Solving large scale eigenvalue problems in electronic structure calculations

C. Bekas

Comp. Science & Engineering Dept. University of Minnesota, Twin Cities

* Work supported by NSF under grants NSF/ITR-0082094, NSF/ACI-0305120 and by the Minnesota Supercomputing Institute

Introduction and Motivation

Computational Materials Science Target Problem

...predict the properties of materials...

How?

AB INITIO calculations: Simulate the behavior of materials at the atomic level, by applying the basic laws of physics: Quantum Mechanics

What do we (hope to) achieve?

- > Explain the *experimentally established* properties of materials
- > Engineer new materials with *desired properties*

Applications:...numerous (some include)

- > Semiconductors, synthetic light weight materials
- Drug discovery, protein structure prediction
- **Energy:** alternative fuels

In this talk

Introduction to the mathematical formulation of *ab initio* calculations...
 in particular...the Density Functional Theory (DFT)...formulation
 Identify the computationally intensive "spots"... *eigenvalue calculations*

Large scale eigenvalue problems are central...

- > Symmetric/Hermitian problems
- > very large number of eigenvalues/vectors required...so
- reorthogonalization (Gram-Schmidt) and synchronization (barrier/join) costs dominate...
- > limiting the feasible size of molecules under study

Alternative...Automated Multilevel Substructuring (AMLS)

- > Significantly limits reorthogonalization costs...
- > can attack very large problems...when O(1000) eigs. are required...

Mathematical Modelling: The Wave Function

We seek to find the steady state of the electron distribution

Each electron e_i is described by a corresponding wave function Ψ_i ...
 Ψ_i is a function of space (r)...in particular it is determined by
 The position r_k of all particles (including nuclei and electrons)
 It is normalized in such a way that

$$\int |\psi_i(r)|^2 dr = 1$$

• Max Born's probabilistic interpretation: Considering a region *D*, then

$$Pr(\psi_i, D) = \int_D |\psi_i(r)|^2 dr$$

...describes the probability of electron e_i being in region *D*. Thus: the distribution of electrons e_i in space is defined by the wave function ψ_i

Mathematical Modelling: The Hamiltonian

Steady state of the electron distribution:

➤ it is such that it minimizes the total energy of the molecular system...(energy due to dynamic interaction of all the particles involved because of the forces that act upon them)

Hamiltonian H of the molecular system:

- > Operator that governs the interaction of the involved particles...
- > Considering all forces between nuclei and electrons we have...

$$H = H_{nucl} + H_e + U_{nucl} + V_{ext} + U_{ee}$$

 H_{nucl} H_{e} U_{nucl} V_{ext} U_{ee}

Kinetic energy of the nuclei Kinetic energy of electrons Interaction energy of nuclei (Coulombic repulsion) Nuclei electrostatic potential with which electrons interact Electrostatic repulsion between electrons

Mathematical Modelling: Schrödinger's Equation

Let the columns of Ψ :

$$\Psi = [\psi_1, \psi_2, \dots, \psi_N]$$

hold the wave functions corresponding the electrons...Then it holds that

$$H\Psi = \epsilon \Psi$$

This is an eigenvalue problem...that becomes a usual...
 "algebraic" eigenvalue problem when we discretize ψ_i w.r.t. space (r)
 Extremely complex and nonlinear problem...since
 Hamiltonian and wave functions depend upon all particles...
 We can very rarely (only for trivial cases) solve it exactly...

Variational Principle (in simple terms!)

Minimal energy and the corresponding electron distribution amounts to calculating the smallest eigenvalue/eigenvector of the Schrödinger equation

Schrödinger's Equation: Basic Approximations

Multiple interactions of all particles...result to extremely complex Hamiltonian...which typically becomes huge when we discretize

Thus...a number of reasonable approximations/simplifications have been considered...with negligible effects on the accuracy of the modeling:

Born-Oppenheimer: Separate the movement of nuclei and electrons...the latter depends on the positions of the nuclei in a parametric way...(essentially neglect the kinetic energy of the nuclei)

> Pseudopotential approximation: Nucleus and surrounding core electrons are treated as one entity

▷ Local Density Approximation: If electron density does not change rapidly w.r.t. sparse (r)...then electrostatic repulsion U_{ee} is approximated by assuming that density is locally uniform

Density Functional Theory

High complexity is mainly due to the many-electron formulation of *ab initio* calculations...is there a way to come up with an one-electron formulation?

<u>Key Theory</u> DFT: Density Functional Theory (Hohenberg,Kohn,Sham)

✓ The total ground energy of a molecular system is a functional of the electronic density...(number of electrons in a cubic unit)
✓ The energy of a system of electrons is at a minimum if it is an exact density of the ground state!

- This is an existence theorem...the density functional always exists
- ...but the theorem does not prescribe a way to compute it...
- This energy functional is highly complicated...
- Thus approximations are considered...concerning:
 - Kinetic energy and
 - **Exchange-Correlation energies of the system of electrons**

Density Functional Theory: Formulation (1/2)

Equivalent eigenproblem:

$$[H_{e_i} + V_{tot}(r; \rho)]\psi_i(r) = \epsilon_i \psi_i(r)$$

Density Functional Theory: Formulation (2/2)

Furthermore:

$$V_{tot}(r;\rho) = V_{ion} + V_H + Vxc$$

Vion Potential due to nuclei and core electrons

<u>Non-linearity:</u> The new Hamiltonian depends upon the charge density ρ while ρ itself depends upon the wave functions (eigenvectors) ψ_i

Some short of iteration is required until convergence is achieved!

Self Consistent Iteration in PARSEC Start with initial guess for $V_{tot}(r, \rho_0)$ and iterate 1. Solve $[H_{e_i} + V_{tot}(r; \rho_{k-1})]\psi_i(r) = \epsilon_i \psi_i(r)$ 2. Update charge density $\rho_k(r) = \sum \psi_i(r)^* \psi_i(r)$ 3. Solve $\nabla^2 V_H = -4\pi \rho_k(r)$ 4. Update $V_{tot}(r, \rho_k(r)) = V_{ion}(r) + V_H(r) + V_{xc}(\rho_k)$ 5. Has V_{tot} converged? If yes then break 6. Update $V_{tot}(r, \rho_k) = \mathcal{F}(V_{tot}(r, \rho_k), V_{tot}(r, \rho_{k-1}))$ Calculate total energy, forces etc...

S.C.I in PARSEC: Computational Considerations Start with initial guess for $V_{tot}(r, \rho_0)$ and iterate 1. Solve $[H_{e_i} + V_{tot}(r; \rho_{k-1})]\psi_i(r) = \epsilon_i \psi_i(r)$ 2. Update charge density $\rho_k(r) = \sum \psi_i(r)^* \psi_i(r)$ S.C.Iin PARSEC: Computational Considerations Start with initial guess for $V_{tot}(r, \rho_0)$ and iterate 1. Solve $[H_{e_i} + V_{tot}(r; \rho_{k-1})]\psi_i(r) = \epsilon_i\psi_i(r)$ 2. Update charge density $\rho_k(r) = \sum_{occ} \psi_i(r)^*\psi_i(r)$

Conventional approach:

Solve the eigenvalue problem (1)...and compute the charge densities...
 This is a tough problem...many of the smallest eigenvalues...deep into the spectrum are required! Thus...

efficient eigensolvers have a significant impact on electronic structure calculations!

Alternative approach:

The eigenvectors ψ_i are required only to compute ρ_k(r)
 Can we instead approximate charge densities without eigenvectors...?
 Yes...!

Computational Considerations in Applying Eigensolvers for Electronic Structure Calculations

The Eigenproblem

Hamiltonian Characteristics

> Discretization: High-order finite difference scheme...leads to

Large Hamiltonians!...typically N>100K...with significant...

> number of nonzero elements (NNZ)>5M...

> Hamiltonian is Symmetric/Hermitian...thus the eigenvalues are real numbers...some smallest and some larger than zero.

Eigenproblem Characteristics (why is this a tough case?)

We need the algebraically smallest (leftmost) eigenvalues (and vectors)
 How many? Typically a large number of them. Depending upon the molecular system under study:

• for standard spin-less calculations $\rightarrow Si_x H_y$: (4x + y)/2

• i.e. for the small molecule $Si_{34}H_{36}$ we need the 86 smallest eigenvalues...

➢ For large molecules, x,y>500 (or for exotic entities...quantum dots) thousands of the smallest eigenvalues are required....

► Using current state of the-art-methods we need thousands of CPU hours on DOE supercomputers...and we have to do that many times!

Methods for Eigenvalues (basics only!)

Eigenvalue Approximation from a Subspace

Consider the standard eigenvalue problem: $Ax = \lambda x$

and let V be a thin $N \ge k$ (N>>k) matrix...then

approximate the original problem with: $V^{\top}AVy = \theta V^{\top}Vy$

Observe that:

> Selecting V to have orthogonal columns $...V^T V = I ...$ but it is expensive to come up with an orthogonal V

> Set $H = V^T A V$... then H is k x k ...much smaller than N x N

$$Hy = \theta y, \ \lambda \approx \theta, \ x \approx Vy$$

C. Bekas: ITAMIT Seminar

Symmetric Problems: Lanczos

Basic property

Theoretically...(assuming no round-off errors)...Lanczos can build a very large orthogonal basis V requiring in memory only 3 columns of V at each step!

Lanczos

1. Input: Matrix *A*, unit norm starting vector v_0 , $\beta_0 = 0$, # *k* 2. For j = 1,2,...,k Do 3. $w_j = Av_j$ MATRIX VECTOR NO SYNC. 4. $w_j = w_j - \beta_j v_{j-1}$ DAXPY NO SYNC. 5. $\alpha_j = (w_j, v_j)$ DOT PRODUCT SYNC. -BCAST 6. $w_j = w_j - \alpha_j v_j$ DAXPY NO SYNC. 7. $\beta_{j+1} = ||w_j||_2$. DOT PRODUCT SYNC. - BCAST 8. If $\beta_{j+1} = 0$ then STOP 9. $v_{j+1} = w_j / \beta_{j+1}$ DSCAL NO SYNC. 10. EndDO

Lanczos in Finite Arithmetic...

Round-off errors

- **Example 7** Lanczos vectors v_i quickly loose orthogonality...so that
- \succ V^TV is no longer orthogonal...thus
- \blacktriangleright We need to check if v_i is \perp to previous vectors 0,1,...,j-1
- > If NOT ... reorthogonalize it against previous vectors (Gramm-Schmidt)

<u>Lanczos</u>

1. Input: Matrix A, unit norm starting vector v_0 , $\beta_0 = 0$, # k 2. For j = 1.2....k Do **ORTHOGONALITY IS LOST** 3. $w_i = Av_i$ **HERE...SO THESE STEPS ARE** 4. $\mathbf{w}_{j} = \mathbf{w}_{j} - \beta_{j} \mathbf{v}_{j-1}$ **REPEATED AGAINST** ALL 5. $\alpha_i = (w_i, v_i)$ **PREVIOUS VECTORS...** 6. $w_i = w_i - \alpha_i v_i$ ECTIVE REORTH IS ALSO **POSIBLE (SIMON, LARSEN)** 7. $\beta_{j+1} = ||\mathbf{w}_j||_{2^*}$ 8. If $\beta_{i+1} = 0$ then STOP 9. $v_{i+1} = w_i / \beta_{i+1}$ 10. EndDO

Practical Eigensolvers and Limitations

ARPACK (Sorensen-Lehoucq-Yang): Restarted Lanczos

- **Remember that O(1000) eigenvalues/vectors are required...thus**
- \blacktriangleright we need a very long basis V...k = twice the number of eigenvalues which
- > will result in a large number of reorthogonalizations...

Synchronization costs – Reorthogonalization costs – and Memory costs become intractable for large problems of interest...

Shift-Invert Lanczos (Grimes et all) – Rational Krylov (Ruhe)

 \succ work with matrix $(A - \sigma_i I)^{-1}$ instead...

 \succ compute some of the eigenvalues close to σ_i each time...thus a smaller basis is required each time...BUT

 \triangleright many shifts σ_i are required...

 \succ cost of working with the different "inverses" (A- σ_i I)⁻¹ becomes prohibitive for (practically) large Hamiltonians...

We need alternative methods that can build large projection bases without the reorthogonalization-synchronization costs

Automated Multilevel Substructuring

C. Bekas: ITAMIT Seminar

Component Mode Synthesis: a model problem

Consider the model problem:

$$-\nabla^2 u = \lambda u$$

on the unit square Ω . We wish to compute smallest eigenvalues.

Subdivide Ω into 2 subdomains: Ω_1 and Ω_2

Component Mode Synthesis

- Solve problem on each Ω_i
- "Combine" partial solutions

C. Bekas: ITAMIT Seminar

AMLS: Multilevel application

Example: Container ship, 35K degrees of freedom (Research group of prof. H. Voss, T. U. Hamburg, Germany)

C. Bekas: ITAMIT Seminar AMLS: Example 2) 2446 8) 2308 3) 3379 4) 3878 9) 4867 5) 3990 6) 3730 7) 4170 10) 1176 1) 3358

Example: Container ship, 35K degrees of freedom (Research group of prof. H. Voss, T. U. Hamburg, Germany)

C. Bekas: ITAMIT Seminar

AMLS: Example

AMLS: Substructure tree (Kropp-Heiserer, BMW)

- > Multilevel parallelism...
- > Both Top-Down and Bottom-Up implementations are possible...
- > At each node we need to solve a linear system...
- > Multilevel solution of linear systems...level k depends-benefits from level k+1

C. Bekas: ITAMIT Seminar

Problem Set...AMLS v.s. Standard Methods

Implementation Issues – Trilinos

ab initio calculations:...many ingredients required for successful techniques

- > Mesh generation...discretization
- > Visualization of input data...results...geometry
- > Efficient data structures-communicators for parallel computations
- > Efficient (parallel) Matrix-Vector and inner products
- Linear system solvers
- > State-of-the-art eigensolvers...

A unifying software development environment will prove to be very useful

- ➤ ease of use...
- > reusability...(object oriented)
- ▶ portable...

TRILINOS http://software.sandia.gov/trilinos

- > software multi-package...developed at SANDIA (M. Heroux)
- > modular...no need to install everything in order to work!
- Capabilities of LAPACK, AZTEC, Chaco, SuperLU, etc...combined
- > very active user community...ever evolving!
- > ease of use...without sacrificing performance

Large Scale Challenges in Computational Materials Science > In DFT eigenvalue calculations dominate...

- ...many O(1000) eigenvalues/vectors required...
- > ...easily reaching and exceeding the limits of state-of-the-art traditional solvers

➢ AMLS appears as an extremely attractive alternative...however accuracy requirements and efficient parallel implementation is still under development

Many open problems in *ab initio* calculations...one of the most active fields of research today!