



# Global Jacobian Mortar Algorithms for Multiphase Flow in Porous Media

#### Ben Ganis\*

Collaborators: Kundan Kumar\*, Gergina Pencheva\*, Mary F. Wheeler\*, Ivan Yotov\*\*

\*Center for Subsurface Modeling, ICES, UT Austin

\*\*University of Pittsburgh

ICES Seminar-Babuska Forum Series November 7, 2014



## Multiscale Mortar Mixed FEM



- Mortar finite elements are a domain decomposition technique to couple unknowns across:
  - Multiple Scales
  - Multiple Physics
  - Multiple Numerics
  - Multiple Processors



- Note that Domain Decomposition is not the same as "Data Decomposition".
- The "Global Jacobian" algorithms developed in this research seek to have the best of both worlds.



# Models used with mortars



- Mortars have been used with:
  - 1,2,3 phase flows in porous media
  - Linear elastic solid mechanics
  - Porescale network models

- CG, Mixed, DG methods
- Bricks, prisms, tetrahedra

#### Example:

Saturation field in two phase flow, with two subdomains.



 Prior to this research, the solution algorithm for nonlinear problems relied on two Newton loops with a forward difference approximation.



## Selected References on Mortars



#### Single Phase Mortar Theory

- Glowinski, R., and Wheeler, M.F. 1988. Domain decomposition and mixed finite element methods for elliptic problems. In 1<sup>st</sup> international symposium on domain decomposition methods for PDEs.
- Arbogast, T., Cowsar, L.C., Wheeler, M.F. and Yotov, I. 2000. Mixed finite element methods on nonmatching multiblock grids. SIAM Journal on Numerical Analysis 37 (4): 1295

  – 1315.
- Arbogast, T., Pencheva, G., Wheeler, M.F., and Yotov, I. 2007. A multiscale mortar mixed finite element method. *Multiscale Modeling & Simulation* **6** (1): 319–346.

#### Forward Difference (FD) Algorithms for Nonlinear problems

- Peszynska, M., Wheeler, M.F., and Yotov, I. 2002. Mortar upscaling for multiphase flow in porous media. *Computational Geosciences* **6** (1): 73–100.
- Yotov, I. 2001. A multilevel Newton–Krylov interface solver for multiphysics couplings of flow in porous media. Numerical Linear Algebra and Applications, 8 (8): 551–570.

#### Global Jacobian (GJ) Algorithms for Nonlinear problems

- Ganis, B., Juntunen, M., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of nonlinear porous media flows. *SIAM Journal on Scientific Computation* **36** (2): A522–A542.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of a fully-implicit two-phase flow model. *Multiscale Modeling & Simulation* **12** (4): 1401–1423.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., Yotov, I. A multiscale mortar method and twostage preconditioner for multiphase flow using a global Jacobian approach. SPE 172990-MS.



## **Outline**



- 1. Multiscale, Multiphase Problem Setting
- Fully-implicit two-phase model for flow in porous media
- 3. Global Jacobian algorithms
  - Schur complements
  - Interface unknowns
  - Upwinding scheme
- 4. Numerical results
  - Strongly Heterogeneous Case
  - Two Rock Type Case
  - Non-matching Geometry Case
- 5. Two-Stage Preconditioner and Parallel Results



# **Problem Setting**



Non-overlapping domain decomposition on spatial domain



Use mixed finite elements on structured subdomain grids

Use high-order mortars (Lagrange multipliers) on non-matching interfaces

- Application: Multiphase flow in porous media
- Goal: Develop simple algorithms with parallel scalability
- Key Idea: Global linearization
- Capillarity, gravity, and compressibility.



## Algorithms for nonlinear mortar problems



Subsurface

Modeling

- This algorithm uses local linearizations for subdomain and mortar unknowns separately.
  - Two nested Newton-Krylov loops
  - Outer loop formes a numerical
     Jacobian with a forward difference
  - Requires delicate choice of four tolerances and difference parameter
  - Challenging to precondition outer GMRES
  - + Allows multiple physics and multiple time steps
  - $\Diamond$  = convergence check
  - $\square$  = forward difference approximation used





## Algorithms for nonlinear mortar problems



#### **New Methods**



# GJS Method



- $\Diamond$  = convergence check
- $\square$  = forward difference approximation used

#### **Prior Method**





# Novelty of this work







#### **Global linearization:**

Augment linear systems to reuse codes.

 $\Gamma_{23}$ 

- Utilize existing preconditioners for multiscale models.
- Simplify algorithms by having fewer nested iterations.
- Demonstrate parallel scaling with strong nonlinearities.
- · Improve saturation with careful mobility upwinding.



## Parallel scaling, nonlinear single phase









Strong scaling, O(10<sup>6</sup>) elements

[2] B. Ganis, M. Juntunen, G. Pencheva, M.F. Wheeler, I. Yotov. A global Jacobian method for mortar discretizations of nonlinear porous media flows. *SIAM Journal on Scientific Computation*, Vol. 36, No. 2, (2014) pp. A522-A542.



### Two Phase Model



Mass Balance: 
$$\frac{\partial}{\partial t}(\phi s_{\alpha}\rho_{\alpha}) + \nabla \cdot \boldsymbol{u}_{\alpha} = q_{\alpha}$$
 in  $\Omega^{k} \times (0,T]$ 

Auxiliary Velocity: 
$$\widetilde{\boldsymbol{u}}_{\alpha} = -K(\nabla p_{\alpha} - \rho_{\alpha}\boldsymbol{g}) \quad \text{in } \Omega^{k} \times (0,T]$$

Darcy Law: 
$$\boldsymbol{u}_{\alpha} = \frac{k_{r\alpha}\rho_{\alpha}}{\mu_{\alpha}}\widetilde{\boldsymbol{u}}_{\alpha}$$
 in  $\Omega^{k}\times(0,T]$ 

Initial condition: 
$$p_{\alpha} = p_{\alpha,0}$$
 at  $\Omega \times \{t = 0\}$ ,

Boundary condition: 
$$\mathbf{u} \cdot \mathbf{n} = 0$$
 on  $\partial \Omega \times (0, T]$ 

Lagrange multiplier: 
$$p_{\alpha} = p_{\alpha}^{\Gamma}(\lambda_1, \lambda_2) \quad \text{on } \Gamma \times (0, T],$$

Flux continuity: 
$$\boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{n}^{k} + \boldsymbol{u}_{\alpha}^{l} \cdot \boldsymbol{n}^{l} = 0$$
 on  $\Gamma^{kl} \times (0, T]$ 

Saturation constraint: 
$$s_{\rm w} + s_{\rm o} = 1$$

Capillary pressure: 
$$p_{\rm c}(s_{\rm w}) = p_{\rm o} - p_{\rm w}$$

Slightly compressible density: 
$$\rho_{\alpha}(p_{\alpha}) = \rho_{\alpha}^{\text{ref}} e^{c_{\alpha}p_{\alpha}}$$
.



# Finite element discretization



Primary Unknowns:  $(p_o, n_o)$ 

Phase Velocities:  $(\widetilde{m{u}}_{\mathrm{o}},\widetilde{m{u}}_{w},m{u}_{\mathrm{o}},m{u}_{\mathrm{w}})$ 

Lagrange Multipliers:  $(\lambda_1, \lambda_2)$ 

Lowest Order Raviart-Thomas (RT0) mixed finite elements with mortars

Velocity, Pressure, Mortar Spaces:

$$\mathbf{V}_h = \bigoplus_{k=1}^{N_{\Omega}} \mathbf{V}_h^k, \quad \mathbf{W}_h = \bigoplus_{k=1}^{N_{\Omega}} \mathbf{W}_h^k,$$
$$\mathbf{M}_H = \bigoplus_{k=1}^{N_{\Omega}} \mathbf{M}_H^{kl}.$$



Time discretization:

$$0 = t^0 < t^1 < \dots < t^{N_T} = T$$
, with  $\delta t^n = t^n - t^{n-1}$ .



# Fully discrete system



Expanded multiscale mortar method for fully-implicit two-phase flow:

Phase concentration:

 $n_{\alpha} = \rho_{\alpha} s_{\alpha}$ 

Phase mobility:

$$m_{\alpha} = \frac{k_{r\alpha}\rho_{\alpha}}{\mu_{\alpha}}$$

$$A_{\alpha}^{k} = \int_{\Omega^{k}} \boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{v} \, dx - \int_{\Omega^{k}} m_{\alpha} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} \, dx = 0,$$

$$D_{\alpha}^{k} = \int_{\Omega^{k}} K^{-1} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} \, dx - \int_{\Omega^{k}} p_{\alpha}^{k} \nabla \cdot \boldsymbol{v} \, dx - \int_{\Omega^{k}} \rho_{\alpha} \boldsymbol{g} \cdot \boldsymbol{v} \, dx + \sum_{l=1, l \neq k}^{N_{\Omega}} \int_{\Gamma^{kl}} p_{\alpha}^{\Gamma} \boldsymbol{v} \cdot \boldsymbol{n} \, d\sigma = 0,$$

$$B_{\alpha}^{k} = \int_{\Omega^{k}} \frac{\phi n_{\alpha}^{k} - \phi n_{\alpha}^{n-1}}{\delta t} w \, dx + \int_{\Omega^{k}} \nabla \cdot \boldsymbol{u}_{\alpha}^{k} w \, dx - \int_{\Omega^{k}} q_{\alpha} w \, dx = 0,$$

$$H_{lpha}=\int_{\Gamma^{kl}}\left(m{u}_{lpha}^{k}\cdotm{n}_{k}+m{u}_{lpha}^{l}\cdotm{n}_{l}
ight)\mu\,d\sigma=0.$$

Flux continuity equation



# Forming Residual Equations



Express 8 unknowns as linear combinations of finite element basis functions, insert into discrete form.

$$p_{\mathrm{o}}^k = \sum_{i=1}^{N_p^k} P_{\mathrm{o},i}^k w_i^k$$

$$A_{\alpha}^{k} = \int_{\Omega^{k}} \boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{v} \, dx - \int_{\Omega^{k}} m_{\alpha} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} \, dx = 0$$

$$D_{\alpha}^{k} = \int_{\Omega^{k}} K^{-1} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} \, dx - \int_{\Omega^{k}} p_{\alpha}^{k} \nabla \cdot \boldsymbol{v} \, dx - \int_{\Omega^{k}} \rho_{\alpha} \boldsymbol{g} \cdot \boldsymbol{v} \, dx + \sum_{l=1, l \neq k}^{N_{\Omega}} \int_{\Gamma^{kl}} p_{\alpha}^{\Gamma} \boldsymbol{v} \cdot \boldsymbol{n} \, d\sigma = 0,$$

$$B_{\alpha}^{k} = \int_{\Omega^{k}} \frac{\phi n_{\alpha}^{k} - \phi n_{\alpha}^{n-1}}{\delta t} w \, dx + \int_{\Omega^{k}} \nabla \cdot \boldsymbol{u}_{\alpha}^{k} w \, dx - \int_{\Omega^{k}} q_{\alpha} w \, dx = 0,$$

$$H_{\alpha} = \int_{\Gamma^{kl}} \left( \boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{n}_{k} + \boldsymbol{u}_{\alpha}^{l} \cdot \boldsymbol{n}_{l} \right) \mu \, d\sigma = 0.$$

Obtain a nonlinear system for the global coefficient vectors:

$$\widetilde{U}_{\mathrm{o}}, \widetilde{U}_{\mathrm{w}}, U_{\mathrm{o}}, U_{\mathrm{w}} \in \mathbb{R}^{N_{u}}$$
 $P_{\mathrm{o}}, N_{\mathrm{o}} \in \mathbb{R}^{N_{p}}$ 
 $\Lambda_{1}, \Lambda_{2} \in \mathbb{R}^{N_{\lambda}}$ 

$$N_{u} = \sum_{i=1}^{N_{\Omega}} N_{u}^{k}$$
 $N_{p} = \sum_{i=1}^{N_{\Omega}} N_{p}^{k}$ 
 $N_{\lambda} = \sum_{1 \leq k < l \leq N_{\Omega}} N_{\lambda}^{kl}$ 



# Global nonlinear system



- Express all variables in terms of primary unknowns
- Nonlinear system of 8 equations in 8 unknowns



# Forming Jacobian entries



 Compute partial derivatives of each residual equation with respect to each type of unknown.

$$(A_1^k)_{ji} = \frac{\partial A_{\text{o},j}^k}{\partial \widetilde{U}_{\text{o},i}} = -(m_{\text{o}}\boldsymbol{v}_i, \boldsymbol{v}_j)_k,$$

$$(A_2^k)_{ji} = \frac{\partial A_{\text{o},j}^k}{\partial U_{\text{o},i}} = (\boldsymbol{v}_i, \boldsymbol{v}_j)_k,$$

$$(\widehat{A}_3^k)_{ji} = \frac{\partial A_{\text{o},j}^k}{\partial P_{\text{o},i}} = -\left(\left(\frac{c_{\text{o}}n_{\text{o}}}{\mu_{\text{o}}}k'_{r\text{o}} + \frac{c_{\text{o}}\rho_{\text{o}}}{\mu_{\text{o}}}k_{r\text{o}}\right)w_i\widetilde{\boldsymbol{u}}_{\text{o}}, \boldsymbol{v}_j\right)_k, \dots$$

- Drop slightly compressible terms.  $(\widehat{A}_3^k)_{ji} \approx 0$
- · Group matrices together by subdomain and interface.

$$A_{1} = \begin{pmatrix} A_{1}^{1} & & \\ & \ddots & \\ & & A_{1}^{N_{\Omega}} \end{pmatrix}, C_{3} = \begin{pmatrix} C_{3}^{12} \\ \vdots \\ C_{3}^{(N_{\Omega}-1)N_{\Omega}} \end{pmatrix}$$



# Global Newton step



The 8x8 fully implicit two phase global Jacobian system:



# Velocity elimination



We first eliminate the 4 velocities to form 1<sup>st</sup> Schur complement:

$$\left[\begin{array}{cc} J_{\Theta\Theta} & J_{\Theta\Lambda} \\ J_{\Lambda\Theta} & J_{\Lambda\Lambda} \end{array}\right] \left[\begin{array}{c} \delta\Theta \\ \delta\Lambda \end{array}\right] = \left[\begin{array}{c} R_{\Theta} \\ R_{\Lambda} \end{array}\right]$$

$$\begin{array}{ll} \text{Subdomain} & \delta\Theta = \left[\begin{array}{c} \delta P_{\text{o}} \\ \delta N_{\text{o}} \end{array}\right] & \text{Mortar} & \delta\Lambda = \left[\begin{array}{c} \delta\Lambda_{1} \\ \delta\Lambda_{2} \end{array}\right] \end{array}$$
 unknowns

$$J_{\Theta\Theta} = \begin{bmatrix} J_{P_{0}P_{0}} & J_{P_{0}N_{0}} \\ J_{N_{0}P_{0}} & J_{N_{0}N_{0}} \end{bmatrix} \qquad J_{\Theta\Lambda} = \begin{bmatrix} J_{P_{0}\Lambda_{1}} & J_{P_{0}\Lambda_{2}} \\ J_{N_{0}\Lambda_{1}} & J_{N_{0}\Lambda_{2}} \end{bmatrix}$$
$$J_{\Lambda\Theta} = \begin{bmatrix} J_{\Lambda_{1}P_{0}} & J_{\Lambda_{1}N_{0}} \\ J_{\Lambda_{2}P_{0}} & J_{\Lambda_{2}N_{0}} \end{bmatrix} \qquad J_{\Lambda\Lambda} = \begin{bmatrix} J_{\Lambda_{1}\Lambda_{1}} & J_{\Lambda_{1}\Lambda_{2}} \\ J_{\Lambda_{2}\Lambda_{1}} & J_{\Lambda_{2}\Lambda_{2}} \end{bmatrix}$$



## 3 Schur complements



- Starting from the saddle point system, we can form 3 different algorithms with different character by taking Schur complements:
- 1. Can eliminate velocities to form  $(\Theta,\Lambda)$ -Schur complement

$$\left[\begin{array}{cc} J_{\Theta\Theta} & J_{\Theta\Lambda} \\ J_{\Lambda\Theta} & J_{\Lambda\Lambda} \end{array}\right] \left[\begin{array}{cc} \delta\Theta \\ \delta\Lambda \end{array}\right] = \left[\begin{array}{cc} R_{\Theta} \\ R_{\Lambda} \end{array}\right] \qquad \text{``GJ method''}$$

2. Can eliminate subdomain unknowns to form Λ-Schur complement

$$(J_{\Lambda\Lambda}-J_{\Lambda\Theta}J_{\Theta\Theta}^{-1}J_{\Theta\Lambda})\,\delta\Lambda=R_{\Lambda}-J_{\Lambda\Theta}J_{\Theta\Theta}^{-1}R_{\Theta}$$
 "GJS method"

Here, the action of  $J_{\Theta\Theta}^{-1}$  requires solving linear subdomain problems.

3. Can eliminate mortar unknowns to form O-Schur complement

$$(J_{\Theta\Theta} - J_{\Theta\Lambda}J_{\Lambda\Lambda}^{-1}J_{\Lambda\Theta})\,\delta\Theta = R_{\Theta} - J_{\Theta\Lambda}J_{\Lambda\Lambda}^{-1}R_{\Lambda}$$

Here, the matrix  $J_{\Lambda\Lambda}^{-1}$  can be computed with Sparse LU or mass lumping.



# Sparsity Pattern of GJ Matrices





We will precondition this system in this work.



# Choice of interface unknowns



- Flexibility in choosing physical meaning of Lagrange multipliers.
- Changes entries and condition number of GJ matrix.

• (Choice 
$$\lambda_1 = p_0^{\Gamma}, \lambda_2 = p_w^{\Gamma}$$
).  

$$(C_3^{kl})_{ji} = \left\langle \eta_j^{kl}, \boldsymbol{v}_i^k \cdot \boldsymbol{n}^k \right\rangle_{kl}, \quad (C_4^{kl})_{ji} = 0,$$

$$(D_4^{kl})_{ji} = 0, \qquad (D_5^{kl})_{ji} = \left\langle \eta_j^{kl}, \boldsymbol{v}_i^k \cdot \boldsymbol{n}^k \right\rangle_{kl}.$$

• (Choice  $\lambda_1 = p_0^{\Gamma}, \lambda_2 = p_c^{\Gamma}$ ). With this choice,  $p_w^{\Gamma} = \lambda_1 - \lambda_2$ .  $(C_3^{kl})_{ji} = \left\langle \eta_j^{kl}, \boldsymbol{v}_i^k \cdot \boldsymbol{n}^k \right\rangle_{kl}, \quad (C_4^{kl})_{ji} = 0,$   $(D_4^{kl})_{ji} = \left\langle \eta_j^{kl}, \boldsymbol{v}_i^k \cdot \boldsymbol{n}^k \right\rangle_{kl}, \quad (D_5^{kl})_{ji} = \left\langle -\eta_j^{kl}, \boldsymbol{v}_i^k \cdot \boldsymbol{n}^k \right\rangle_{kl}.$ 



# Choice of interface unknowns



• (Choice  $\lambda_1 = p_0^{\Gamma}, \lambda_2 = n_0^{\Gamma}$ ). Using  $\rho_0$ , we have  $s_w = 1 - \lambda_2/\rho_0$ , hence

$$p_{\rm w} = \lambda_1 - p_{\rm c} \left( 1 - \frac{\lambda_2}{\lambda_1} \right).$$

$$(C_3^{kl})_{ji} = \left\langle \eta_j^{kl}, \mathbf{v}_i^k \cdot \mathbf{n}^k \right\rangle_{kl},$$

$$(C_4^{kl})_{ji} = 0,$$

$$(D_4^{kl})_{ji} = \left\langle \left( 1 - c_0 \frac{p_c' \lambda_2}{\rho_0} \right) \eta_j^{kl}, \mathbf{v}_i^k \cdot \mathbf{n}^k \right\rangle_{kl},$$

$$(D_5^{kl})_{ji} = \left\langle \frac{p_c'}{\rho_0} \eta_j^{kl}, \mathbf{v}_i^k \cdot \mathbf{n}^k \right\rangle_{kl}.$$

$$(D_4^{kl})_{ji} pprox \left\langle \eta_j^{kl}, \boldsymbol{v}_i^k \cdot \boldsymbol{n}^k \right\rangle_{kl}.$$



# Upwinding on a single domain





$$\triangle p_o \approx p_o^R - p_o^L$$

$$m_o^{up} = \begin{cases} m_o^L, & \text{if } \triangle p_o < 0\\ m_o^R, & \text{if } \triangle p_o > 0 \end{cases}$$

$$\int_{\Omega} m_o \, \boldsymbol{u}_o \cdot \boldsymbol{u}_o dx \approx m_o^{up} \times \left( \frac{h_x^L}{2 \, h_y \, h_z} + \frac{h_x^R}{2 \, h_y \, h_z} \right)$$



# Upwinding "through a mortar"





$$\triangle p_o^L \approx p_o^\lambda - p_o^L$$

$$\triangle p_o^R \approx p_o^R - p_o^\lambda$$

$$m_o^{up,L} = \begin{cases} m_o^L, & \text{if } \Delta p_o^L < 0\\ m_o^\lambda, & \text{if } \Delta p_o^L > 0 \end{cases}$$

$$m_o^{up,R} = \begin{cases} m_o^{\lambda}, & \text{if } \Delta p_o^R < 0\\ m_o^R, & \text{if } \Delta p_o^R > 0 \end{cases}$$

$$\int_{E^L} m_o \, \boldsymbol{u}_o^L \cdot \boldsymbol{u}_o^L dx \underset{TM}{\approx} m_o^{up,L} \times \left( \frac{h_x^L}{2 \, h_y \, h_z} \right)$$

$$\int_{E^L} m_o \, \boldsymbol{u}_o^L \cdot \boldsymbol{u}_o^L dx \underset{TM}{\approx} m_o^{up,L} \times \left( \frac{h_x^L}{2 \, h_y \, h_z} \right) \qquad \int_{E^R} m_o \, \boldsymbol{u}_o^R \cdot \boldsymbol{u}_o^R dx \underset{TM}{\approx} m_o^{up,R} \times \left( \frac{h_x^R}{2 \, h_y \, h_z} \right)$$



# What can go wrong?



- Excessive time step cuts
- Singular linear systems
- Loss of nonlinear convergence
- Loss of mass conservation
  - No guarantee that  $p^L < p^{\lambda} < p^R$  or  $p^L > p^{\lambda} > p^R$
  - May create artificial sources/sinks on interfaces





# Upwinding "block-to-block"





This technique was used in enhanced velocity method and IMPES models. It is new for the fully-implicit model.

$$\triangle p_o \approx p_o^R - p_o^L$$
 by directly projecting  $\Omega^L|_{\Gamma} \longleftrightarrow \Omega^R|_{\Gamma}$ 

$$m_o^{up} = \begin{cases} m_o^L, & \text{if } \Delta p_o < 0\\ m_o^R, & \text{if } \Delta p_o > 0 \end{cases}$$

$$\int_{E^R} m_o \, \boldsymbol{u}_o^R \cdot \boldsymbol{u}_o^R dx \approx m_o^{up} \times \left(\frac{h_x^R}{2 \, h_y \, h_z}\right)$$

$$\int_{E^L} m_o \, \boldsymbol{u}_o^L \cdot \boldsymbol{u}_o^L dx \approx m_o^{up} \times \left(\frac{h_x^L}{2 \, h_u \, h_z}\right)$$

#### **Important consequences:**

- No saturation info. is needed on interfaces.
- No longer need Pc<sup>-1</sup> with extra "interface Newton".
- Sw is allowed to be discontinuous even when using a continuous mortar.



## Heterogeneous Case



- Challenging SPE10 industrial benchmark case, layer 1
- 8 subdomains, matching P0 mortars

 Two-phase flow with gravity, compressibility, capillary pressure





## Two Rock Type Example





#### Two Rock Types

|             | $p_d$    | λ    | K        | $\phi$ |
|-------------|----------|------|----------|--------|
| rock type 1 | 135 psi  | 2.49 | 504  md  | 0.2    |
| rock type 2 | 37.7 psi | 3.86 | 52.6  md | 0.2    |

#### Capillary Pressure

$$p_c(s_w) = \begin{cases} p_d \, s_{c1}^{-1/\lambda}, & \text{if } 0 \le s_e < s_{c1} \\ p_d \, s_e^{-1/\lambda}, & \text{if } s_{c1} \le s_e \le s_{c2} \\ p_d \, s_{c2}^{-1/\lambda} \, \frac{1-s_e}{1-s_{c2}}, & \text{if } s_{c2} < s_e \le 1 \end{cases}$$

if 
$$0 \le s_e < s_{c1}$$

if 
$$s_{c1} \le s_e \le s_{c2}$$

if 
$$s_{c2} < s_e \le 1$$

Water Saturation



#### **Effective Saturation**

$$s_e = \frac{s_w - s_{rw}}{1 - s_{rw} - s_{ro}}$$

#### Relative Permeability

$$s_e = \frac{s_w - s_{rw}}{1 - s_{rw} - s_{ro}}$$
  $k_{rw} = 0.9 s_e^2$   $k_{ro} = 0.5 (1 - s_e)^2$ 



### **Saturation Errors**





Accurate integration of phase mobility can improve mass conservation and solvability of linear and nonlinear systems.

Upwind using Lagrange multiplier



Max. Pointwise Error = 0.37

Upwind using adjacent subdomain values



Max. Pointwise Error = 0.07



# Global Jacobian compared to Forward



# Difference Algorithm



| FD Method |       |        |             |        |                |        |        |        |        |
|-----------|-------|--------|-------------|--------|----------------|--------|--------|--------|--------|
| Perm.     | Intf. | Newton | Intf. GMRES |        | Subdom. Newton |        |        | CPU    |        |
|           | Tot.  | Avg. 1 | Tot.        | Avg. 1 | Avg. 2         | Tot.   | Avg. 1 | Avg. 2 | Time   |
| Barrier   | 331   | 1.66   | 6,355       | 31.78  | 19.20          | 20,662 | 103.31 | 3.25   | 161.49 |
| Heterog.  | 241   | 1.21   | 2,629       | 13.15  | 10.91          | 9,212  | 46.06  | 3.50   | 71.18  |

| GJ Method |       |        |       |  |
|-----------|-------|--------|-------|--|
| Perm.     | Globa | CPU    |       |  |
|           | Tot.  | Avg. 1 | Time  |  |
| Barrier   | 342   | 1.71   | 11.80 |  |
| Heterog.  | 212   | 1.06   | 7.71  |  |

**FD**: best preconditioned GMRES and loose inner tolerances

**GJ**: direct solver



# **Two-Stage Preconditioning**



Two-Stage Preconditioners (or similar ideas) are necessary in fully-implicit multiphase models, because the linear systems have both elliptic and hyperbolic behaviors.

We applied the following preconditioner to the global Jacobian multiscale mortar system:

- Lacroix, S., Vassilevski, Y., Wheeler, M.F., 2001. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numerical linear algebra with applications, 8 (8), pp. 537–549.
  - Four decoupling approaches are discussed:
    - Constrained Pressure Reduction (CPR)
    - Householder Reflection Decoupling We followed this approach.
    - Quasi-IMPES Decoupling
    - True IMPES Decoupling



## More Two-Stage References



- Vassilevski, P.S., 1984. Fast algorithm for solving a linear algebraic problem with separable variables. *Dokladi Na Bolgarskata Akademiya Na Naukite*, 37 (3): 305–308.
- Wallis, J.R., Kendall, R.P., and Little, T.E., 1985. Constrained residual acceleration of conjugate residual methods. In SPE Reservoir Simulation Symposium, SPE 13536.
- Cao, H., Tchelepi, H.A., Wallis, J.R., et al. 2005. Parallel scalable unstructured CPR-type linear solver for reservoir simulation. In SPE Annual Technical Conference and Exhibition. SPE 96809.
- Han, C. et al., 2013. Adaptation of the CPR preconditioner for efficient solution of the adjoint equation. SPE Journal, 18(02), pp. 207–213.



# Two-Stage Preconditioning for GJ



Begin with the Schur complement system for subdomain unknowns.

$$J^{3} \delta\Theta = (J_{\Theta\Theta} - J_{\Theta\Lambda}J_{\Lambda\Lambda}^{-1}J_{\Lambda\Theta}) \delta\Theta = R_{\Theta} - J_{\Theta\Lambda}J_{\Lambda\Lambda}^{-1}R_{\Lambda} = R^{3}.$$

Perform Householder (QR) factorization to diagonal 2x2 blocks.

$$(P^{-1}Q^TPJ^3)\delta\Theta = P^{-1}Q^TPR^3$$
  

$$\Leftrightarrow H\delta\Theta = \begin{bmatrix} H_{P_OP_O} & H_{P_ON_O} \\ H_{N_OP_O} & H_{N_ON_O} \end{bmatrix} \begin{bmatrix} \delta P_O \\ \delta N_O \end{bmatrix} = \begin{bmatrix} b_{P_O} \\ b_{N_O} \end{bmatrix} = b.$$

- Inside the outer gmres, get action Y = M<sup>-1</sup> Z in a three step process:
  - 1. Solve the pressure equation  $Y_{Po} = \mathbf{gmres}(H_{PoPo}, Z_{Po})$  with preconditioner  $M_{1S}^{-1}$  to a specified tolerance.
  - 2. Update the linear residual  $R = Z H[Y_{Po}, 0]$ .
  - 3. Solve the second stage equation  $Y = \mathbf{gmres}(H,R) + [Y_{Po},0]$  with preconditioner  $M_{2S}^{-1}$  to a specified tolerance.

# with mortars in two-phase model

| CPU cores/<br>Subdomains | Total CPU<br>time | Total<br>Newton<br>Steps Taken | Avg. Outer<br>GMRES Iter.<br>per Newton<br>step | Time Step<br>Cuts |
|--------------------------|-------------------|--------------------------------|-------------------------------------------------|-------------------|
| 1×1×1=1                  | 8331.79           | 51                             | 4.88                                            | 0                 |
| 1×1×2=2                  | 4675.22           | 51                             | 5.00                                            | 0                 |
| 1×1×4=4                  | 3102.14           | 52                             | 5.65                                            | 1                 |
| 1×2×4=8                  | 2727.95           | 51                             | 5.04                                            | 0                 |
| 1×2×8=16                 | 1216.14           | 52                             | 5.71                                            | 1                 |
| 1×4×8=32                 | 517.69            | 51                             | 5.02                                            | 0                 |
| 1×4×16=64                | 618.41            | 109                            | 5.71                                            | 2                 |

<u>1st Stage</u>: GMRES(20), 1e–6 tolerance, 100 max iterations,  $M_{1S}^{-1}$  = AMG V-cycle, 1 sweep ILU(0) smoother, coarse solve 1000x1000 with Sparse LU.

2nd Stage: GMRES(20), 1e–3 tolerance, no restarts,  $M_{2S}^{-1} = M_{1S}^{-1}$ .



# Example 2: A multiscale problem on

# THE RESIDENCE OF AUSTIN

# non-matching subdomain grids



<u>1st Stage</u>: GMRES(20), 1e–3 tolerance, no restarts,  $M_{1S}^{-1}$  = AMG V-cycle, 1 sweep ILU(0) smoother, coarse solve 1000x1000 with Sparse LU.

2nd Stage: GMRES(1),  $M_{2S}^{-1} = 5$  Gauss-Seidel iterations.

# mple 3: A heterogeneous 10M Cell Proble with mortars on 1024 Processors

| Total time steps                         | 1007 |
|------------------------------------------|------|
| Total Newton iterations                  | 1007 |
| Total outer GMRES iterations             | 2449 |
| Average GMRES iterations per Newton step | 2.43 |
| Average Newton iterations per time step  | 1.00 |
| Total time step cuts                     | 0    |

| Matrix assembly time        | 86.04   |
|-----------------------------|---------|
| Outer GMRES time            | 8459.16 |
| Householder decoupling time | 42.25   |
| Pressure solve GMRES time   | 1394.55 |
| Second stage GMRES time     | 3340.99 |
| Mass lumping time           | 0.05    |
| Matrix-matrix multiply time | 1206.87 |
| Total CPU time              | 8571.76 |

1st Stage: GMRES(20), 1e–3 tolerance, no restarts,  $M_{1S}^{-1}$  = AMG V-cycle, 1 sweep ILU(0) smoother, coarse solve 1000x1000 with Sparse LU.

2nd Stage: GMRES(20), 1e–3 tolerance, no restarts,  $M_{2S}^{-1} = M_{1S}^{-1}$ .



## Conclusions



- We have developed new mortar algorithms using global linearization for single and two phase flow.
  - Easy to implement, fewer nested iterations and tolerances.
  - Inexpensive, showed parallel scalability for nonlinear problems.
  - Changed upwinding near interfaces for better fluid transport.
  - Applied two-stage preconditioner for parallel scalability.



## References



- Ganis, B., Juntunen, M., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of nonlinear porous media flows. SIAM Journal on Scientific Computation 36 (2): A522–A542.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of a fully-implicit two-phase flow model. *Multiscale Modeling & Simulation* 12 (4): 1401–1423.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., Yotov, I. A multiscale mortar method and two-stage preconditioner for multiphase flow using a global Jacobian approach. SPE 172990-MS.

# Thank you!