Isogeometric Analysis: Past, Present, Future

T.J.R. Hughes

Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

Collaborators:

C. Adam, F. Auricchio, I. Babuška, Y. Bazilevs, L. Beirão da Veiga, D. Benson, M. Borden, R. de Borst, V. Calo, E. Cohen, J.A. Cottrell, L. De Lorenzis, T. Elguedj, J. Evans, H. Gomez, R. Hiemstra, S. Hossain, M.-C. Hsu, D. Kamensky, C. Landis, J. Liu, S. Morganti, E. Rank, A. Reali, R. Riesenfeld, M. Sacks, G. Sangalli, D. Schillinger, M. Scott, T. Sederberg, H. Speleers, N. Sukumar, D. Toshniwal, I. Temizer, B. Urick, C. Verhoosel, Z. Wilson, P. Wriggers, J. Zhang

Babuška Forum

September 23rd, 2016

Outline

- FEA, since 1956
- IGA, since 2005
- B-splines, NURBS
- Collocation
- Quadrature
- Applications
 - Aortic valves
 - Boiling
 - Ductile fracture
- Summary and comments on new ideas

The Finite Element Method Historical Publication Data

The First 30 Years, 1956-1985

Why 1956?

John Argyris, 1913 – 2004

Ray Clough, 1920 –

	JOU	RNAL OF	F THE	7.05
A	ERON	AUTICAL	SCIENCES	

VOLUME 23 SEPTEMBER, 1956 NUMBER 9

Stiffness and Deflection Analysis of Complex Structures

M. J. TURNER,* R. W. CLOUGH,† H. C. MARTIN, J AND L. J. TOPP**

Number of FE Papers, 1956-1985

Number of FE Citations, 1956-1985

ISI Thomson-Reuters search

All data bases

Topic: Finite Element

Isogeometric Analysis Historical Publication Data

The First 10 Years, 2006-2015

"Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement"

T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs

Computer Methods in Applied Mechanics and Engineering

Volume 194, Pages 4135-4195 (Oct. 1, 2005)

Impact:

- *Still* the most downloaded *CMAME* paper
- Google Scholar: 2333 total, 451 last year (September 23, 2016)
- Thomson Reuters: 1128 total, 278 last year (September 23, 2016)

Number of IGA Papers, 2006-2015

Number of IGA Citations, 2006-2015

ISI Thomson-Reuters search All data bases Topic: Isogeometric Analysis Date: September 23, 2016

Comparisons are odious*

- Papers per year:
 IGA 10th year (273) ≈ FEA 20th year (260)
- Citations per year:
 - IGA 10th year (5019) > FEA 30th year (3200)

*John Lydgate in his *Debate between the horse, goose, and sheep*, circa 1440

• Finite Element Analysis (FEA) models are created from CAD representations

- Finite Element Analysis (FEA) models are created from CAD representations
- Fixing CAD geometry and creating FEA models accounts for more than 80% of overall analysis time and is a major engineering bottleneck

- Finite Element Analysis (FEA) models are created from CAD representations
- Fixing CAD geometry and creating FEA models accounts for more than 80% of overall analysis time and is a major engineering bottleneck
- The FEA mesh is also only an *approximate* geometry

- Finite Element Analysis (FEA) models are created from CAD representations
- Fixing CAD geometry and creating FEA models accounts for more than 80% of overall analysis time and is a major engineering bottleneck
- The FEA mesh is also only an *approximate* geometry

Objectives

- Reconstitute analysis within CAD geometry
- *Simplify* analysis model development thereby
- Integrate design and analysis

Isogeometric Analysis

- Based on technologies (e.g., NURBS, T-splines, etc.) from computational geometry used in:
 - Design
 - Animation
 - Graphic art
 - Visualization

- Includes standard FEA as a special case, but offers other possibilities:
 - Precise and efficient geometric modeling
 - Simplified mesh refinement
 - Smooth basis functions with compact support
 - Superior approximation properties
 - Integration of design and analysis

B-spline Basis Functions

$$N_{i,0}(\xi) = \begin{cases} 1 & \text{if } \xi_i \leq \xi < \xi_{i+1}, \\ 0 & \text{otherwise} \end{cases}$$

B-spline basis functions of order 0, 1, 2 for a *uniform knot vector:*

 $\Xi = \{0, 1, 2, 3, 4, ...\}$

Quadratic (p=2) basis functions for an open, non-uniform knot vector:

 $\Xi = \{0,0,0,1,2,3,4,4,5,5,5\}$

h-refined Curve

Further *h*-refined Curve

Cubic *p*-refined Curve

Quartic *p*-refined Curve

Non-Uniform Rational B-Splines

 NURBS are the most commonly used computer aided geometric design (CAGD) technology in engineering

Circle from 3D Piecewise Quadratic Curves

h-refined Surface

Control net

Further *h*-refined Surface

Cubic *p*-refined Surface

Control net

Quartic *p*-refined Surface

Control net

Finite Element Analysis and NURBS-based Isogeometric Analysis

Compact support
Partition of unity
 Affine covariance
Isoparametric concept
Patch tests satisfied
Error estimates in Sobolev norms*

^{*}Y. Bazilevs, L. Beirão da Veiga, J.A. Cottrell, TJRH, & G. Sangalli, 2006

An Examination of the Helmholtz Pollution Effect for FEM and NURBS

Problem Statement

Model Problem:

$$u''(x) + k^{2}u(x) = 0 \text{ on } (0,1)$$
$$u(0) = 1$$
$$u'(1) - iku(1) = 0$$

Exact Solution: $u(x) = \exp(ikx)$

Pollution: FEM

Pollution: FEM

BAE: Best Approximation Error

Pollution: NURBS

Pollution: NURBS

BAE: Best Approximation Error

Pollution: Degree 2 Comparison

Pollution: Degree 3 Comparison

Pollution: Degree 4 Comparison

Pollution: Degree 5 Comparison

Variation Diminishing Property

Lagrange polynomials

NURBS

Square Tube Buckling

- Standard benchmark for automobile crashworthiness
- Quarter symmetry
- Perturbation to initiate
 buckling mode
 - J₂ plasticity with linear isotropic hardening

(LS DYNA, D. Benson et al.)

Smooth Functions are Robust C³ quartics in LS DYNA

IGA and Collocation

- 1. Use the *strong* variational form of the equations.
- 2. One quadrature point per node/control point.
- 3. The ultimate reduced quadrature method.
- 4. 1D theoretical result*: O(p-1) in $W^{2,\infty}$ for all p (optimal).
- 5. Observed numerically in multi-D*: O(p) in L^{∞} and W^{1, ∞} for *p* even O(p-1) in L^{∞} and W^{1, ∞} for *p* odd

*F. Auricchio, L. B. Da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, "ISOGEOMETRIC COLLOCATION METHODS," *Mathematical Models and Methods in Applied Sciences*, vol. 20, no. 11, pp. 2075–2107, Nov. 2010. <u>http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878</u>

IGA and Collocation

- 1. Use the *strong* variational form of the equations.
- 2. One quadrature point per node/control point.
- 3. The ultimate reduced quadrature method.
- 4. 1D theoretical result*: O(p-1) in $W^{2,\infty}$ for all p (optimal).
- Observed numerically in multi-D*:
 O(p) in L[∞] and W^{1,∞} for p even (optimal)
 O(p-1) in L[∞] and W^{1,∞} for p odd

*F. Auricchio, L. B. Da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, "ISOGEOMETRIC COLLOCATION METHODS," *Mathematical Models and Methods in Applied Sciences*, vol. 20, no. 11, pp. 2075–2107, Nov. 2010. <u>http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878</u>

IGA and Collocation

- 1. Use the *strong* variational form of the equations.
- 2. One quadrature point per node/control point.
- 3. The ultimate reduced quadrature method.
- 4. 1D theoretical result*: O(p-1) in $W^{2,\infty}$ for all p (optimal).
- Observed numerically in multi-D*:
 O(p) in L[∞] and W^{1,∞} for p even (optimal)
 O(p-1) in L[∞] and W^{1,∞} for p odd (suboptimal)

*F. Auricchio, L. B. Da Veiga, T. J. R. Hughes, A. Reali, and G. Sangalli, "ISOGEOMETRIC COLLOCATION METHODS," *Mathematical Models and Methods in Applied Sciences*, vol. 20, no. 11, pp. 2075–2107, Nov. 2010. <u>http://www.worldscientific.com/doi/abs/10.1142/S0218202510004878</u>

Quadrature points for p = 2

Benchmark problem: Linear elasticity in 3D

3D domain

Exact solution:

$$u = v = w = \sin(2\pi x) \sin(2\pi y) \sin(2\pi z)$$

Error in H¹ semi-norm vs. number of DOF

Error in H¹ semi-norm vs. computing time

Error in H¹ semi-norm vs. computing time

Speed-up: 25 times

Breakthrough in IGA Collocation

 "The Variational Collocation Method," H. Gomez, L. De Lorenzis, *CMAME*, accepted, 2016.

Breakthrough in IGA Collocation

- "The Variational Collocation Method," H. Gomez, L. De Lorenzis, *CMAME*, accepted, 2016.
- There exist collocation points, so-called *Cauchy-Galerkin points,* that produce the Galerkin solution exactly, for all *p*, odd as well as even.

- "Fast Formation of Isogeometric Galerkin Matrices by Weighted Quadrature," F. Calabrò, G. Sangalli, and M. Tani, *CMAME*, accepted, 2016.
- <u>http://arxiv.org/abs/1605.01238v1</u>

- "Fast Formation of Isogeometric Galerkin Matrices by Weighted Quadrature," F. Calabrò, G. Sangalli, and M. Tani, *CMAME*, accepted, 2016.
- <u>http://arxiv.org/abs/1605.01238v1</u>
- Much greater efficiency for Galerkin matrices than classical element-by-element implementation.

- Example:
 - Formation and assembly of a Galerkin mass matrix.

- Example:
 - Formation and assembly of a Galerkin mass matrix.
 - 20³ Bézier element mesh.

- Example:
 - Formation and assembly of a Galerkin mass matrix.
 - 20³ Bézier element mesh.
 - p^{th} -degree C^{p-1} maximally smooth spline elements with p = 10.

- Example:
 - Formation and assembly of a Galerkin mass matrix.
 - 20³ Bézier element mesh.
 - p^{th} -degree C^{p-1} maximally smooth spline elements with p = 10.
 - MATLAB implementations.

- Example:
 - Formation and assembly of a Galerkin mass matrix.
 - 20³ Bézier element mesh.
 - p^{th} -degree C^{p-1} maximally smooth spline elements with p = 10.
 - MATLAB implementations.
 - Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p + 1)^3 = 11^3 = 1,331$ points/element.

- Example:
 - Formation and assembly of a Galerkin mass matrix.
 - 20³ Bézier element mesh.
 - p^{th} -degree C^{p-1} maximally smooth spline elements with p = 10.
 - MATLAB implementations.
 - Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p + 1)^3 = 11^3 = 1,331$ points/element.

- Time = 62 hours.

- Example:
 - Formation and assembly of a Galerkin mass matrix.
 - 20³ Bézier element mesh.
 - p^{th} -degree C^{p-1} maximally smooth spline elements with p = 10.
 - MATLAB implementations.
 - Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p + 1)^3 = 11^3 = 1,331$ points/element.
 - Time = 62 hours.
 - New procedure = 27 seconds!

- Example:
 - Formation and assembly of a Galerkin mass matrix.
 - 20³ Bézier element mesh.
 - p^{th} -degree C^{p-1} maximally smooth spline elements with p = 10.
 - MATLAB implementations.
 - Standard element-by-element formation and assemby, utilizing "full" Gaussian quadrature on each Bézier element: $(p + 1)^3 = 11^3 = 1,331$ points/element.
 - Time = 62 hours.
 - New procedure = 27 seconds!
 - Speedup factor > 8,000!

Applications

"Patient-specific isogeometric structural analysis of aortic valve closure," S. Morganti, F. Auricchio, D. Benson, F.I. Gambarin, S. Hartmann, TJRH, A. Reali, *CMAME*, 2015.

Aortic Valve

CTA to STL file

- (a) Primary 3D reconstruction obtained using OsiriX
- (b) 3D specific reconstruction of the aortic root after cropping and segmentation
- (c) STL representation of the extracted region of interest.

Multi-patch aortic valve geometry

Aortic root subdivided into nine NURBS patches

Each leaflet represented by a single NURBS patch

NURBS meshes for patient-specific aortic root and leaflets

Coarse mesh (762 control points) Medium mesh (2890 control points) Fine mesh (9396 control points).

- 1. Reissner-Mindlin shell theory for the aortic root.
- 2. Kirchhoff-Love rotation-free shell theory for the aortic valve leaflets.

Coaptation Profile

- (a) Longitudinal section of the aortic valve during diastole
- (b) Coaptation area, the leaflet free margin, and coaptation profile for one leaflet

IGA: Coaptation Profile with LS-DYNA

FEA*: Coaptation Profile with LS-DYNA

*Belytschko-Tsay four-node Reissner-Mindlin shell finite elements

FEA*: Coaptation Profile with LS-DYNA

*Belytschko-Tsay four-node Reissner-Mindlin shell finite elements

Coaptation length for IGA and FEA

Analysis	# nodes	# DOF	Coaptation Length		
			CL _{max} ^(left) [mm]	CL _{max} ^(right) [mm]	
IGA	762	3708	9.30	9.40	
	2890	19476	9.25	9.40	
	9396	50496	9.30	9.35	
FEA	1112	6672	11.1	12.8	
	3117	18702	10.8	10.2	
	6446	38676	10.4	9.80	
	14329	85974	9.70	9.70	
	37972	227832	9.45	9.50	
	153646	921876	9.30	9.35	

Analysis	# Nodes	# CPUs	Time step	# Increments	Total analysis time
IGA	762	12	2.30e-07	4347390	1h 15m
FEA	153646	12	2.65e-08	37787314	550h 23m

Analysis	# Nodes	# CPUs	Time step	# Increments	Total analysis time
IGA	762	12	2.30e-07	4347390	1h 15m
FEA	153646	12	2.65e-08	37787314	550h 23m

Analysis	# Nodes	# CPUs	Time step	# Increments	Total analysis time
IGA	762	12	2.30e-07	4347390	1h 15m
FEA	153646	12	2.65e-08	37787314	550h 23m

Analysis	# Nodes	# CPUs	Time step	# Increments	Total analysis time
IGA	762	12	2.30e-07	4347390	1h 15m
FEA	153646	12	2.65e-08	37787314	550h 23m

Why is IGA so much faster than traditional FEA?

- 1. Much more accurate per degree of freedom.
- 2. Efficient dynamics, e.g., large time steps.
- 3. Quality of contact surface provided by smooth geometry and smooth basis functions.

ALE / Immersed Kirchhoff-Love Shell

Patient-specific volumetric NURBS artery wall

M.-C. Hsu, S. Morganti, A. Reali, F. Auricchio, J. Kiendl, D. Kamensky, M. Sacks, et al. 2016

Bioprosthetic Heart Valve

ALE / Immersed Kirchhoff-Love Shell

M.-C. Hsu, A. Herrema, et al., 2015

+ M. Sacks, D. Kamensky, et al., 2015

Boiling

- NOVA, a science TV show:
 - Does mathematics explain the physical world?
- One man's opinion:
 - "No! One of the things it cannot simulate is boiling"

Ju Liu does not agree

• Navier-Stokes-Korteweg equations – 3rd derivatives

Three-dimensional Boiling (J. Liu et al.)

Three-dimensional Boiling (J. Liu et al.)

t = 0.2

Three-dimensional Boiling (J.Liu et al.)

Ductile Fracture

Circular Plate Subject to Impulse Load

Figures from K.G. Webster, *Investigation of Close Proximity Underwater Explosion Effects on a Ship-Like Structure Using the Multi-Material Arbitrary Lagrangian Eulerian Finite Element Method*, Master's Thesis, Virginia Polytechnic Institute and State University, 2007.

Displacement Boundary Conditions

Clamped BC: No displacement in any direction on outer ring

Sliding BC: No displacement on outer ring in *z*-direction

Comparison of BCs

Clamped

Comparison of BCs

"Everything should be made as simple as possible, but not simpler." A. Einstein (?)

NURBS Circular Plate Model*

Includes bolts and washers

* M.J. Borden, T.J.R. Hughes, C. Landis, A. Anvari, I. Lee, 2016

Isogeometric Analysis: Summary

- One of the most active areas of FEA and CAGD research
- Overarching goal: Improve engineering product design
- Focus so far: The design-through-analysis process
- "Better, faster, cheaper"
 - Improve quality of analysis
 - Expedite analysis model development
 - Faster analysis
 - Decrease cost

Isogeometric Analysis: Summary

- One of the most active areas of FEA and CAGD research
- Overarching goal: Improve engineering product design
- Focus so far: The design-through-analysis process
- "Better, faster, cheaper"
 - Improve quality of analysis
 - Expedite analysis model development
 - Faster analysis
 - Decrease cost
- A fruitful, promising and growing area of research
- Gaining traction in industry

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke – New ideas pass through three periods:

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke – New ideas pass through three periods:

1) It can't be done.

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke – New ideas pass through three periods:

1) It can't be done.

2) It probably can be done, but it's not worth doing.
New ideas

Whenever you try to introduce something new, you will get resistance. 50 years ago resistance to FEA was ferocious.

Arthur C. Clarke – New ideas pass through three periods:

1) It can't be done.

2) It probably can be done, but it's not worth doing.

3) I knew it was a good idea all along!

Isogeometric Analysis

Toward Integration of CAD and FEA

WILEY

Published in 2009