A Fresh Look at the Bayes' Theorem from Information Theory

Tan Bui-Thanh

Computational Engineering and Optimization (CEO) Group Department of Aerospace Engineering and Engineering Mechanics Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin

Babuska Series, ICES Sep 9, 2016

Outline

1 Bayesian Inversion Framework

2 Entropy

- 3 Relative Entropy
- 4 Bayes' Theorem and Information Theory

5 Conclusions

Large-scale computation under uncertainty

Inverse electromagnetic scattering

Randomness

- Random errors in measurements are unavoidable
- Inadequacy of the mathematical model (Maxwell equations)

Challenge

How to invert for the invisible shape/medium using computational electromagnetics with $O(10^6)$ degree of freedoms?

Large-scale computation under uncertainty Full wave form seismic inversion

Randomness

- Random errors in seismometer measurements are unavoidable
- Inadequacy of the mathematical model (elastodynamics)

Challenge

How to image the earth interior using forward computational model with with $\mathbb{O}\left(10^9\right)$ degree of freedoms?

Inverse Shape Electromagnetic Scattering Problem

E: Electric field, H: Magnetic field, μ : permeability, ϵ : permittivity

Inverse Shape Electromagnetic Scattering Problem

E: Electric field, H: Magnetic field, μ : permeability, ϵ : permittivity

Forward problem (discontinuous Galerkin discretization)

 $d = \mathcal{G}(x)$

where G maps shape parameters x to electric/magnetic field d at the measurement points

Inverse Shape Electromagnetic Scattering Problem

E: Electric field, H: Magnetic field, μ : permeability, ϵ : permittivity

Forward problem (discontinuous Galerkin discretization)

 $d = \mathcal{G}(x)$

where G maps shape parameters x to electric/magnetic field d at the measurement points

Inverse Problem

Given (possibly noise-corrupted) measurements on d, infer x?

(CEO Group UT Austin)

The Bayesian Statistical Inversion Framework

The Bayesian Statistical Inversion Framework

The Bayesian Statistical Inversion Framework

Bayes Theorem

 $\pi_{\text{post}}(x|d) \propto \pi_{\text{like}}(d|x) \times \pi_{\text{prior}}(x)$

Bayes theorem for inverse electromagnetic scattering

Prior knowledge: The obstacle is smooth:

$$\pi_{\rm pr}(x) \propto \exp\left(-\lambda \int_0^{2\pi} r''(x)d\theta\right)$$

Bayes theorem for inverse electromagnetic scattering

Prior knowledge: The obstacle is smooth:

$$\pi_{\rm pr}(x) \propto \exp\left(-\lambda \int_0^{2\pi} r''(x)d\theta\right)$$

Likelihood: Additive Gaussian noise, for example,

$$\pi_{\text{like}}(d|x) \propto \exp\left(-\frac{1}{2} \left\|\mathcal{G}(x) - d\right\|_{C_{\text{noise}}}^{2}\right)$$

Outline

- 3 Relative Entropy
- 4 Bayes' Theorem and Information Theory

5 Conclusions

Definition

We define the uncertainty in a random variable X distributed by $0\leq\pi\left(x\right)\leq1$ as

$$H(X) = -\int \pi(x)\log\pi(x) \, dx \ge 0$$

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

• Wiener: "...for it belongs to the two of us equally"

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

- Wiener: "...for it belongs to the two of us equally"
- Shannon: "...a mathematical pun"

Wiener and Shannon

Kolmogorov

Copied from Sergio Verdu

- Wiener: "...for it belongs to the two of us equally"
- Shannon: "...a mathematical pun"
- Kolmogorov: "...has no physical interpretation"

Entropy of uniform distribution

Entropy of uniform distribution

• Let U be a uniform random variable with values in $\mathfrak{X},$ and $|\mathfrak{X}| < \infty$

Entropy of uniform distribution

• Let U be a uniform random variable with values in \mathfrak{X} , and $|\mathfrak{X}| < \infty$ • $\pi(u) := \frac{1}{|\mathfrak{X}|} \Rightarrow H(U) = \log(|\mathfrak{X}|)$

Entropy of uniform distribution

• Let U be a uniform random variable with values in \mathfrak{X} , and $|\mathfrak{X}| < \infty$ • $\pi(u) := \frac{1}{|\mathfrak{X}|} \Rightarrow H(U) = \log(|\mathfrak{X}|)$ How uncertain is the uniform random variable?

Entropy of uniform distribution

• Let U be a uniform random variable with values in \mathfrak{X} , and $|\mathfrak{X}| < \infty$ • $\pi(u) := \frac{1}{|\mathfrak{X}|} \Rightarrow H(U) = \log(|\mathfrak{X}|)$

How uncertain is the uniform random variable?

 $H\left(X\right) \leq H\left(U\right)$

100 years of uniform distribution

source: Christoph Aistleitner

100 years of uniform distribution

source: Christoph Aistleitner

Hermann Weyl

and Maximum entropy

Maximum entropy distribution

 $\bullet~X$ with known mean and variance

and Maximum entropy

Maximum entropy distribution

- X with known mean and variance
- $\pi(x)$? with maximum entropy

and Maximum entropy

Maximum entropy distribution

- X with known mean and variance
- $\pi(x)$? with maximum entropy

۲

$$\max_{\pi(x)} H(X) = -\int \pi(x) \log(\pi(x)) \, dx$$

subject to

$$\int x\pi(x) \, dx = \mu$$
$$\int (x - \mu)^2 \pi(x) \, dx = \sigma^2$$
$$\int \pi(x) \, dx = 1$$

Gaussian and Maximum entropy

Maximum entropy distribution

- X with known mean and variance
- $\pi(x)$? with maximum entropy

۲

$$\max_{\pi(x)} H(X) = -\int \pi(x) \log(\pi(x)) \, dx$$

subject to

$$\int x\pi(x) \, dx = \mu$$
$$\int (x-\mu)^2 \pi(x) \, dx = \sigma^2$$
$$\int \pi(x) \, dx = 1$$

• Gaussian distribution: $\pi(x) = \mathcal{N}(\mu, \sigma^2)$

(CEO Group UT Austin)

Bayes' Theorem

Bayesian Inversions

13 / 28

Outline

4 Bayes' Theorem and Information Theory

5 Conclusions

Relative Entropy

Abraham Wald (1945)

Harold Jeffreys (1945)

$$D\left(\pi||q\right):=\int \pi(x)\log\left(\frac{\pi(x)}{q(x)}\right)dx$$

Kullback-Leibler divergence = Relative Entropy

Solomon Kullback (1951) Richard Leibler (1951)

$$D(\pi ||q) := \int \pi(x) \log\left(\frac{\pi(x)}{q(x)}\right) dx$$

Kullback-Leibler divergence = Relative Entropy

Solomon Kullback (1951)

Richard Leibler (1951)

$$D\left(\pi ||q\right) := \int \pi(x) \log\left(\frac{\pi(x)}{q(x)}\right) dx \stackrel{\text{discrete}}{=} \sum \pi_i \log\left(\frac{\pi_i}{q_i}\right)$$

Information Inequality

The most important inequality in information theory

$D\left(\pi||q\right)\geq 0$

Can we see it easily?

(CEO Group UT Austin)

Bayes' Theorem

Bayesian Inversions 17 / 28

Information Inequality

The most important inequality in information theory

 $D\left(\pi||q\right)\geq 0$

Can we see it easily?

Outline

2 Entropy

4 Bayes' Theorem and Information Theory

5 Conclusions

• Toss n times an kth dimensional dice with the prior distribution of each face $\{p_i\}_{i=1}^k\colon \sum_{i=1}^k p_i=1$

- Toss n times an kth dimensional dice with the prior distribution of each face $\{p_i\}_{i=1}^k$: $\sum_{i=1}^k p_i = 1$
- Let n_i is the number of times we see face $i: \frac{n_i}{n} \rightarrow p_i$

- Toss n times an kth dimensional dice with the prior distribution of each face $\{p_i\}_{i=1}^k$: $\sum_{i=1}^k p_i = 1$
- Let n_i is the number of times we see face $i: \frac{n_i}{n} \rightarrow p_i$
- What is the likelihood that these n faces also distributed by the posterior distrubtion q_i : $\sum_{i=1}^{k} q_i = 1$?

- Toss n times an kth dimensional dice with the prior distribution of each face $\{p_i\}_{i=1}^k$: $\sum_{i=1}^k p_i = 1$
- Let n_i is the number of times we see face $i: \frac{n_i}{n} \rightarrow p_i$
- What is the likelihood that these n faces also distributed by the posterior distrubtion q_i : $\sum_{i=1}^{k} q_i = 1$?
- The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$

$$\Pi_{i=1}^k q_i^{n_i}$$

- Toss n times an kth dimensional dice with the prior distribution of each face $\{p_i\}_{i=1}^k$: $\sum_{i=1}^k p_i = 1$
- Let n_i is the number of times we see face $i: \frac{n_i}{n} \rightarrow p_i$
- What is the likelihood that these n faces also distributed by the posterior distrubtion q_i : $\sum_{i=1}^{k} q_i = 1$?
- The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$ (Multinomial distribution)

$$L := \frac{n!}{\prod_{i=1}^{k} n_i!} \prod_{i=1}^{k} q_i^{n_i}$$

• The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$

$$L := \frac{n!}{\prod_{i=1}^{k} n_i!} \prod_{i=1}^{k} q_i^{n_i}$$

• The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$

$$L := \frac{n!}{\prod_{i=1}^k n_i!} \prod_{i=1}^k q_i^{n_i}$$

• Take the log likelihood

$$\log L = \log(n!) - \sum \log(n_i!) + \sum n_i \log(q_i)$$

• The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$

$$L := \frac{n!}{\prod_{i=1}^k n_i!} \prod_{i=1}^k q_i^{n_i}$$

• Take the log likelihood

$$\log L = \log(n!) - \sum \log(n_i!) + \sum n_i \log(q_i)$$

• Stirling's approximation $\log n! \approx n \log(n) - n$

$$\log L = n \log(n) - \sum n_i \log(n_i) + \sum n_i \log(q_i) + \underbrace{\sum n_i - n_i}_{0}$$

• The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$

$$L := \frac{n!}{\prod_{i=1}^k n_i!} \prod_{i=1}^k q_i^{n_i}$$

• Take the log likelihood

$$\log L = \log(n!) - \sum \log(n_i!) + \sum n_i \log(q_i)$$

• Stirling's approximation $\log n! \approx n \log(n) - n$

$$\log L = n \log(n) - \sum n_i \log(n_i) + \sum n_i \log(q_i) + \underbrace{\sum n_i - n_i}_{0}$$

$$\frac{1}{n}\left(-\log L\right) = \sum \frac{n_i}{n} \log\left(\frac{n_i/n}{q_i}\right)$$

(CEO Group UT Austin)

• The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$

$$L := \frac{n!}{\prod_{i=1}^k n_i!} \prod_{i=1}^k q_i^{n_i}$$

• Take the log likelihood

$$\log L = \log(n!) - \sum \log(n_i!) + \sum n_i \log(q_i)$$

• Stirling's approximation $\log n! \approx n \log(n) - n$

$$\log L = n \log(n) - \sum n_i \log(n_i) + \sum n_i \log(q_i) + \underbrace{\sum n_i - n_i}_{0}$$

$$\frac{1}{n} \left(-\log L \right) = \sum \frac{n_i}{n} \log \left(\frac{n_i/n}{q_i} \right) = \sum p_i \log \left(\frac{p_i}{q_i} \right)$$

(CEO Group UT Austin)

• The likelihood of $\{n_i\}_{i=1}^k$ distributed by $\{q_i\}_{i=1}^k$

$$L := \frac{n!}{\prod_{i=1}^k n_i!} \prod_{i=1}^k q_i^{n_i}$$

Take the log likelihood

$$\log L = \log(n!) - \sum \log(n_i!) + \sum n_i \log(q_i)$$

• Stirling's approximation $\log n! \approx n \log(n) - n$

$$\log L = n \log(n) - \sum n_i \log(n_i) + \sum n_i \log(q_i) + \underbrace{\sum n_i - n_i}_{0}$$

Relative entropy = average likelihood

$$\frac{1}{n} \left(-\log L \right) = \sum \frac{n_i}{n} \log \left(\frac{n_i/n}{q_i} \right) = \sum p_i \log \left(\frac{p_i}{q_i} \right) = D\left(p || q \right)$$

(CEO Group UT Austin)

20 / 28

Relative entropy = average likelihood
$$\rightarrow$$
 Bayes
• $\frac{1}{n}(-\log L) = D(p||q)$
• Write $\sum \rightarrow \int$
 $-\int \log(L)p(x) dx = \int \log\left(\frac{p}{q}\right)p(x) dx$
• Bayes' theorem $q(x) = L(x)p(x)$

Inverse Problem

• Given observation model

 $d = \mathcal{G}\left(x\right) + \varepsilon$

Inverse Problem

• Given observation model

$$d = \mathcal{G}\left(x\right) + \varepsilon$$

• Inverse task: given d, infer x

Inverse Problem

Given observation model

$$d = \mathcal{G}\left(x\right) + \varepsilon$$

- Inverse task: given d, infer x
- Statistical inversion: Prior knowledge: $X \sim \pi_{\text{prior}}(x)$. Look for the posterior distribution $\pi_{\text{post}}(x)$ that combines **prior information** and **information from the data**.

Inverse Problem

Given observation model

$$d = \mathcal{G}\left(x\right) + \varepsilon$$

- Inverse task: given d, infer x
- Statistical inversion: Prior knowledge: $X \sim \pi_{\text{prior}}(x)$. Look for the posterior distribution $\pi_{\text{post}}(x)$ that combines **prior information** and **information from the data**.
- The likelihood: assume $\varepsilon \sim \mathcal{N}(0, C)$ $\pi_{\mathsf{like}}(x) = \exp\left(-\frac{1}{2} \|d - \mathcal{G}(x)\|_{C}^{2}\right)$

Prior Elicitation

• Try to get the best prior information = discrepancy relative to the posterior is minimized

Prior Elicitation

- Try to get the best prior information = discrepancy relative to the posterior is minimized
- \bullet Conversely, best prior \rightarrow the $information\ gained$ in the posterior should not be large

Prior Elicitation

- Try to get the best prior information = discrepancy relative to the posterior is minimized
- \bullet Conversely, best prior \rightarrow the information~gained in the posterior should not be large
- Equivalently,

$$\pi_{\mathsf{post}} = \operatorname*{arg\,min}_{\pi(x)} D\left(\pi || \pi_{\mathsf{prior}}\right) = \int \pi(x) \log\left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)}\right) \, dx$$

How about information from the data?

 \bullet Want to find x to match the data as well as we can

How about information from the data?

- \bullet Want to find x to match the data as well as we can
- "Equivalently": want to find the posterior distribution such that $||d \mathcal{G}(x)||_C^2$ is minimized!

How about information from the data?

- $\bullet\,$ Want to find x to match the data as well as we can
- "Equivalently": want to find the posterior distribution such that $||d \mathcal{G}(x)||_C^2$ is minimized!
- One approach: minimize the mean squared error

$$\pi_{\mathsf{post}} = \operatorname*{arg\,min}_{\pi(x)} \int \pi(x) \, \|d - \mathfrak{G}(x)\|_C^2 \, dx$$

How about information from the data?

- $\bullet\,$ Want to find x to match the data as well as we can
- "Equivalently": want to find the posterior distribution such that $||d \mathcal{G}(x)||_C^2$ is minimized!
- One approach: minimize the mean squared error

$$\pi_{\text{post}} = \underset{\pi(x)}{\arg\min} \int \pi(x) \, \|d - \mathfrak{g}(x)\|_{C}^{2} \, dx = -\int \pi(x) \log(\pi_{\text{like}}(x)) \, dx$$

Prior + data information

• From prior

$$\pi_{\mathsf{post}} = \operatorname*{arg\,min}_{\pi(x)} D\left(\pi || \pi_{\mathsf{prior}}\right) = \int \pi(x) \log\left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)}\right) \, dx$$

Prior + data information

• From prior

$$\pi_{\mathsf{post}} = \operatorname*{arg\,min}_{\pi(x)} D\left(\pi || \pi_{\mathsf{prior}}\right) = \int \pi(x) \log\left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)}\right) \, dx$$

From likelihood

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\arg\min} - \int \pi(x) \log\left(\pi_{\mathsf{like}}(x)\right) \, dx$$

Prior + data information

• From prior

$$\pi_{\mathsf{post}} = \operatorname*{arg\,min}_{\pi(x)} D\left(\pi || \pi_{\mathsf{prior}}\right) = \int \pi(x) \log\left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)}\right) \, dx$$

From likelihood

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\arg\min} - \int \pi(x) \log\left(\pi_{\mathsf{like}}(x)\right) \, dx$$

• A Compromise

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\arg\min} - \int \pi(x) \log \left(\pi_{\mathsf{like}}(x)\right) \, dx + \int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)}\right) \, dx$$

subject to

$$\int \pi(x) \, dx = 1, \quad \text{ and } \pi(x) \ge 0.$$

(CEO Group UT Austin)

Prior + data information

• A Compromise

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\operatorname{arg\,min}} - \int \pi(x) \log \left(\pi_{\mathsf{like}}(x) \right) \, dx + \int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)} \right) \, dx$$

subject to

$$\int \pi(x) \, dx = 1, \quad \text{ and } \pi(x) \ge 0.$$

Prior + data information

• A Compromise

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\operatorname{arg\,min}} - \int \pi(x) \log \left(\pi_{\mathsf{like}}(x) \right) \, dx + \int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)} \right) \, dx$$

subject to

$$\int \pi(x) \, dx = 1, \quad \text{ and } \pi(x) \ge 0.$$

• Does it have a solution $\pi_{post}(x)$? is it unique?

Prior + data information

• A Compromise

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\operatorname{arg\,min}} - \int \pi(x) \log \left(\pi_{\mathsf{like}}(x) \right) \, dx + \int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)} \right) \, dx$$

subject to

$$\int \pi(x) \, dx = 1, \quad \text{ and } \pi(x) \ge 0.$$

- Does it have a solution $\pi_{\text{post}}(x)$? is it unique?
- How to solve?

Prior + data information

• A Compromise

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\operatorname{arg\,min}} - \int \pi(x) \log \left(\pi_{\mathsf{like}}(x) \right) \, dx + \int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)} \right) \, dx$$

subject to

$$\int \pi(x) \, dx = 1, \quad \text{ and } \pi(x) \ge 0.$$

- Does it have a solution $\pi_{post}(x)$? is it unique?
- How to solve?

 ${\sf Lagrangian} + {\sf calculus} \ {\sf of} \ {\sf variation}$

Prior + data information

• A Compromise

$$\pi_{\mathsf{post}} = \underset{\pi(x)}{\operatorname{arg\,min}} - \int \pi(x) \log \left(\pi_{\mathsf{like}}(x) \right) \, dx + \int \pi(x) \log \left(\frac{\pi(x)}{\pi_{\mathsf{prior}}(x)} \right) \, dx$$

subject to

$$\int \pi(x) \, dx = 1, \quad \text{ and } \pi(x) \ge 0.$$

- Does it have a solution $\pi_{post}(x)$? is it unique?
- How to solve?

${\sf Lagrangian} + {\sf calculus} \ {\sf of} \ {\sf variation}$

• Solution = Bayes' theorem

$$\pi_{\mathsf{post}}\left(x|d\right) = \frac{\pi_{\mathsf{like}}\left(d|x\right) \times \pi_{\mathsf{prior}}\left(x\right)}{\int \pi_{\mathsf{like}}\left(d|x\right) \times \pi_{\mathsf{prior}}\left(x\right) \, dx}$$

Outline

Bayesian Inversion Framework

2 Entropy

- 3 Relative Entropy
- 4 Bayes' Theorem and Information Theory

5 Conclusions

Conclusions

Conclusions

Information provide an intuitive and fresh view of Bayes' theorem
Relative entropy → Bayes' theorem

Conclusions

- Information provide an intuitive and fresh view of Bayes' theorem
- **2** Relative entropy \rightarrow Bayes' theorem
- $\textcircled{Optimization} + information \rightarrow \mathsf{Bayes' theorem}$