Isogeometric Analysis: Past, Present, Future

T.J.R. Hughes

Institute for Computational Engineering and Sciences (ICES)
 The University of Texas at Austin

[^0]

Babuška Forum

September $23^{\text {rd }}$, 2016

Outline

- FEA, since 1956
- IGA, since 2005
- B-splines, NURBS
- Collocation
- Quadrature
- Applications
- Aortic valves
- Boiling
- Ductile fracture

- Summary and comments on new ideas

The Finite Element Method Historical Publication Data

The First 30 Years, 1956-1985

Why $1956 ?$

John Argyris, 1913-2004

JOURNAL OF THE AERONAUTICAL SCIENCES

VOLUME 25	SEPTEMAER, 1956	NUMBER 9

Stiffness and Deflection Analysis of Complex Structures
M. J. TURNER, R. W. CLOUGH, + H. C. MARTIN, 4 awd L. J. TOPp**

Ray Clough, 1920 -

Number of FE Papers, 1956-1985

ISI Thomson-Reuters search
All data bases
Topic: Finite Element

Number of FE Citations, 1956-1985

Isogeometric Analysis Historical Publication Data

The First 10 Years, 2006-2015

"Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement"

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs

Computer Methods in Applied Mechanics and Engineering

Volume 194, Pages 4135-4195 (Oct. 1, 2005)

Impact:

- Still the most downloaded CMAME paper
- Google Scholar: 2333 total, 451 last year (September 23, 2016)
- Thomson Reuters: 1128 total, 278 last year (September 23, 2016)

Number of IGA Papers, 2006-2015

ISI Thomson-Reuters search
All data bases
Topic: Isogeometric Analysis
Date: September 23, 2016

Number of IGA Citations, 2006-2015

ISI Thomson-Reuters search
All data bases
Topic: Isogeometric Analysis
Date: September 23, 2016

Comparisons are odious*

- Papers per year:
- IGA 10th year (273) \approx FEA 20th year (260)
- Citations per year:
- IGA 10th year (5019) > FEA 30th year (3200)
*John Lydgate in his Debate between the horse, goose, and sheep, circa 1440

Engineering Analysis Process

- Finite Element Analysis (FEA) models are created from CAD representations

(Michael Hardwick and Robert Clay, Sandia National Laboratories)

Engineering Analysis Process

- Finite Element Analysis (FEA) models are created from CAD representations
- Fixing CAD geometry and creating FEA models accounts for more than 80\% of overall analysis time and is a major engineering
 bottleneck

(Michael Hardwick and Robert Clay, Sandia National Laboratories)

Engineering Analysis Process

- Finite Element Analysis (FEA) models are created from CAD representations
- Fixing CAD geometry and creating FEA models accounts for more than 80\% of overall analysis time and is a major engineering bottleneck
- The FEA mesh is also only an approximate geometry

(Michael Hardwick and Robert Clay, Sandia National Laboratories)

Engineering Analysis Process

- Finite Element Analysis (FEA) models are created from CAD representations
- Fixing CAD geometry and creating FEA models accounts for more than 80\% of overall analysis time and is a major engineering bottleneck
- The FEA mesh is also only an approximate geometry

(Michael Hardwick and Robert Clay, Sandia National Laboratories)

Objectives

- Reconstitute analysis within CAD geometry
- Simplify analysis model development thereby
- Integrate design and analysis

Isogeometric Analysis

Isogeometric Analysis

- Based on technologies (e.g., NURBS, T-splines, etc.) from computational geometry used in:
- Design
- Animation
- Graphic art
- Visualization

- Includes standard FEA as a special case, but offers other possibilities:
- Precise and efficient geometric modeling
- Simplified mesh refinement
- Smooth basis functions with compact support
- Superior approximation properties
- Integration of design and analysis

Isogeometric Analysis (NURBS, T-Splines, SubD, etc.)
 FEA
 h-, p-refinement
 k-refinement

B-spline Basis Functions

$$
\begin{aligned}
N_{i, 0}(\xi)= & \begin{cases}1 & \text { if } \xi_{i} \leq \xi<\xi_{i+1}, \\
0 & \text { otherwise }\end{cases} \\
N_{i, p}(\xi)= & \frac{\xi-\xi_{i}}{\xi_{i+p}-\xi_{i}} N_{i, p-1}(\xi)+ \\
& \frac{\xi_{i+p+1}-\xi}{\xi_{i+p+1}-\xi_{i+1}} N_{i+1, p-1}(\xi)
\end{aligned}
$$

B-spline basis functions of order 0, 1, 2 for a uniform knot vector:

$$
\Xi=\{0,1,2,3,4, \ldots\}
$$

ξ

Quadratic ($p=2$) basis functions for an open, non-uniform knot vector:

$$
\Xi=\{0,0,0,1,2,3,4,4,5,5,5\}
$$

Linear interpolation of control points

 yields the control polygon

- - control points
- - knots

Quadratic basis

h-refined Curve

Quadratic basis

Further h-refined Curve

Linear interpolation of control points

 yields the control polygon

- - control points
- - knots

Quadratic basis

Cubic p-refined Curve

Cubic basis

Quartic p-refined Curve

Non-Uniform Rational B-Splines

- NURBS are the most commonly used computer aided geometric design (CAGD) technology in engineering

Circle from 3D Piecewise Quadratic Curves

Mesh

h-refined Surface

Control net

Mesh

Further h-refined Surface

Control net

Mesh

Mesh

Cubic p-refined Surface

Control net

Mesh

Quartic p-refined Surface

Control net

Mesh

Control Net

Mesh

Finite Element Analysis and NURBS-based Isogeometric Analysis

- Compact support
- Partition of unity
- Affine covariance
- Isoparametric concept
- Patch tests satisfied
- Error estimates in Sobolev norms*

[^1]An Examination of the Helmholtz Pollution Effect for FEM and NURBS

Problem Statement

$$
u^{\prime \prime}(x)+k^{2} u(x)=0 \text { on }(0,1)
$$

Model Problem: $\quad u(0)=1$

$$
u^{\prime}(1)-i k u(1)=0
$$

Exact Solution: $\quad u(x)=\exp (i k x)$

Pollution: FEM

Pollution: FEM

BAE: Best Approximation Error

Pollution: NURBS

Pollution: NURBS

BAE: Best Approximation Error

Pollution: Degree 2 Comparison

Pollution: Degree 3 Comparison

Pollution: Degree 4 Comparison

Pollution: Degree 5 Comparison

Variation Diminishing Property

Lagrange polynomials
NURBS

Square Tube Buckling

- Standard benchmark for automobile crashworthiness
- Quarter symmetry
- Perturbation to initiate buckling mode
- J_{2} plasticity with linear isotropic hardening
(LS DYNA, D. Benson et al.)

Smooth Functions are Robust C^{3} quartics in LS DYNA

IGA and Collocation

1. Use the strong variational form of the equations.
2. One quadrature point per node/control point.
3. The ultimate reduced quadrature method.
4. 1D theoretical result*: $\mathrm{O}(p-1)$ in $\mathrm{W}^{2, \infty}$ for all p (optimal).
5. Observed numerically in multi-D*:
$O(p)$ in L^{∞} and $W^{1, \infty}$ for p even $\mathrm{O}(p-1)$ in L^{∞} and $\mathrm{W}^{1, \infty}$ for p odd

IGA and Collocation

1. Use the strong variational form of the equations.
2. One quadrature point per node/control point.
3. The ultimate reduced quadrature method.
4. 1D theoretical result*: $\mathrm{O}(p-1)$ in $\mathrm{W}^{2, \infty}$ for all p (optimal).
5. Observed numerically in multi-D*:
$O(p)$ in L^{∞} and $W^{1, \infty}$ for p even (optimal)
$\mathrm{O}(p-1)$ in L^{∞} and $\mathrm{W}^{1, \infty}$ for p odd
*F. Auricchio, L. B. Da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, "ISOGEOMETRIC COLLOCATION METHODS,"
Mathematical Models and Methods in Applied Sciences, vol. 20, no. 11, pp. 2075-2107, Nov. 2010.
http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878

IGA and Collocation

1. Use the strong variational form of the equations.
2. One quadrature point per node/control point.
3. The ultimate reduced quadrature method.
4. 1D theoretical result*: $\mathrm{O}(p-1)$ in $\mathrm{W}^{2, \infty}$ for all p (optimal).
5. Observed numerically in multi-D*:
$O(p)$ in L^{∞} and $W^{1, \infty}$ for p even (optimal)
$\mathrm{O}(p-1)$ in L^{∞} and $\mathrm{W}^{1, \infty}$ for p odd (suboptimal)
*F. Auricchio, L. B. Da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, "ISOGEOMETRIC COLLOCATION METHODS,"
Mathematical Models and Methods in Applied Sciences, vol. 20, no. 11, pp. 2075-2107, Nov. 2010.
http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878

Quadrature points for $p=2$

Isogeometric collocation (IGA-C)

Greville points

Isogeometric Galerkin (IGA-G)

3×3 Gauss
C^{0} Finite Elements (FEA-G)

3×3 Gauss
D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes, "Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations," Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 170-232, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S004578251300193X

Benchmark problem: Linear elasticity in 3D

D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes, "Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations," Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 170-232, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S004578251300193X

Error in H^{1} semi-norm vs. number of DOF

D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes, "Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations," Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 170-232, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S004578251300193X

Error in H^{1} semi-norm vs. computing time

D. Schillinger, J. A. Evans, A. Reali, M. A. Scott, and T. J. R. Hughes, "Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations," Computer Methods in Applied Mechanics and Engineering, vol. 267, pp. 170-232, Dec. 2013. http://www.sciencedirect.com/science/article/pii/S004578251300193X

Error in H^{1} semi-norm vs. computing time

Speed-up: 25 times

Breakthrough in IGA Collocation

- "The Variational Collocation Method," H. Gomez, L. De Lorenzis, CMAME, accepted, 2016.

Breakthrough in IGA Collocation

- "The Variational Collocation Method," H. Gomez, L. De Lorenzis, CMAME, accepted, 2016.
- There exist collocation points, so-called Cauchy-Galerkin points, that produce the Galerkin solution exactly, for all p, odd as well as even.

Breakthrough in IGA Quadrature

- "Fast Formation of Isogeometric Galerkin Matrices by Weighted Quadrature," F. Calabrò, G. Sangalli, and M. Tani, CMAME, accepted, 2016.
- http://arxiv.org/abs/1605.01238v1

Breakthrough in IGA Quadrature

- "Fast Formation of Isogeometric Galerkin Matrices by Weighted Quadrature," F. Calabrò, G. Sangalli, and M. Tani, CMAME, accepted, 2016.
- http://arxiv.org/abs/1605.01238v1
- Much greater efficiency for Galerkin matrices than classical element-by-element implementation.

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.
- 20^{3} Bézier element mesh.

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.
- 20^{3} Bézier element mesh.
- $p^{\text {th }}$-degree C^{p-1} maximally smooth spline elements with $p=10$.

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.
- 20^{3} Bézier element mesh.
- $p^{\text {th }}$-degree C^{p-1} maximally smooth spline elements with $p=10$.
- MATLAB implementations.

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.
- 20^{3} Bézier element mesh.
- $p^{\text {th }}$-degree C^{p-1} maximally smooth spline elements with $p=10$.
- MATLAB implementations.
- Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p+1)^{3}=11^{3}=1,331$ points/element.

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.
- 20^{3} Bézier element mesh.
- $p^{\text {th }}$-degree C^{p-1} maximally smooth spline elements with $p=10$.
- MATLAB implementations.
- Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p+1)^{3}=11^{3}=1,331$ points/element.
- Time $=62$ hours.

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.
- 20^{3} Bézier element mesh.
- $p^{\text {th }}$-degree C^{p-1} maximally smooth spline elements with $p=10$.
- MATLAB implementations.
- Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p+1)^{3}=11^{3}=1,331$ points/element.
- Time $=62$ hours.
- New procedure $=27$ seconds!

Breakthrough in IGA Quadrature

- Example:
- Formation and assembly of a Galerkin mass matrix.
- 20^{3} Bézier element mesh.
- $p^{\text {th }}$-degree C^{p-1} maximally smooth spline elements with $p=10$.
- MATLAB implementations.
- Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p+1)^{3}=11^{3}=1,331$ points/element.
- Time $=62$ hours.
- New procedure $=27$ seconds!
- Speedup factor > 8,000!

Applications

Aortic Valve

"Patient-specific isogeometric structural analysis of aortic valve closure," S. Morganti, F. Auricchio, D. Benson, F.I. Gambarin, S. Hartmann, TJRH, A. Reali, CMAME, 2015.

Aortic Valve

CTA to STL file

(a) Primary 3D reconstruction obtained using OsiriX
(b) 3D specific reconstruction of the aortic root after cropping and segmentation
(c) STL representation of the extracted region of interest.

Multi-patch aortic valve geometry

Aortic root subdivided into nine NURBS patches

Each leaflet represented by a single NURBS patch

NURBS meshes for patient-specific aortic root and leaflets

Coarse mesh
(762 control points)

Medium mesh (2890 control points)

Fine mesh (9396 control points).

1. Reissner-Mindlin shell theory for the aortic root.
2. Kirchhoff-Love rotation-free shell theory for the aortic valve leaflets.

Coaptation Profile

(a) Longitudinal section of the aortic valve during diastole
(b) Coaptation area, the leaflet free margin, and coaptation profile for one leaflet

IGA: Coaptation Profile with LS-DYNA

(a)

(b)

(c)
(a) 762 nodes
(b) 2890 nodes
(c) 9396 nodes

FEA*: Coaptation Profile with LS-DYNA

[^2]
FEA*: Coaptation Profile with LS-DYNA

*Belytschko-Tsay four-node Reissner-Mindlin shell finite elements

Coaptation length for IGA and FEA

Analysis	\# nodes	\# DOF	Coaptation Length	
			$\mathrm{CL}_{\text {max }}{ }^{\text {(eft) }}[\mathrm{mm}]$	$\mathrm{CL}_{\text {max }}{ }^{\text {(right) }}[\mathrm{mm}]$
IGA	762	3708	9.30	9.40
	2890	19476	9.25	9.40
FEA	9396	50496	9.30	9.35
	1112	6672	11.1	12.8
	3117	18702	10.8	10.2
	6446	38676	10.4	9.80
	14329	85974	9.70	9.70
	37972	227832	9.45	9.50
	153646	921876	9.30	9.35

Solution times for comparable accuracy

Analysis \#Nodes	\# CPUs	Time step	\# Increments	Total analysis time	
IGA	762	12	$2.30 \mathrm{e}-07$	4347390	1h 15 m
FEA	153646	12	$2.65 \mathrm{e}-08$	37787314	550h 23 m

Solution times for comparable accuracy

Analysis \#Nodes	\# CPUs	Time step	\# Increments	Total analysis time	
IGA	762	12	$2.30 \mathrm{e}-07$	4347390	1h 15 m
FEA	153646	12	$2.65 \mathrm{e}-08$	37787314	550h 23 m

Solution times for comparable accuracy

Analysis \#Nodes	\# CPUs	Time step	\# Increments	Total analysis time	
IGA	762	12	$2.30 \mathrm{e}-07$	4347390	1h 15 m
FEA	153646	12	$2.65 \mathrm{e}-08$	37787314	550h 23 m

Solution times for comparable accuracy

Analysis	\#Nodes	\# CPUs	Time step	\# Increments	Total analysis time
IGA	762	12	$2.30 \mathrm{e}-07$	4347390	1 h 15 m
FEA	153646	12	$2.65 \mathrm{e}-08$	37787314	550 h 23 m

Why is IGA so much faster than traditional FEA?

1. Much more accurate per degree of freedom.
2. Efficient dynamics, e.g., large time steps.
3. Quality of contact surface provided by smooth geometry and smooth basis functions.

ALE / Immersed Kirchhoff-Love Shell

Patient-specific volumetric NURBS artery wall
M.-C. Hsu, S. Morganti, A. Reali, F. Auricchio, J. Kiendl, D. Kamensky, M. Sacks, et al. 2016

Bioprosthetic Heart Valve

ALE / Immersed Kirchhoff-Love Shell

Static closing analysis of different designs M.-C. Hsu, A. Herrema, et al., 2015

Volumetiric NURBS artery wall

+ M. Sacks, D. Kamensky, et al., 2015

Boiling

- NOVA, a science TV show:
- Does mathematics explain the physical world?
- One man's opinion:
- "No! One of the things it cannot simulate is boiling"

Ju Liu does not agree

- Navier-Stokes-Korteweg equations $-3^{\text {rd }}$ derivatives

Three-dimensional Boiling (J. Liu et al.)

$$
t=0.2
$$

Condensation

$$
t=4.0
$$

$t=8.0$

$t=12.0$

Three-dimensional Boiling (J. Liu et al.)

$$
t=0.2
$$

$t=8.0$

$$
t=4.0
$$

$t=12.0$

Three-dimensional Boiling (J.Liu et al.)

Ductile Fracture

Circular Plate Subject to Impulse Load

Reaction

Figures from K.G. Webster, Investigation of Close Proximity Underwater Explosion Effects on a Ship-Like Structure Using the Multi-Material Arbitrary Lagrangian Eulerian Finite Element Method, Master's Thesis, Virginia Polytechnic Institute and State University, 2007.

Displacement Boundary Conditions

Clamped BC: No displacement in any direction on outer ring

Sliding BC: No displacement on outer ring in z-direction

Comparison of BCs

Clamped

Sliding

Comparison of BCs

"Everything should be made as simple as possible, but not simpler." A. Einstein (?)

NURBS Circular Plate Model*

Includes bolts and washers

* M.J. Borden, T.J.R. Hughes, C. Landis, A. Anvari, I. Lee, 2016

Time: 0.000000 sec

Isogeometric Analysis: Summary

- One of the most active areas of FEA and CAGD research
- Overarching goal: Improve engineering product design
- Focus so far: The design-through-analysis process
- "Better, faster, cheaper"
- Improve quality of analysis
- Expedite analysis model development
- Faster analysis
- Decrease cost

Isogeometric Analysis: Summary

- One of the most active areas of FEA and CAGD research
- Overarching goal: Improve engineering product design
- Focus so far: The design-through-analysis process
- "Better, faster, cheaper"
- Improve quality of analysis
- Expedite analysis model development
- Faster analysis
- Decrease cost
- A fruitful, promising and growing area of research
- Gaining traction in industry

New ideas

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

New ideas

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke - New ideas pass through three periods:

New ideas

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke - New ideas pass through three periods:

1) It can't be done.

New ideas

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke - New ideas pass through three periods:

1) It can't be done.
2) It probably can be done, but it's not worth doing.

New ideas

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke - New ideas pass through three periods:

1) It can't be done.
2) It probably can be done, but it's not worth doing.
3) I knew it was a good idea all along!

Published in 2009

[^0]: Collaborators:
 C. Adam, F. Auricchio, I. Babuška, Y. Bazilevs, L. Beirão da Veiga, D. Benson, M. Borden, R. de Borst, V. Calo, E. Cohen, J.A. Cottrell, L. De Lorenzis, T. Elguedj, J. Evans, H. Gomez, R. Hiemstra, S. Hossain, M.-C. Hsu, D. Kamensky, C. Landis, J. Liu, S. Morganti, E. Rank, A. Reali, R. Riesenfeld, M. Sacks, G. Sangalli, D. Schillinger, M. Scott, T. Sederberg, H. Speleers, N. Sukumar, D. Toshniwal, I. Temizer, B. Urick, C. Verhoosel, Z. Wilson, P. Wriggers, J. Zhang

[^1]: *Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, TJRH, \& G. Sangalli, 2006

[^2]: *Belytschko-Tsay four-node Reissner-Mindlin shell finite elements

