Solving large scale eigenvalue problems in electronic structure calculations

C. Bekas

Comp. Science & Engineering Dept. University of Minnesota, Twin Cities

*** Work supported by NSF under grants NSF/ITR-0082094, NSF/ACI-0305120 and by the Minnesota Supercomputing Institute**

Introduction and Motivation

Computational Materials Science Target Problem

…predict the properties of materials…

How?

 AB INITIO calculations: **Simulate the behavior of materials at the atomic level, by applying the basic laws of physics: Quantum Mechanics**

What do we (hope to) achieve?

- **Explain the** *experimentally established* **properties of materials**
- **Engineer new materials with** *desired properties*

Applications:…numerous (some include)

- **Semiconductors, synthetic light weight materials**
- **Drug discovery, protein structure prediction**
- **Energy: alternative fuels**

In this talk

 Introduction to the mathematical formulation of *ab initio* **calculations… in particular…the Density Functional Theory (DFT)…formulation Identify the computationally intensive "spots"…** *eigenvalue calculations*

Large scale eigenvalue problems are central…

- **Symmetric/Hermitian problems**
- **very large number of eigenvalues/vectors required…so**
- **reorthogonalization (Gram-Schmidt) and synchronization (barrier/join) costs dominate…**
- \triangleright **limiting the feasible size of molecules under study**

*Alternative***…Automated Multilevel Substructuring (AMLS)**

- **Significantly limits reorthogonalization costs…**
- **can attack very large problems…when O(1000) eigs. are required…**

Mathematical Modelling: The Wave Function

We seek to find the *steady state* **of the** *electron distribution*

 \triangleright Each electron e_i is described by a corresponding *wave function* ψ_i ... $\triangleright \psi_i$ is a function of space (r)...in particular it is determined by **The position r_k of all particles (including nuclei and electrons)** \blacksquare **It is normalized in such a way that**

$$
\int |\psi_i(r)|^2 dr = 1
$$

Max Born's probabilistic interpretation: Considering a region *D,* **then**

$$
Pr(\psi_i, D) = \int_D |\psi_i(r)|^2 dr
$$

…describes the probability of electron *ei* **being in region** *D.* **Thus: the distribution of electrons** e_i **in space is defined by the wave function** ψ_i

Mathematical Modelling: The Hamiltonian

Steady state **of the** *electron distribution:*

 it is such that it minimizes the total energy of the molecular system…(energy due to dynamic interaction of all the particles involved because of the forces that act upon them)

Hamiltonian H **of the molecular system:**

- *Operator* **that governs the interaction of the involved particles…**
- **Considering all forces between nuclei and electrons we have…**

$$
H = H_{nucl} + H_e + U_{nucl} + V_{ext} + U_{ee}
$$

H_{nucl} Kinetic energy of the nuclei
*H*_{*A} Kinetic energy of electrons*</sub> *He Kinetic energy of electrons Unucl Interaction energy of nuclei (Coulombic repulsion) Vext Nuclei electrostatic potential with which electrons interact Electrostatic repulsion between electrons*

Mathematical Modelling: Schrödinger's Equation

Let the columns of Ψ*:*

$$
\pmb{\nu} = [\psi_1, \psi_2, \ldots, \psi_N]
$$

hold the wave functions corresponding the electrons…Then it holds that

$$
H\Psi=\epsilon\Psi
$$

 This is an eigenvalue problem…that becomes a usual… "algebraic" eigenvalue problem when we discretize ψ_i , **w.r.t. space** (**r**) **Extremely complex and nonlinear problem…since Hamiltonian and wave functions depend upon all particles… We can very rarely (only for trivial cases) solve it exactly…**

Variational Principle (in simple terms!)

Minimal energy and the corresponding electron distribution amounts to calculating the smallest eigenvalue/eigenvector of the Schrödinger equation

Schrödinger's Equation: Basic Approximations

Multiple interactions of all particles…result to extremely complex Hamiltonian…which typically becomes huge when we discretize

Thus…a number of reasonable approximations/simplifications have been considered…with negligible effects on the accuracy of the modeling:

 Born-Oppenheimer: *Separate the movement of nuclei and electrons…the latter depends on the positions of the nuclei in a parametric way…(essentially neglect the kinetic energy of the nuclei)*

 Pseudopotential approximation: *Nucleus and surrounding core electrons are treated as one entity*

 Local Density Approximation: *If electron density does not change rapidly w.r.t. sparse* (*r*)...*then electrostatic repulsion* U_{ee} *is approximated by assuming that density is locally uniform*

Density Functional Theory

High complexity is mainly due to the many-electron formulation of *ab initio* **calculations…is there a way to come up with an one-electron formulation?**

 Key Theory DFT: Density Functional Theory (Hohenberg,Kohn,Sham)

 The total ground energy of a molecular system is a functional of the electronic density…(number of electrons in a cubic unit) The energy of a system of electrons is at a minimum if it is an exact density of the ground state!

- **This is an existence theorem…the density functional always exists**
- **…but the theorem does not prescribe a way to compute it…**
- **This energy functional is highly complicated…**
- **Thus approximations are considered…concerning:**
	- **Kinetic energy and**
	- **Exchange-Correlation energies of the system of electrons**

Density Functional Theory: Formulation (1/2)

Equivalent eigenproblem:

$$
[H_{e_i} + V_{tot}(r; \rho)]\psi_i(r) = \epsilon_i \psi_i(r)
$$

Density Functional Theory: Formulation (2/2)

Furthermore:

$$
V_{tot}(r; \rho) = V_{ion} + V_H + Vxc
$$

 V_{ion} **Potential due to nuclei and core electrons**

Non-linearity: *The new Hamiltonian depends upon the charge density* ^ρ *while* ^ρ *itself depends upon the wave functions (eigenvectors)* ψ*ⁱ*

Some short of iteration is required until convergence is achieved!

Self Consistent Iteration in PARSEC Start with initial guess for $V_{tot}(r, \rho_0)$ and iterate 1. Solve $[H_{e_i} + V_{tot}(r; \rho_{k-1})] \psi_i(r) = \epsilon_i \psi_i(r)$ 2. Update charge density $\rho_k(r) = \sum \psi_i(r)^* \psi_i(r)$ 3. Solve $\nabla^2 V_H = -4\pi \rho_k(r)$ 4. Update $V_{tot}(r, \rho_k(r)) = V_{ion}(r) + V_H(r) + V_{xc}(\rho_k)$ 5. Has V_{tot} converged? If yes then break 6. Update $V_{tot}(r, \rho_k) = \mathcal{F}(V_{tot}(r, \rho_k), V_{tot}(r, \rho_{k-1}))$ Calculate total energy, forces etc...

S.C.I in PARSEC: Computational Considerations Start with initial guess for $V_{tot}(r, \rho_0)$ and iterate 1. Solve $[H_{e_i} + V_{tot}(r; \rho_{k-1})] \psi_i(r) = \epsilon_i \psi_i(r)$ 2. Update charge density $\rho_k(r) = \sum \psi_i(r)^* \psi_i(r)$

S.C.Iin PARSEC: Computational Considerations Start with initial guess for $V_{tot}(r, \rho_0)$ and iterate 1. Solve $[H_{e_i} + V_{tot}(r; \rho_{k-1})] \psi_i(r) = \epsilon_i \psi_i(r)$ 2. Update charge density $\rho_k(r) = \sum \psi_i(r)^* \psi_i(r)$ occ

Conventional approach:

 Solve the eigenvalue problem (1)…and compute the charge densities… This is a tough problem…many of the smallest eigenvalues…deep into the spectrum are required! Thus…

 efficient eigensolvers have a significant impact on electronic structure calculations!

Alternative approach:

 \triangleright **The eigenvectors** ψ_i **are required only to compute** $\rho_k(r)$

Can we instead approximate charge densities without eigenvectors…?

 Yes…!

Computational Considerations in Applying Eigensolvers for Electronic Structure Calculations

The Eigenproblem

Hamiltonian Characteristics

 Discretization: High-order finite difference scheme…leads to

 Large Hamiltonians!…typically N>100K…with significant…

 number of nonzero elements (NNZ)>5M…

 Hamiltonian is Symmetric/Hermitian…thus the eigenvalues are real numbers…some smallest and some larger than zero.

Eigenproblem Characteristics (why is this a tough case?)

 We need the algebraically smallest (leftmost) eigenvalues (and vectors) How many? Typically a large number of them. Depending upon the molecular system under study:

• for standard spin-less calculations \rightarrow Si_xH_y : $(4x + y)/2$

 \blacksquare *i.e. for the small molecule* $Si_{34}H_{36}$ *we need the 86 smallest eigenvalues…*

 For large molecules, x,y>500 (or for exotic entities…quantum dots) thousands of the smallest eigenvalues are required….

Using current state of the-art-methods we need thousands of CPU hours on DOE supercomputers…and we have to do that many times!

Methods for Eigenvalues (basics only!)

Eigenvalue Approximation from a Subspace

Consider the standard eigenvalue problem: $Ax = \lambda x$

and let *V* be a thin $N \times k$ (N>>k) matrix...then

approximate the original problem with: $V^{\top} A V y = \theta V^{\top} V y$

Observe that:

 Selecting V to have orthogonal columns …VTV = I … but it is expensive to come up with an orthogonal V

 \triangleright *Set H = V^TAV... then H is k x k …much smaller than N x N*

$$
Hy=\theta y,\;\;\lambda\approx\theta,\;\;x\approx Vy
$$

Symmetric Problems: Lanczos

Basic property

 Theoretically…(assuming no round-off errors)…Lanczos can build a very large orthogonal basis V requiring in memory only 3 columns of V at each step!

Lanczos

1. Input: Matrix *A***, unit norm starting vector** v_0 **,** $\beta_0 = 0$ **, #** *k* **2.** For $j = 1, 2, ..., k$ Do **3. w_j = Av_j MATRIX VECTOR NO SYNC. 4.** $\mathbf{w}_j = \mathbf{w}_j - \beta_j \mathbf{v}_{j-1}$ **DAXPY 5.** $\alpha_j = (w_j, v_j)$ **DOT PRODUCT 6.** $\mathbf{w}_j = \mathbf{w}_j - \alpha_j \mathbf{v}_j$ **DAXPY 7.** $\beta_{j+1} = ||\mathbf{w}_j||_2$. **DOT PRODUCT 8.** If $\beta_{j+1} = 0$ then STOP **9.** $v_{i+1} = w_i / \beta_{i+1}$ **DSCAL 10. EndDO NO SYNC. NO SYNC. NO SYNC.**

Lanczos in Finite Arithmetic…

Round-off errors

- *Lanczos vectors vi quickly loose orthogonality…so that*
- *VTV is no longer orthogonal…thus*
- *We need to check if vj is* ⊥ *to previous vectors 0,1,…,j-1*
- *If NOT … reorthogonalize it against previous vectors (Gramm-Schmidt)*

Lanczos

1. Input: Matrix *A***, unit norm starting vector** v_0 **,** $\beta_0 = 0$ **, #** *k* **2. For j = 1,2,…,k Do 3.** $w_i = Av_i$ **4.** $w_i = w_i - \beta_i v_{i-1}$ **5.** $\alpha_j = (\mathbf{w}_j, \mathbf{v}_j)$ **6.** $w_j = w_j - \alpha_j v_j$ **7.** $\beta_{j+1} = ||\mathbf{w}_j||_2$. **8.** If $\beta_{i+1} = 0$ then STOP **9.** $v_{i+1} = w_i / \beta_{i+1}$ **10. EndDO ORTHOGONALITY IS LOST HERE…SO THESE STEPS ARE REPEATED AGAINST** *ALL* **PREVIOUS VECTORS… SELECTIVE REORTH IS ALSO POSIBLE (SIMON, LARSEN)**

Practical Eigensolvers and Limitations

ARPACK (Sorensen-Lehoucq-Yang): Restarted Lanczos

- *Remember that O(1000) eigenvalues/vectors are required…thus*
- P we need a very long basis $V...k =$ twice the number of eigenvalues which
- *will result in a large number of reorthogonalizations…*

 Synchronization costs – Reorthogonalization costs – and Memory costs become intractable for large problems of interest…

Shift-Invert Lanczos (Grimes et all) – Rational Krylov (Ruhe)

 work with matrix (A-^σ*ⁱ I)-1 instead…*

 compute some of the eigenvalues close to ^σ*ⁱ each time…thus a smaller basis is required each time…BUT*

 many shifts ^σ*ⁱ are required…*

 cost of working with the different "inverses" (A-^σ*ⁱ I)-1 becomes*

prohibitive for (practically) large Hamiltonians…

We need alternative methods that can build large projection bases without the reorthogonalization-synchronization costs

Automated Multilevel Substructuring

Component Mode Synthesis: a model problem

X

Consider the model problem:

$$
-\nabla^2 u = \lambda u
$$

on the unit square Ω**. We wish to compute smallest eigenvalues.**

Subdivide Ω **into 2 subdomains:** Ω_1 and Ω_2

Component Mode Synthesis

- **Solve problem on each** Ω**ⁱ**
- **"Combine" partial solutions**

AMLS: Multilevel application

Example: Container ship, 35K degrees of freedom (Research group of prof. H. Voss, T. U. Hamburg, Germany)

AMLS: Example

Example: Container ship, 35K degrees of freedom (Research group of prof. H. Voss, T. U. Hamburg, Germany)

AMLS: Example

AMLS: Substructure tree (Kropp-Heiserer, BMW)

- **Multilevel parallelism…**
- **Both Top-Down and Bottom-Up implementations are possible…**
- **At each node we need to solve a linear system…**
- **Multilevel solution of linear systems…level k depends-benefits from level k+1**

Problem Set…AMLS v.s. Standard Methods

Implementation Issues – Trilinos

ab initio **calculations:…many ingredients required for successful techniques**

- **Mesh generation…discretization**
- **Visualization of input data…results…geometry**
- **Efficient data structures-communicators for parallel computations**
- **Efficient (parallel) Matrix-Vector and inner products**
- **Linear system solvers**
- **State-of-the-art eigensolvers…**

A unifying software development environment will prove to be very useful

- **ease of use…**
- **reusability…(object oriented)**
- **portable…**

TRILINOS **http://software.sandia.gov/trilinos**

- **software multi-package…developed at SANDIA (M. Heroux)**
- **modular…no need to install everything in order to work!**
- **Capabilities of LAPACK, AZTEC, Chaco, SuperLU, etc…combined**
- **very active user community…ever evolving!**
- **ease of use…without sacrificing performance**

Large Scale Challenges in Computational Materials Science

 In DFT eigenvalue calculations dominate…

…many O(1000) eigenvalues/vectors required…

 …easily reaching and exceeding the limits of state-of-the-art traditional solvers

 AMLS appears as an extremely attractive alternative…however accuracy requirements and efficient parallel implementation is still under development

Many open problems in *ab initio* **calculations…one of the most active fields of research today!**