ASE 211 Homework 2

Due: 12:00 noon, Friday, September 15. Put assignments in the drawer on the third floor of WRW marked 'ASE 211.'

1. Consider problem A2.2 in the book. Here you want to find the angle θ that satisfies

$$f(\theta) = 1.732\sin(\theta) - \cos(\theta) + .25 = 0$$

Starting with an initial interval of [0,60]. Apply 5 iterations (by hand) of the bisection method for determining θ .

a	b	X	f(a)	f(b)	f(x)
0	60	30	75	1.25	.25
0	30	15	75	.25	2677
15	30	22.5	.2677	.25	0111
22.5	30	26.25	0111	.25	.1192
22.5	26.25	24.375	0111	.1192	.0539

2. Take 5 iterations of Newton's method (by hand) for problem 1, starting with an initial guess of $\theta = 30$ degrees. It's best to work this problem in radians, for then $sin'(\theta) = cos(\theta)$. Otherwise you must account for a factor of $\pi/180$ in the derivative, since to convert from radians to degrees

$$\sin(\theta(deg)) = \sin(\theta * \pi/180(rad))$$

and therefore

$$\sin'(\theta(deg)) = \cos(\theta\pi/180(rad)) * \pi/180$$

by the chain rule.

х	f(x)
30	.25
22.8386	.00065
22.8198	0 (to six digits)

3. Write a Matlab *m*-file which will implement Newton's method. The outline of the *m*-file is as follows:

```
function newton(x0,xtol,maxiter)
%
% Matlab function which uses Newton's method to find the
% roots of a given function funcf.
%
% m-files funcf.m and funcfp.m which specify the function and its derivative
% must be provided.
%
% xtol is the tolerance used for stopping
% x0 is the starting guess for the method
% maxiter is the maximum number of iterations allowed
%
%
k=0;
x1=x0-funcf(x0)/funcfp(x0);
% do until convergence
while (abs(x1-x0)>xtol & k \leq maxiter)
. . . . .
. . . . .
end
k
x1
funcf(x1)
```

Use your m-file to solve problem 1 with the initial guess given in problem 2. Set xtol = .0001 and maxiter = 50. Since matlab assumes angles are given in radians, you will need to input your initial guess in radians. 1 degree = $\pi/180$ radians.

Keep a diary of your matlab session. Hand in all m-files and your diary.

```
function newton(x0,xtol,maxiter)

%

function which uses Newton's method to find the

% roots of a given function funcf

% xtol is the tolerance used for stopping
```

```
\% x0 is the starting guess for the method
% M_{M} = M_
%
%
k=0;
x1=x0-funcf(x0)/funcfp(x0);
% do until convergence
while (abs(x1-x0)>xtol & k \leq maxiter)
             x0=x1;
             x1=x0-funcf(x0)/funcfp(x0);
             k=k+1;
end
disp('the answer is ')
x1*180/pi
function y=funcf(x)
y=1.732*sin(x)-cos(x)+.25;
function y=funcfp(x)
y=1.732*cos(x)+sin(x);
```

Matlab Diary:

```
>> newton(x0,xtol,maxiter)
k =
    2
the answer is
ans =
    22.8198
```

>> diary