fluid flow]**
- **Electronic structure calculations [Shroding ¨ er equation..]**
- **Application of new era: page ranking on the world-wide web.**

Types of Problems:

- \bullet Compute a few λ_i 's with smallest or largest real parts;
- \bullet Compute all λ_i 's in a certain region of \mathbb{C} ;
- **Compute ^a few of the dominant eigenvalues;**
- \bullet Compute all λ_i 's.

Our problem: A **is symmetric real – so its eigenvalues are real, and we want to compute the lowest** k**, where** k **represents the number of occupied states.**

 \blacktriangleright k can be in the hundreds or thousands

 \blacktriangleright A can be very large up to a few Millions - currently.

Eigenvalues of dense matrices

 \blacktriangleright Early days: compute the characteristic polynomial.

- \triangleright Works well "by hand" for dimension of up to 5 or so..
- II **Not viable for serious calculations**
- II **Work in the 40's and 50s concentrated on reducing the problem into an easy one: triadiagonal / or Hessenberg form (nonsymmetric matrices).**

II **Characteristic polynomials easier to compute..**

Breakthroughs: The LR and QR algorithms

II **Discovered in 1959 (LR) and 1961 (QR).**

- II **Complicated to understand theoretically**
- II **QR was held "secret" for ^a few years given its importance.**
- II **Both QR and LR are very economical for tridiagonal matrices.**

A brief history of eigenvalues - cont.

 \blacktriangleright 1965: Major book in computing eigenvalues by J. Wilki**son: The "bible" on eigenvalue problems**

II **1971: volume by Wilkinson and Reinsch "handbook for automatic computations", Linear algebra. Published 1st programs – in Algol... ^a now defunct language**

▶ By 1975: EISPACK project. Translate Wilkinson & Rein**sch volume in FORTRAN IV. Tremendous impact**

II **Later came LINPACK [linear equations]**

■ and much later came LAPACK = combined the two..

Current state of the art for dense computations:

- II **Consider the symmetric case only. Then**
- \blacktriangleright Reduce A to tridiagonal form
- II **Use QR-alg. on tridiag matrix.**
- **Order** n^3 **calculation** –
- II **software: LAPACK**

Quiz: Suppose cost is $14n^3$ and $n = 10^6$, and you have **^a very powerful machine at home which can store the matrix and which delivers an operation every nanosecond (1 Gflop machine). How long would it take to compute the eigenvalues of** A**?**

Quiz: Suppose cost is $14n^3$ and $n = 10^6$, and you have **^a very powerful machine at home which can store the matrix and which delivers an operation every nanosecond (1 Gflop machine). How long would it take to compute the eigenvalues of** A**?**

Effective methods exploit sparsity

II **Most methods exploit the fact that ^a product of ^a sparse matrix by ^a vector is very inexpensive [Order** ⁿ**]**

II **Suppose for the sake of argument that we now have an algorithm that takes exactly** ⁿ² **operations to compute one eigenvector.**

► Same question as before for one eigenvector

Quiz: Suppose cost is n^2 and $n = 10^6$, and you have a **very powerful machine at home which can store the matrix and which delivers an operation every nanosecond (1 Gflop machine). How long would it take to compute one eigenvector of** A**?**

Quiz: Suppose cost is n^2 and $n = 10^6$, and you have a **very powerful machine at home which can store the matrix and which delivers an operation every nanosecond (1 Gflop machine). How long would it take to compute one eigenvector of** A**?**

Environments used throughout the project:

- **Initially: Cray YMP [93]**
- **Cluster of SGI workstations**
- **CM5 [1994-1996]**
- **IBM SP2 [Using PVM]**
- **Cray T3D [Combining PVM ⁺ MPI] – around 1996-1997**
- **Cray T3E [using MPI] – 1997**
- **IBM SP with +256 nodes – 1998+**
- **IBM SP3 / SGI Altix currently**