ASE 211 Homework 6

Due: 12:00 noon, Friday, October 13.

- 1. Plot the function $f(x) = x^3 \sin(x^5)$ for x between 0 and 4 using the matlab plotting function plot. Hint: evaluate the function at 100 points between 0 and 4, and save the values in arrays x and y, then say plot(x,y). Print the resulting figure and hand it in.
 - 2. Given the following data

i	x_i	${y}_i$
1	0	4
2	1.1	-1.5
3	1.7	0.5
4	2.2	1.5

First, compute the linear interpolant of the data, then compute the Lagrange interpolant. For both interpolants, give the value at x=2.

3. Write a Matlab code which allows a user to input data points, constructs the Lagrange interpolant, and plots the interpolant over the interval from x_1 to x_n (assuming the data is ordered so that $x_1 < x_2 < \ldots < x_n$.) Test your code on the data in problem A8.2 and plot the approximation to the drag coefficient C_d versus velocity v.

Hand in all matlab m-files and diaries.