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Large-scale computation under uncertainty

Inverse electromagnetic scattering

Randomness

Random errors in measurements are unavoidable

Inadequacy of the mathematical model (Maxwell equations)

Challenge

How to invert for the invisible shape/medium using computational
electromagnetics with O

�
10

6
�
degree of freedoms?
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Large-scale computation under uncertainty
Full wave form seismic inversion

Randomness

Random errors in seismometer measurements are unavoidable

Inadequacy of the mathematical model (elastodynamics)

Challenge

How to image the earth interior using forward computational model with
with O

�
10

9
�
degree of freedoms?
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Inverse Shape Electromagnetic Scattering Problem
Maxwell Equations:

r⇥E = �µ
@H

@t
, (Faraday)

r⇥H = ✏
@E

@t
, (Ampere)

E: Electric field, H: Magnetic field, µ: permeability, ✏: permittivity

Forward problem (discontinuous Galerkin discretization)

d = G(x)

where G maps shape parameters x to electric/magnetic field d at the
measurement points

Inverse Problem

Given (possibly noise-corrupted) measurements on d, infer x?
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The Bayesian Statistical Inversion Framework

Bayes Theorem

⇡post (x|d) / ⇡like (d|x)⇥ ⇡prior (x)
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Bayes theorem for inverse electromagnetic scattering

Prior knowledge: The obstacle is smooth:

⇡pr(x) / exp

✓
��

Z 2⇡

0
r00(x)d✓

◆

Likelihood: Additive Gaussian noise, for example,

⇡like(d|x) / exp

✓
�1

2

kG(x)� dk2
C

noise

◆
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Entropy

Definition

We define the uncertainty in a random variable X distributed by
0  ⇡ (x)  1 as

H (X) = �
Z

⇡ (x) log ⇡ (x) dx� 0
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Entropy

Wiener and Shannon Kolmogorov

Copied from Sergio Verdu

Wiener: “...for it belongs to the two of us equally”

Shannon: “...a mathematical pun”

Kolmogorov: “...has no physical interpretation”
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Entropy

Entropy of uniform distribution

Let U be a uniform random variable with values in X, and |X| < 1

⇡ (u) :=
1

|X| ) H (U) = log (|X|)

How uncertain is the uniform random variable?

H (X)  H (U)
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100 years of uniform distribution
source: Christoph Aistleitner

Hermann Weyl
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Gaussian

and Maximum entropy
Maximum entropy distribution

X with known mean and variance

⇡ (x)? with maximum entropy

max

⇡(x)
H(X) = �

Z
⇡(x) log(⇡(x)) dx

subject to
Z

x⇡(x) dx = µ
Z

(x� µ)2⇡(x) dx = �2

Z
⇡(x) dx = 1

Gaussian distribution: ⇡ (x) = N
�
µ,�2

�
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Relative Entropy

Abraham Wald (1945) Harold Je↵reys (1945)

D (⇡||q) :=
Z

⇡(x) log

✓
⇡(x)

q(x)

◆
dx
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Kullback-Leibler divergence = Relative Entropy

Solomon Kullback
(1951)

Richard Leibler (1951)

D (⇡||q) :=
Z

⇡(x) log

✓
⇡(x)

q(x)

◆
dx

discrete
=

X
⇡
i

log

✓
⇡
i

q
i

◆
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Information Inequality
The most important inequality in information theory

D (⇡||q) � 0

Can we see it easily?
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From Relative Entropy to Bayes’ Theorem

Toss n times an kth dimensional dice with the prior distribution of

each face {p
i

}k
i=1:

kX

i=1

p
i

= 1

Let n
i

is the number of times we see face i:
n
i

n
! p

i

What is the likelihood that these n faces also distributed by the

posterior distrubtion q
i

:
kX

i=1

q
i

= 1?

The likelihood of {n
i

}k
i=1 distributed by {q

i

}k
i=1

(Multinomial
distribution)

L :=

n!

⇧

k

i=1ni

!

⇧

k

i=1q
ni
i
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From Relative Entropy to Bayes’ Theorem

The likelihood of {n
i

}k
i=1 distributed by {q

i

}k
i=1

L :=

n!

⇧

k

i=1ni

!

⇧

k

i=1q
ni
i

Take the log likelihood

logL = log(n!)�
X

log(n
i

!) +

X
n
i

log(q
i

)

Stirling’s approximation log n! ⇡ n log(n)� n

logL = n log(n)�
X

n
i

log(n
i

) +

X
n
i

log(q
i

) +

X
n
i

� n
| {z }

0

Relative entropy = average likelihood

1

n
(� logL) =

X n
i

n
log

✓
n
i

/n

q
i

◆

=

X
p
i

log

✓
p
i

q
i

◆
= D (p||q)
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From Relative Entropy to Bayes’ Theorem

Relative entropy = average likelihood

! Bayes

1

n
(� logL) = D (p||q)

Write
X

!
Z

�
Z

log(L)p(x) dx =

Z
log

✓
p

q

◆
p(x) dx

Bayes’ theorem

q(x) = L(x)p(x)
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From Optimization to Bayes’ Theorem

Inverse Problem

Given observation model

d = G (x) + "

Inverse task: given d, infer x

Statistical inversion: Prior knowledge: X ⇠ ⇡prior(x). Look for the
posterior distribution ⇡post(x) that combines prior information and
information from the data.

The likelihood: assume " ⇠ N (0, C)

⇡like(x) = exp

✓
�1

2

kd� G(x)k2
C

◆
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From Optimization to Bayes’ Theorem

Prior Elicitation

Try to get the best prior information = discrepancy relative to the
posterior is minimized

Conversely, best prior ! the information gained in the posterior
should not be large

Equivalently,

⇡post = argmin

⇡(x)
D (⇡||⇡prior) =

Z
⇡(x) log

✓
⇡(x)

⇡prior(x)

◆
dx
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From Optimization to Bayes’ Theorem

How about information from the data?

Want to find x to match the data as well as we can

“Equivalently”: want to find the posterior distribution such that
kd� G(x)k2

C

is minimized!

One approach: minimize the mean squared error

⇡post = argmin

⇡(x)

Z
⇡(x) kd� G(x)k2

C

dx

= �
Z

⇡(x) log (⇡like(x)) dx

(CEO Group UT Austin) Bayes’ Theorem Bayesian Inversions 24 / 28



From Optimization to Bayes’ Theorem

How about information from the data?

Want to find x to match the data as well as we can

“Equivalently”: want to find the posterior distribution such that
kd� G(x)k2

C

is minimized!

One approach: minimize the mean squared error

⇡post = argmin

⇡(x)

Z
⇡(x) kd� G(x)k2

C

dx

= �
Z

⇡(x) log (⇡like(x)) dx

(CEO Group UT Austin) Bayes’ Theorem Bayesian Inversions 24 / 28



From Optimization to Bayes’ Theorem

How about information from the data?

Want to find x to match the data as well as we can

“Equivalently”: want to find the posterior distribution such that
kd� G(x)k2

C

is minimized!

One approach: minimize the mean squared error

⇡post = argmin

⇡(x)

Z
⇡(x) kd� G(x)k2

C

dx

= �
Z

⇡(x) log (⇡like(x)) dx

(CEO Group UT Austin) Bayes’ Theorem Bayesian Inversions 24 / 28



From Optimization to Bayes’ Theorem

How about information from the data?

Want to find x to match the data as well as we can

“Equivalently”: want to find the posterior distribution such that
kd� G(x)k2

C

is minimized!

One approach: minimize the mean squared error

⇡post = argmin

⇡(x)

Z
⇡(x) kd� G(x)k2

C

dx= �
Z

⇡(x) log (⇡like(x)) dx

(CEO Group UT Austin) Bayes’ Theorem Bayesian Inversions 24 / 28



From Optimization to Bayes’ Theorem
Prior + data information

From prior

⇡post = argmin

⇡(x)
D (⇡||⇡prior) =

Z
⇡(x) log

✓
⇡(x)

⇡prior(x)

◆
dx

From likelihood

⇡post = argmin

⇡(x)
�
Z

⇡(x) log (⇡like(x)) dx

A Compromise

⇡post = argmin

⇡(x)
�
Z

⇡(x) log (⇡like(x)) dx+

Z
⇡(x) log

✓
⇡(x)

⇡prior(x)

◆
dx

subject to Z
⇡(x) dx = 1, and ⇡(x) � 0.
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From Optimization to Bayes’ Theorem

Prior + data information

A Compromise
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Z

⇡(x) log (⇡like(x)) dx+

Z
⇡(x) log

✓
⇡(x)

⇡prior(x)

◆
dx

subject to Z
⇡(x) dx = 1, and ⇡(x) � 0.

Does it have a solution ⇡post(x)? is it unique?

How to solve?

Lagrangian + calculus of variation

Solution = Bayes’ theorem

⇡post (x|d) =
⇡like (d|x)⇥ ⇡prior (x)R
⇡like (d|x)⇥ ⇡prior (x) dx
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Conclusions

1 Information provide an intuitive and fresh view of Bayes’ theorem

2 Relative entropy ! Bayes’ theorem

3 Optimization + information ! Bayes’ theorem
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