ASE 211 Homework 10

Due: 12:00 noon, Friday, Nov 10.

- 1. Consider the function $f(x) = 3x^{2.5}\cos(x^2)$. Compute the derivative of f at $x = \sqrt{\pi}$ analytically. Compute the forward difference approximation to $f'(\sqrt{\pi})$ for h = .1, .05 and .025, and show that the error is going to zero like h. Compute the central difference approximation and show that the error is going to zero like h^2 .
- 2. A rocket flying straight upward during launch sends back the following velocity data:

t (sec)	v(t) (m/s)
.5	5.1
1.5	8.9
2.8	16.9
3.1	18.1
4.0	27.9
5.5	34.3
6.2	35.1
6.5	35.5
7.0	38.1
8.2	39.2

Using your spline code from previous assignments, plot the acceleration function a(t) = v'(t) from t = 0 to t = 8.2, obtained by differentiating the spline interpolant of the velocity data.