ASE 211 Homework 7

Due: 12:00 noon, Friday, October 20.

Given the following data

i	x_i	y_i
1	0	4
2	1.1	-1.5
3	1.7	0.5
4	2.2	1.5

1. Compute the cubic spline matrix A and the right hand side \mathbf{g} , and solve for the vector of second derivatives \mathbf{s} .

For the data above, $h_1 = 1.1$, $h_2 = .6$ and $h_3 = .5$, and n = 4, so the spline matrix is the 2x2 matrix

$$\begin{bmatrix} 2(h_1 + h_2) & h_2 \\ h_2 & 2(h_2 + h_3) \end{bmatrix} = \begin{bmatrix} 3.4 & .6 \\ .6 & 2.2 \end{bmatrix}$$

The right hand side is

$$6 \begin{bmatrix} \frac{y_3 - y_2}{h_2} - \frac{y_2 - y_1}{h_1} \\ \frac{y_4 - y_3}{h_3} - \frac{y_3 - y_2}{h_2} \end{bmatrix} = \begin{bmatrix} 50 \\ -8 \end{bmatrix}$$

Solving the system we get $S_2=16.1236,\, S_3=-8.0337.$ Also remember that $S_1=S_4=0.$

2. Use **s** to compute the coefficients of the cubic spline.

$$a_{1} = \frac{S_{2} - S_{1}}{6h_{1}}$$

$$= 2.4430$$

$$b_{1} = S_{1}/2$$

$$= 0$$

$$c_{1} = \frac{y_{2} - y_{1}}{h_{1}} - \frac{S_{2} - S_{1}}{6}h_{1} - \frac{S_{1}}{2}h_{1}$$

$$= -7.9560$$

$$d_{1} = y_{1}$$

$$= 4$$

```
a_{2} = -6.7104
b_{2} = 8.0618
c_{2} = .9120
d_{2} = -1.5
a_{3} = 2.6779
b_{3} = -4.0169
c_{3} = 3.3390
d_{3} = .5
```

3. Use matlab to plot the cubic spline between x_1 and x_n using the following m-file:

```
function plot_spline(a,b,c,d,n,x)
% function which plots a spline given its coefficients
% a(i),b(i),c(i),d(i), i=1 to n-1
% and the data points x(i), i=1 to n
%
aa=x(1);
bb=x(n);
h=(bb-aa)/100;
for i=1:100
   xx(i)=aa+i*h;
   for j=1:n-1
     if ((x(j) \le xx(i)) & (xx(i) \le x(j+1)))
       yy(i)=a(j)*(xx(i)-x(j))^3+b(j)*(xx(i)-x(j))^2+c(j)*(xx(i)-x(j))+d(j);
     end
   end
end
plot(xx,yy)
```


Figure 1: Plot of spline