A Fresh Look at the Bayes' Theorem from Information

 TheoryTan Bui-Thanh

Computational Engineering and Optimization (CEO) Group Department of Aerospace Engineering and Engineering Mechanics

Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

Babuska Series, ICES Sep 9, 2016

Outline

(1) Bayesian Inversion Framework

3 Relative Entropy

4 Bayes' Theorem and Information Theory

Large-scale computation under uncertainty

Inverse electromagnetic scattering

Randomness

- Random errors in measurements are unavoidable
- Inadequacy of the mathematical model (Maxwell equations)

Challenge

How to invert for the invisible shape/medium using computational electromagnetics with $\mathcal{O}\left(10^{6}\right)$ degree of freedoms?

Large-scale computation under uncertainty

Full wave form seismic inversion

Randomness

- Random errors in seismometer measurements are unavoidable
- Inadequacy of the mathematical model (elastodynamics)

Challenge

How to image the earth interior using forward computational model with with $\mathcal{O}\left(10^{9}\right)$ degree of freedoms?

Inverse Shape Electromagnetic Scattering Problem

Maxwell Equations:

$$
\begin{array}{ll}
\nabla \times \mathbf{E}=-\mu \frac{\partial \mathbf{H}}{\partial t}, & \\
\text { (Faraday) } \\
\nabla \times \mathbf{H}=\epsilon \frac{\partial \mathbf{E}}{\partial t}, & \\
\text { (Ampere) }
\end{array}
$$

E: Electric field, H: Magnetic field, μ : permeability, ϵ : permittivity

Inverse Shape Electromagnetic Scattering Problem

Maxwell Equations:

$$
\begin{aligned}
\nabla \times \mathbf{E} & =-\mu \frac{\partial \mathbf{H}}{\partial t}, \\
\nabla \times \mathbf{H} & =\epsilon \frac{\partial \mathbf{E}}{\partial t},
\end{aligned}
$$

E: Electric field, H: Magnetic field, μ : permeability, ϵ : permittivity
Forward problem (discontinuous Galerkin discretization)

$$
d=\mathcal{G}(x)
$$

where \mathbf{G} maps shape parameters x to electric/magnetic field d at the measurement points

Inverse Shape Electromagnetic Scattering Problem

Maxwell Equations:

$$
\begin{aligned}
\nabla \times \mathbf{E} & =-\mu \frac{\partial \mathbf{H}}{\partial t}, \\
\nabla \times \mathbf{H} & =\epsilon \frac{\partial \mathbf{E}}{\partial t},
\end{aligned}
$$

E: Electric field, H: Magnetic field, μ : permeability, ϵ : permittivity
Forward problem (discontinuous Galerkin discretization)

$$
d=\mathcal{G}(x)
$$

where \mathbf{G} maps shape parameters x to electric/magnetic field d at the measurement points

Inverse Problem

Given (possibly noise-corrupted) measurements on d, infer x ?

The Bayesian Statistical Inversion Framework

The Bayesian Statistical Inversion Framework

The Bayesian Statistical Inversion Framework

Bayes Theorem

$$
\pi_{\text {post }}(x \mid d) \propto \pi_{\text {like }}(d \mid x) \times \pi_{\text {prior }}(x)
$$

Bayes theorem for inverse electromagnetic scattering

Prior knowledge: The obstacle is smooth:

$$
\pi_{\mathrm{pr}}(x) \propto \exp \left(-\lambda \int_{0}^{2 \pi} r^{\prime \prime}(x) d \theta\right)
$$

Bayes theorem for inverse electromagnetic scattering

Prior knowledge: The obstacle is smooth:

$$
\pi_{\mathrm{pr}}(x) \propto \exp \left(-\lambda \int_{0}^{2 \pi} r^{\prime \prime}(x) d \theta\right)
$$

Likelihood: Additive Gaussian noise, for example,

$$
\pi_{\text {like }}(d \mid x) \propto \exp \left(-\frac{1}{2}\|\mathcal{G}(x)-d\|_{C_{\text {noise }}}^{2}\right)
$$

Outline

(1) Bayesian Inversion Framework

(2) Entropy

3 Relative Entropy

4 Bayes' Theorem and Information Theory
(5) Conclusions

Entropy

Definition

We define the uncertainty in a random variable X distributed by $0 \leq \pi(x) \leq 1$ as

$$
H(X)=-\int \pi(x) \log \pi(x) d x \geq 0
$$

Entropy

Entropy

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

Entropy

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

- Wiener: "...for it belongs to the two of us equally"

Entropy

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

- Wiener: "...for it belongs to the two of us equally"
- Shannon: "...a mathematical pun"

Entropy

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

- Wiener: "...for it belongs to the two of us equally"
- Shannon: "...a mathematical pun"
- Kolmogorov: "...has no physical interpretation"

Entropy

Entropy of uniform distribution

Entropy

Entropy of uniform distribution

- Let U be a uniform random variable with values in X, and $|X|<\infty$

Entropy

Entropy of uniform distribution

- Let U be a uniform random variable with values in X, and $|X|<\infty$
- $\pi(u):=\frac{1}{|\mathcal{X}|} \Rightarrow H(U)=\log (|X|)$

Entropy

Entropy of uniform distribution

- Let U be a uniform random variable with values in X, and $|X|<\infty$
- $\pi(u):=\frac{1}{|\mathcal{X}|} \Rightarrow H(U)=\log (|X|)$

How uncertain is the uniform random variable?

Entropy

Entropy of uniform distribution

- Let U be a uniform random variable with values in X, and $|X|<\infty$
- $\pi(u):=\frac{1}{|\mathcal{X}|} \Rightarrow H(U)=\log (|X|)$

How uncertain is the uniform random variable?

$$
H(X) \leq H(U)
$$

100 years of uniform distribution

source: Christoph Aistleitner

100 years of uniform distribution

source: Christoph Aistleitner

Hermann Weyl

and Maximum entropy

Maximum entropy distribution

- X with known mean and variance

and Maximum entropy

Maximum entropy distribution

- X with known mean and variance
- $\pi(x)$? with maximum entropy

and Maximum entropy

Maximum entropy distribution

- X with known mean and variance
- $\pi(x)$? with maximum entropy

$$
\max _{\pi(x)} H(X)=-\int \pi(x) \log (\pi(x)) d x
$$

subject to

$$
\begin{aligned}
\int x \pi(x) d x & =\mu \\
\int(x-\mu)^{2} \pi(x) d x & =\sigma^{2} \\
\int \pi(x) d x & =1
\end{aligned}
$$

Gaussian and Maximum entropy

Maximum entropy distribution

- X with known mean and variance
- $\pi(x)$? with maximum entropy

$$
\max _{\pi(x)} H(X)=-\int \pi(x) \log (\pi(x)) d x
$$

subject to

$$
\begin{aligned}
\int x \pi(x) d x & =\mu \\
\int(x-\mu)^{2} \pi(x) d x & =\sigma^{2} \\
\int \pi(x) d x & =1
\end{aligned}
$$

- Gaussian distribution: $\pi(x)=\mathcal{N}\left(\mu, \sigma^{2}\right)$

Outline

(1) Bayesian Inversion Framework
(2) Entropy
(3) Relative Entropy

4 Bayes' Theorem and Information Theory

Relative Entropy

Abraham Wald (1945)

Harold Jeffreys (1945)

$$
D(\pi \| q):=\int \pi(x) \log \left(\frac{\pi(x)}{q(x)}\right) d x
$$

Kullback-Leibler divergence $=$ Relative Entropy

Solomon Kullback (1951)

Richard Leibler (1951)

$$
D(\pi \| q):=\int \pi(x) \log \left(\frac{\pi(x)}{q(x)}\right) d x
$$

Kullback-Leibler divergence $=$ Relative Entropy

Solomon Kullback (1951)

Richard Leibler (1951)

$$
D(\pi \| q):=\int \pi(x) \log \left(\frac{\pi(x)}{q(x)}\right) d x \stackrel{\text { discrete }}{=} \sum \pi_{i} \log \left(\frac{\pi_{i}}{q_{i}}\right)
$$

Information Inequality

The most important inequality in information theory

$$
D(\pi \| q) \geq 0
$$

Can we see it easily?

Information Inequality

The most important inequality in information theory

$$
D(\pi \| q) \geq 0
$$

Can we see it easily?

Outline

(1) Bayesian Inversion Framework
(2) Entropy
(3) Relative Entropy

4 Bayes' Theorem and Information Theory

From Relative Entropy to Bayes' Theorem

- Toss n times an k th dimensional dice with the prior distribution of each face $\left\{p_{i}\right\}_{i=1}^{k}: \sum_{i=1}^{k} p_{i}=1$

From Relative Entropy to Bayes' Theorem

- Toss n times an k th dimensional dice with the prior distribution of each face $\left\{p_{i}\right\}_{i=1}^{k}: \sum_{i=1}^{k} p_{i}=1$
- Let n_{i} is the number of times we see face $i: \frac{n_{i}}{n} \rightarrow p_{i}$

From Relative Entropy to Bayes' Theorem

- Toss n times an k th dimensional dice with the prior distribution of each face $\left\{p_{i}\right\}_{i=1}^{k}: \sum_{i=1}^{k} p_{i}=1$
- Let n_{i} is the number of times we see face $i: \frac{n_{i}}{n} \rightarrow p_{i}$
- What is the likelihood that these n faces also distributed by the posterior distrubtion $q_{i}: \sum_{i=1}^{k} q_{i}=1$?

From Relative Entropy to Bayes' Theorem

- Toss n times an k th dimensional dice with the prior distribution of each face $\left\{p_{i}\right\}_{i=1}^{k}: \sum_{i=1}^{k} p_{i}=1$
- Let n_{i} is the number of times we see face $i: \frac{n_{i}}{n} \rightarrow p_{i}$
- What is the likelihood that these n faces also distributed by the posterior distrubtion $q_{i}: \sum_{i=1}^{k} q_{i}=1$?
- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$

$$
\Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

From Relative Entropy to Bayes' Theorem

- Toss n times an k th dimensional dice with the prior distribution of each face $\left\{p_{i}\right\}_{i=1}^{k}: \sum_{i=1}^{k} p_{i}=1$
- Let n_{i} is the number of times we see face $i: \frac{n_{i}}{n} \rightarrow p_{i}$
- What is the likelihood that these n faces also distributed by the posterior distrubtion $q_{i}: \sum_{i=1}^{k} q_{i}=1$?
- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$ (Multinomial distribution)

$$
L:=\frac{n!}{\Pi_{i=1}^{k} n_{i}!} \Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

From Relative Entropy to Bayes' Theorem

- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$

$$
L:=\frac{n!}{\Pi_{i=1}^{k} n_{i}!} \Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

From Relative Entropy to Bayes' Theorem

- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$

$$
L:=\frac{n!}{\Pi_{i=1}^{k} n_{i}!} \Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

- Take the log likelihood

$$
\log L=\log (n!)-\sum \log \left(n_{i}!\right)+\sum n_{i} \log \left(q_{i}\right)
$$

From Relative Entropy to Bayes' Theorem

- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$

$$
L:=\frac{n!}{\Pi_{i=1}^{k} n_{i}!} \Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

- Take the log likelihood

$$
\log L=\log (n!)-\sum \log \left(n_{i}!\right)+\sum n_{i} \log \left(q_{i}\right)
$$

- Stirling's approximation $\log n!\approx n \log (n)-n$

$$
\log L=n \log (n)-\sum n_{i} \log \left(n_{i}\right)+\sum n_{i} \log \left(q_{i}\right)+\underbrace{\sum n_{i}-n}_{0}
$$

From Relative Entropy to Bayes' Theorem

- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$

$$
L:=\frac{n!}{\Pi_{i=1}^{k} n_{i}!} \Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

- Take the log likelihood

$$
\log L=\log (n!)-\sum \log \left(n_{i}!\right)+\sum n_{i} \log \left(q_{i}\right)
$$

- Stirling's approximation $\log n!\approx n \log (n)-n$

$$
\begin{aligned}
& \log L=n \log (n)-\sum n_{i} \log \left(n_{i}\right)+\sum n_{i} \log \left(q_{i}\right)+\underbrace{\sum n_{i}-n}_{0} \\
& \frac{1}{n}(-\log L)=\sum \frac{n_{i}}{n} \log \left(\frac{n_{i} / n}{q_{i}}\right)
\end{aligned}
$$

From Relative Entropy to Bayes' Theorem

- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$

$$
L:=\frac{n!}{\Pi_{i=1}^{k} n_{i}!} \Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

- Take the log likelihood

$$
\log L=\log (n!)-\sum \log \left(n_{i}!\right)+\sum n_{i} \log \left(q_{i}\right)
$$

- Stirling's approximation $\log n!\approx n \log (n)-n$

$$
\begin{aligned}
& \log L=n \log (n)-\sum n_{i} \log \left(n_{i}\right)+\sum n_{i} \log \left(q_{i}\right)+\underbrace{\sum n_{i}-n}_{0} \\
& \frac{1}{n}(-\log L)=\sum \frac{n_{i}}{n} \log \left(\frac{n_{i} / n}{q_{i}}\right)=\sum p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)
\end{aligned}
$$

From Relative Entropy to Bayes' Theorem

- The likelihood of $\left\{n_{i}\right\}_{i=1}^{k}$ distributed by $\left\{q_{i}\right\}_{i=1}^{k}$

$$
L:=\frac{n!}{\Pi_{i=1}^{k} n_{i}!} \Pi_{i=1}^{k} q_{i}^{n_{i}}
$$

- Take the log likelihood

$$
\log L=\log (n!)-\sum \log \left(n_{i}!\right)+\sum n_{i} \log \left(q_{i}\right)
$$

- Stirling's approximation $\log n!\approx n \log (n)-n$

$$
\log L=n \log (n)-\sum n_{i} \log \left(n_{i}\right)+\sum n_{i} \log \left(q_{i}\right)+\underbrace{\sum n_{i}-n}_{0}
$$

- Relative entropy $=$ average likelihood

$$
\frac{1}{n}(-\log L)=\sum \frac{n_{i}}{n} \log \left(\frac{n_{i} / n}{q_{i}}\right)=\sum p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)=D(p \| q)
$$

From Relative Entropy to Bayes' Theorem

Relative entropy = average likelihood

$$
\frac{1}{n}(-\log L)=D(p \| q)
$$

From Relative Entropy to Bayes' Theorem

Relative entropy $=$ average likelihood
-

$$
\frac{1}{n}(-\log L)=D(p \| q)
$$

- Write $\sum \rightarrow \int$

$$
-\int \log (L) p(x) d x=\int \log \left(\frac{p}{q}\right) p(x) d x
$$

From Relative Entropy to Bayes' Theorem

Relative entropy $=$ average likelihood
$\frac{1}{n}(-\log L)=D(p \| q)$

- Write $\sum \rightarrow \int$

$$
\begin{gathered}
-\int \log (L) p(x) d x=\int \log \left(\frac{p}{q}\right) p(x) d x \\
q(x)=L(x) p(x)
\end{gathered}
$$

From Relative Entropy to Bayes' Theorem

Relative entropy $=$ average likelihood \rightarrow Bayes

$$
\frac{1}{n}(-\log L)=D(p \| q)
$$

- Write $\sum \rightarrow \int$

$$
-\int \log (L) p(x) d x=\int \log \left(\frac{p}{q}\right) p(x) d x
$$

- Bayes' theorem $q(x)=L(x) p(x)$

From Optimization to Bayes' Theorem

Inverse Problem

- Given observation model

$$
d=\mathcal{G}(x)+\varepsilon
$$

From Optimization to Bayes' Theorem

Inverse Problem

- Given observation model

$$
d=\mathcal{G}(x)+\varepsilon
$$

- Inverse task: given d, infer x

From Optimization to Bayes' Theorem

Inverse Problem

- Given observation model

$$
d=\mathcal{G}(x)+\varepsilon
$$

- Inverse task: given d, infer x
- Statistical inversion: Prior knowledge: $X \sim \pi_{\text {prior }}(x)$. Look for the posterior distribution $\pi_{\text {post }}(x)$ that combines prior information and information from the data.

From Optimization to Bayes' Theorem

Inverse Problem

- Given observation model

$$
d=\mathcal{G}(x)+\varepsilon
$$

- Inverse task: given d, infer x
- Statistical inversion: Prior knowledge: $X \sim \pi_{\text {prior }}(x)$. Look for the posterior distribution $\pi_{\text {post }}(x)$ that combines prior information and information from the data.
- The likelihood: assume $\varepsilon \sim \mathcal{N}(0, C)$

$$
\pi_{\text {like }}(x)=\exp \left(-\frac{1}{2}\|d-\mathcal{G}(x)\|_{C}^{2}\right)
$$

From Optimization to Bayes' Theorem

Prior Elicitation

- Try to get the best prior information = discrepancy relative to the posterior is minimized

From Optimization to Bayes' Theorem

Prior Elicitation

- Try to get the best prior information = discrepancy relative to the posterior is minimized
- Conversely, best prior \rightarrow the information gained in the posterior should not be large

From Optimization to Bayes' Theorem

Prior Elicitation

- Try to get the best prior information = discrepancy relative to the posterior is minimized
- Conversely, best prior \rightarrow the information gained in the posterior should not be large
- Equivalently,

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min } D\left(\pi \| \pi_{\text {prior }}\right)=\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

From Optimization to Bayes' Theorem

How about information from the data?

- Want to find x to match the data as well as we can

From Optimization to Bayes' Theorem

How about information from the data?

- Want to find x to match the data as well as we can
- "Equivalently": want to find the posterior distribution such that $\|d-\mathcal{G}(x)\|_{C}^{2}$ is minimized!

From Optimization to Bayes' Theorem

How about information from the data?

- Want to find x to match the data as well as we can
- "Equivalently": want to find the posterior distribution such that $\|d-\mathcal{G}(x)\|_{C}^{2}$ is minimized!
- One approach: minimize the mean squared error

$$
\pi_{\mathrm{post}}=\underset{\pi(x)}{\arg \min } \int \pi(x)\|d-\mathcal{G}(x)\|_{C}^{2} d x
$$

From Optimization to Bayes' Theorem

How about information from the data?

- Want to find x to match the data as well as we can
- "Equivalently": want to find the posterior distribution such that $\|d-\mathcal{G}(x)\|_{C}^{2}$ is minimized!
- One approach: minimize the mean squared error

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min } \int \pi(x)\|d-\mathcal{G}(x)\|_{C}^{2} d x=-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x
$$

From Optimization to Bayes' Theorem

Prior + data information

- From prior

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min } D\left(\pi \| \pi_{\text {prior }}\right)=\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

From Optimization to Bayes' Theorem

Prior + data information

- From prior

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min } D\left(\pi \| \pi_{\text {prior }}\right)=\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

- From likelihood

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x
$$

From Optimization to Bayes' Theorem

Prior + data information

- From prior

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min } D\left(\pi \| \pi_{\text {prior }}\right)=\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

- From likelihood

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x
$$

- A Compromise

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x+\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

subject to

$$
\int \pi(x) d x=1, \quad \text { and } \pi(x) \geq 0
$$

From Optimization to Bayes' Theorem

Prior + data information

- A Compromise

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x+\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

subject to

$$
\int \pi(x) d x=1, \quad \text { and } \pi(x) \geq 0
$$

From Optimization to Bayes' Theorem

Prior + data information

- A Compromise

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x+\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

subject to

$$
\int \pi(x) d x=1, \quad \text { and } \pi(x) \geq 0
$$

- Does it have a solution $\pi_{\text {post }}(x)$? is it unique?

From Optimization to Bayes' Theorem

Prior + data information

- A Compromise

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x+\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

subject to

$$
\int \pi(x) d x=1, \quad \text { and } \pi(x) \geq 0
$$

- Does it have a solution $\pi_{\text {post }}(x)$? is it unique?
- How to solve?

From Optimization to Bayes' Theorem

Prior + data information

- A Compromise

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x+\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

subject to

$$
\int \pi(x) d x=1, \quad \text { and } \pi(x) \geq 0
$$

- Does it have a solution $\pi_{\text {post }}(x)$? is it unique?
- How to solve?

$$
\text { Lagrangian }+ \text { calculus of variation }
$$

From Optimization to Bayes' Theorem

Prior + data information

- A Compromise

$$
\pi_{\text {post }}=\underset{\pi(x)}{\arg \min }-\int \pi(x) \log \left(\pi_{\text {like }}(x)\right) d x+\int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\text {prior }}(x)}\right) d x
$$

subject to

$$
\int \pi(x) d x=1, \quad \text { and } \pi(x) \geq 0
$$

- Does it have a solution $\pi_{\text {post }}(x)$? is it unique?
- How to solve?

Lagrangian + calculus of variation

- Solution $=$ Bayes' theorem

$$
\pi_{\text {post }}(x \mid d)=\frac{\pi_{\text {like }}(d \mid x) \times \pi_{\text {prior }}(x)}{\int \pi_{\text {like }}(d \mid x) \times \pi_{\text {prior }}(x) d x}
$$

Outline

(1) Bayesian Inversion Framework
(2) Entropy

3 Relative Entropy

4 Bayes' Theorem and Information Theory
(5) Conclusions

Conclusions

(1) Information provide an intuitive and fresh view of Bayes' theorem

Conclusions

(1) Information provide an intuitive and fresh view of Bayes' theorem
(2) Relative entropy \rightarrow Bayes' theorem

Conclusions

(1) Information provide an intuitive and fresh view of Bayes' theorem
(2) Relative entropy \rightarrow Bayes' theorem
(3) Optimization + information \rightarrow Bayes' theorem

