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Multiscale Mortar Mixed FEM 

•  Mortar finite elements are a domain decomposition 
technique to couple unknowns across: 
–  Multiple Scales 
–  Multiple Physics 
–  Multiple Numerics 
–  Multiple Processors 

•  Note that Domain Decomposition is not the same as 
“Data Decomposition”. 

•  The “Global Jacobian” algorithms developed in this 
research seek to have the best of both worlds. 

Interfaces ΓklSubdomains Ωk
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Models used with mortars 

•  Mortars have been used with: 
–  1,2,3 phase flows in porous media 
–  Linear elastic solid mechanics 
–  Porescale network models 

 
 
 
 
 
•  Prior to this research, the solution algorithm for 

nonlinear problems relied on two Newton loops with a 
forward difference approximation. 

–  CG, Mixed, DG methods 
–  Bricks, prisms, tetrahedra 

•  Example: 

   Saturation field in 
two phase flow, with 
two subdomains. 
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Single Phase Mortar Theory 
•  Glowinski, R., and Wheeler, M.F. 1988. Domain decomposition and mixed finite element methods 

for elliptic problems. In 1st international symposium on domain decomposition methods for PDEs. 
•  Arbogast, T., Cowsar, L.C., Wheeler, M.F. and Yotov, I. 2000. Mixed finite element methods on 

nonmatching multiblock grids. SIAM Journal on Numerical Analysis  37 (4): 1295– 1315.  
•  Arbogast, T., Pencheva, G., Wheeler, M.F., and Yotov, I. 2007. A multiscale mortar mixed finite 

element method. Multiscale Modeling & Simulation 6 (1): 319–346. 

Forward Difference (FD) Algorithms for Nonlinear problems 
•  Peszynska, M., Wheeler, M.F., and Yotov, I. 2002. Mortar upscaling for multiphase flow in porous 

media. Computational Geosciences 6 (1): 73–100. 
•  Yotov, I. 2001. A multilevel Newton–Krylov interface solver for multiphysics couplings of  

flow in porous media. Numerical Linear Algebra and Applications, 8 (8): 551–570. 

Global Jacobian (GJ) Algorithms for Nonlinear problems 
•  Ganis, B., Juntunen, M., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian 

method for mortar discretizations of nonlinear porous media flows. SIAM Journal on Scientific 
Computation 36 (2): A522–A542. 

•  Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method 
for mortar discretizations of a fully-implicit two-phase flow model. Multiscale Modeling & Simulation 
12 (4): 1401–1423. 

•  Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., Yotov, I. A multiscale mortar method and two-
stage preconditioner for multiphase flow using a global Jacobian approach. SPE 172990-MS.  

Selected	  References	  on	  Mortars	  
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Outline 

1.  Multiscale, Multiphase Problem Setting 
2.  Fully-implicit two-phase model for flow in 

porous media 
3.  Global Jacobian algorithms 

–  Schur complements 
–  Interface unknowns 
–  Upwinding scheme 

4.  Numerical results 
–  Strongly Heterogeneous Case 
–  Two Rock Type Case 
–  Non-matching Geometry Case 

5.  Two-Stage Preconditioner and Parallel Results 
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Problem Setting 

•  Non-overlapping domain decomposition on spatial domain 

 
 

•  Application:  Multiphase flow in porous media 
•  Goal:  Develop simple algorithms with parallel scalability 
•  Key Idea:  Global linearization 
•  Capillarity, gravity, and compressibility. 

Interfaces ΓklSubdomains ΩkUse mixed finite elements on 
structured subdomain grids 

Use high-order mortars (Lagrange 
multipliers) on non-matching interfaces 
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GJ Method GJS Method FD Method 
New Methods Prior Method 

Algorithms for nonlinear mortar problems 

Time Step

Nonlinear Global
Newton Step

Linear Global
GMRES Step

"GJ Method"
1st Schur complement

Time Step

Nonlinear Interface
FD-Newton Step

Linear Interface
GMRES Step

"FD Method"
The prior implementation.

Nonlinear Subdom.
Newton Step

Linear Subdom.
GMRES Step

Time Step

Nonlinear Global
Newton Step

Linear Interface
GMRES Step

"GJS Method"
2nd Schur complement

Linear Subdomain
GMRES Step

= convergence check
= forward difference approximation used

•  This algorithm uses local linearizations 
for subdomain and mortar unknowns 
separately. 

–  Two nested Newton-Krylov loops 
–  Outer loop formes a numerical 

Jacobian with a forward difference 
–  Requires delicate choice of four 

tolerances and difference parameter 
–  Challenging to precondition outer 

GMRES 
+  Allows multiple physics and multiple 

time steps 
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GJ Method GJS Method FD Method 
New Methods Prior Method 

Algorithms for nonlinear mortar problems 

Time Step

Nonlinear Global
Newton Step

Linear Global
GMRES Step

"GJ Method"
1st Schur complement

Time Step
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= convergence check
= forward difference approximation used
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Novelty of this work 

Global linearization: 
•  Augment linear systems to reuse codes. 
•  Utilize existing preconditioners for multiscale models. 
•  Simplify algorithms by having fewer nested iterations. 
•  Demonstrate parallel scaling with strong nonlinearities. 
•  Improve saturation with careful mobility upwinding. 
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4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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This is accomplished by partial Gaussian elimination. The reduced system has the block
structure
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and the residual vectors
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤

1

, �⇤
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)T as unknowns. This linear interface prob-
lem has the form
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Parallel scaling, nonlinear single phase 

2 4 8 16 32 64 128
1 min

5 min

20 min

1 hour

6 hours

1 day

Processors (Subdomains)

W
a

ll 
cl

o
ck

 t
im

e

Nonmatching P1 mortar

 

 

GJ

GJS

FD

1 2 4 8 16 32 64 128 256 512
2 min

3 min

4 min

5 min

10 min

20 min

40 min

1 hour

Processors (Subdomains)

W
a

ll 
cl

o
ck

 t
im

e

Matching P0 mortar

 

 

GJ

Homogeneous, 
No Preconditioning 

Heterogeneous, 
AMG+ILU Preconditioner 

[2] B. Ganis, M. Juntunen, G. Pencheva, M.F. Wheeler, I. Yotov.  A global Jacobian 
     method for mortar discretizations of nonlinear porous media flows. SIAM Journal 
     on Scientific Computation, Vol. 36, No. 2, (2014) pp. A522-A542. 

Strong scaling, O(106) elements 
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Two Phase Model 

Subdomain interfaces are denoted by �kl = �lk = @⌦k \ @⌦l and � =
S

1k<lN
⌦

�kl.
In this work we consider flow of two immiscible phases through a porous medium, in

which each phase ↵ = o (oil) and ↵ = w (water) is assumed to be a slightly compressible
fluid. In our fully implicit formulation, the primary unknowns will be the oil mass flux u

o

,
the oil water flux u

w

, an auxiliary oil mass flux eu
o

, an auxiliary water mass flux eu
w

, the oil
pressure p

o

, the oil concentration n
o

, and two Lagrange multipliers �
1

and �
2

. All remaining
unknowns can be expressed in terms of the primary variables: the water pressure p

w

, the
water concentration n

w

, the saturation s↵ for each phase, and the fluid density ⇢↵ for each
phase. Known data includes the porosity of the medium �, the relative permeability curve
kr↵ for each phase, the fluid viscosity µ↵ for each phase, a mass flux source function q↵ for
each phase, an initial condition p↵,0 for each phase, and the absolute permeability tensor K.
Here K is assumed to be uniformly bounded and positive definite, i.e. there exist constants
0 < k

0

 k
1

< 1 such that

kok⇠k2  ⇠TK(x)⇠  k
1

k⇠k2, 8⇠ 2 R3, 8x 2 ⌦, (1)

where k · k is the Euclidean vector norm.
The expanded mixed formulation for fully implicit two phase flow through a porous

medium is given, for subdomains k = 1, . . . , N
⌦

and phases ↵ = o,w,
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For each phase ↵ on each subdomain ⌦i, the subsurface flow is characterized by Darcy’s
law (2c), a conservation of mass (2a), and the relationship between phase mass flux to
auxiliary mass flux involving phase mobility (2b). We assume a hydrostatic initial condition
in (2d) and no-flow external boundary conditions in (2e). The Lagrange multipliers have
the physical meaning of phase pressures in (2f), and a conservation of mass is enforced over
the entire domain in (2g). The saturation constraint (2h) describes immiscible flow, the
capillary pressure function (2i) is a known function of water saturation that relates the two
phase pressures, and the equations of state (2j) describe the slightly compressible density
of each phase with small compressibility constants c↵.
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2

Initial condition: 

Boundary condition: 

Lagrange multiplier: 

Flux continuity: 

Mass Balance: 

Saturation constraint: 

Capillary pressure: 

Slightly compressible density: 

Auxiliary Velocity: 

Darcy Law: 
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Finite element discretization 

Primary Unknowns: 

Phase Velocities: 

Lagrange Multipliers: 

3 Multiscale mortar discretization

The primary unknowns are (p
o

, n
o

), along with velocities (eu
o

, euw,uo

,u
w

), and Lagrange
multipliers (�

1

,�
2

) corresponding to various physical unknowns on the interface. The func-
tions p�↵ in (2f) evaluate interface pressure for phase ↵ from the Lagrange multipliers.

For each subdomain ⌦k, let T k
h be a spatial discretization with characteristic mesh size

h which may be di↵erent for each k, thereby allowing non-matching grids on the subdomain
interfaces. For the spatial discretization, we use Raviart-Thomas spaces RT

0

for the flux
and the pressure. We use the following discrete spaces:
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(E) for all E 2 �k
h

 

,

where P
0

denotes the zeroth order polynomial on element E, that is, piecewise constant
over E.

For each interface �kl, we choose an independent spatial discretization Gkl
H with charac-

teristic mesh size H and define the mortar space Mkl
H ,

Mkl
H =

n

µ 2 L2(�kl) : µ|E 2 Pm(e), for all e 2 Gkl
H ,m � 0

o

.

Here Pm(e) stands for the space of polynomials of order m defined on the element e, which
may be continuous or discontinuous.

For each phase ↵, the global mass flux, pressure, and Lagrange multiplier spaces are:
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h, and MH =
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Choose a temporal discretization 0 = t0 < t1 < · · · < tNT = T , with �tn = tn� tn�1. To
simplify notation we suppress subscripts h and H, as well as time index n except for nn�1,
which denotes the known concentration at the previous time step. Employing the backward
Euler method for time integration with the aforementioned discrete spaces for pressure, mass
flux, and mortar variables to system (2a)–(2j) gives the following fully-discrete, multiscale
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where P
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tions p�↵ in (2f) evaluate interface pressure for phase ↵ from the Lagrange multipliers.
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where P
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denotes the zeroth order polynomial on element E, that is, piecewise constant
over E.
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simplify notation we suppress subscripts h and H, as well as time index n except for nn�1,
which denotes the known concentration at the previous time step. Employing the backward
Euler method for time integration with the aforementioned discrete spaces for pressure, mass
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Example:  Multiblock discretization on Rectangular RT0 Elements
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simplify notation we suppress subscripts h and H, as well as time index n except for nn�1,
which denotes the known concentration at the previous time step. Employing the backward
Euler method for time integration with the aforementioned discrete spaces for pressure, mass
flux, and mortar variables to system (2a)–(2j) gives the following fully-discrete, multiscale
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Fully discrete system 
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where P
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over E.
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Choose a temporal discretization 0 = t0 < t1 < · · · < tNT = T , with �tn = tn� tn�1. To
simplify notation we suppress subscripts h and H, as well as time index n except for nn�1,
which denotes the known concentration at the previous time step. Employing the backward
Euler method for time integration with the aforementioned discrete spaces for pressure, mass
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where P
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denotes the zeroth order polynomial on element E, that is, piecewise constant
over E.

For each interface �kl, we choose an independent spatial discretization Gkl
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Here Pm(e) stands for the space of polynomials of order m defined on the element e, which
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For each phase ↵, the global mass flux, pressure, and Lagrange multiplier spaces are:
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Expanded multiscale mortar 
method for fully-implicit two-
phase flow: 

Phase concentration: 

Phase mobility: 

Ak
α =

∫

Ωk
uk
α · v dx−

∫

Ωk
mαũ
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Forming Residual Equations 
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∫
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∫
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)
µ dσ = 0.

Ø  Express 8 unknowns as linear 
combinations of finite element basis 
functions, insert into discrete form. 

and for interfaces �kl, 1  k < l  N
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to be determined. These are grouped together by subdomains and interfaces to form the
global coe�cient vector unknowns. Defining variables for the total number of degrees of
freedom for the mass flux, pressure and Lagrange multiplier,
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Substituting the representations in (5) into the variational formulation (4a)–(4d), we obtain
the following equations in the residual form:
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(Darcy law equations). For k = 1, . . . , N
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, {⌘kli }N
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be the finite element basis functions for Vk
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h, and Mkl

H

respectively. The 8 unknowns are then expressed as the linear combinations of the basis
functions
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to be determined. These are grouped together by subdomains and interfaces to form the
global coe�cient vector unknowns. Defining variables for the total number of degrees of
freedom for the mass flux, pressure and Lagrange multiplier,
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Substituting the representations in (5) into the variational formulation (4a)–(4d), we obtain
the following equations in the residual form:

(Auxiliary equations). For k = 1, . . . , N
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and j = 1, . . . , Nk
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(Darcy law equations). For k = 1, . . . , N
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and j = 1, . . . , Nk
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and for interfaces �kl, 1  k < l  N
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µd� = 0, (4d)

for all w 2 Wk
h, v 2 Vk

h, and µ 2 Mkl
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Let {vk
i }
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, {wk
i }

Nk
p
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, {⌘kli }N
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i=1

be the finite element basis functions for Vk
h, W

k
h, and Mkl

H

respectively. The 8 unknowns are then expressed as the linear combinations of the basis
functions
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to be determined. These are grouped together by subdomains and interfaces to form the
global coe�cient vector unknowns. Defining variables for the total number of degrees of
freedom for the mass flux, pressure and Lagrange multiplier,
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Substituting the representations in (5) into the variational formulation (4a)–(4d), we obtain
the following equations in the residual form:

(Auxiliary equations). For k = 1, . . . , N
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and j = 1, . . . , Nk
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(Darcy law equations). For k = 1, . . . , N
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Ø  Obtain a nonlinear system for the global coefficient vectors: 
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freedom for the mass flux, pressure and Lagrange multiplier,
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Substituting the representations in (5) into the variational formulation (4a)–(4d), we obtain
the following equations in the residual form:
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and for interfaces �kl, 1  k < l  N
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Global nonlinear system 

Dk
w,j =

Z

⌦

k
K�1

0

@

Nk
u

X

i=1

eUk
w,iv

k
i

1

A · vjdx�
Z

⌦

k
pw

0

@

Nk
p

X

i=1

P k
o,iw

k
i ,

Nk
p

X

i=1

Nk
o,iw

k
i

1

Ar · vjdx

�
Z

⌦

k
⇢
w

0

@

Nk
p

X

i=1

P k
o,iw

k
i ,

Nk
p

X

i=1

Nk
o,iw

k
i

1

A

g · vdx

+
N

⌦

X

l=1,l 6=k

Z

�

kl
p�
w

0

@

Nk
�

X

i=1

⇤kl
1,i⌘

kl
i ,

Nk
�

X

i=1

⇤kl
2,i⌘

kl
i

1

Avj .nd� (6d)

(Mass balance equations). For k = 1, . . . , N
⌦

and j = 1, . . . , Nk
p ,

Bk
o,j =

Z

⌦

k
�

2

4

Nk
p

X

i=1

Nk
o,iw

k
i � nn�1

o

3

5wjdx+ �t

Z

⌦

k

2

4r ·

0

@

Nk
u

X

i=1

Uk
o,iv

k
i

1

A� q
o

3

5wjdx (6e)

Bk
w,j =

Z

⌦

k
�

2

4nw

0

@

Nk
p

X

i=1

Nk
o,iw

k
i

1

A� nn�1

w

3

5wjdx+ �t

Z

⌦

k

2

4r ·

0

@

Nk
u

X

i=1

Uk
w,iv

k
i

1

A� q
w

3

5wjdx.

(6f)

(Flux continuity equations). For k = 1, . . . , N
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4 Global linearization

The residual equations constitute a set of (4Nu + 2Np + 2N�) nonlinear equations which
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5

•  Express all variables in terms of primary unknowns 
•  Nonlinear system of 8 equations in 8 unknowns 

Aux. Velocity 

Darcy Velocity 

Mass Balance 

Flux Continuity 

} 
} 
} 
} 
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Forming Jacobian entries 

•  Compute partial derivatives of each residual equation with 
respect to each type of unknown. 

•  Drop slightly compressible terms. 

zero in the case of incompressible fluids. Specifically we take
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This yields an approximation to the Jacobian (matrix), but the residual vector (right hand
side) is still computed exactly. Consistent with the theory on inexact Newton’s methods,
when convergence is achieved, the solution to this non-linear system coincides with the full
Newton method [3]. With the above derivations and simplifications completed, we note the
following identities: A

2

= B
2

, C
1

= D
1

, C
2

= D
2

, E
1

= F
1

, and L
1

= L
2

.
To form the global matrix, subdomain matrices are grouped together as block diagonal

matrices, and interface matrices are grouped together by interface. For example, matrices
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Without loss of generality, we have assumed that �12 and �(N
⌦

�1)N
⌦ are nonempty. Using

the above defined block matrices, the linear system for the inexact Newton step takes the
form
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•  Group matrices together by subdomain and interface. 
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This yields an approximation to the Jacobian (matrix), but the residual vector (right hand
side) is still computed exactly. Consistent with the theory on inexact Newton’s methods,
when convergence is achieved, the solution to this non-linear system coincides with the full
Newton method [3]. With the above derivations and simplifications completed, we note the
following identities: A

2

= B
2

, C
1

= D
1

, C
2

= D
2

, E
1

= F
1

, and L
1

= L
2

.
To form the global matrix, subdomain matrices are grouped together as block diagonal

matrices, and interface matrices are grouped together by interface. For example, matrices
A

1

, C
3

, and L
1

are defined as

A
1

=

0

B

@

A1

1

. . .

AN
⌦

1

1

C

A

, C
3

=

0

B

@

C12

3

...

C
(N

⌦

�1)N
⌦

3

1

C

A

, and L
1

=
⇣

L12

1

· · · L
(N

⌦

�1)N
⌦

1

⌘

.
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partial derivatives:
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Global Newton step 

zero in the case of incompressible fluids. Specifically we take
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This yields an approximation to the Jacobian (matrix), but the residual vector (right hand
side) is still computed exactly. Consistent with the theory on inexact Newton’s methods,
when convergence is achieved, the solution to this non-linear system coincides with the full
Newton method [3]. With the above derivations and simplifications completed, we note the
following identities: A
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= B
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, C
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, C
2
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2

, E
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1

, and L
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.
To form the global matrix, subdomain matrices are grouped together as block diagonal

matrices, and interface matrices are grouped together by interface. For example, matrices
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Without loss of generality, we have assumed that �12 and �(N
⌦

�1)N
⌦ are nonempty. Using

the above defined block matrices, the linear system for the inexact Newton step takes the
form
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The 8x8 fully implicit two phase global Jacobian system: 
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Velocity elimination 

•  We first eliminate the 4 velocities to form 1st Schur complement: 

4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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This is accomplished by partial Gaussian elimination. The reduced system has the block
structure
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and the residual vectors
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤
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4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤

1

, �⇤
2

)T as unknowns. This linear interface prob-
lem has the form

JS �⇤ = RS , (13a)

where
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J
⇥⇤

and (13b)
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⇤
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⇥

. (13c)
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We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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This is accomplished by partial Gaussian elimination. The reduced system has the block
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤

1

, �⇤
2

)T as unknowns. This linear interface prob-
lem has the form

JS �⇤ = RS , (13a)

where
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⇥

. (13c)
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4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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This is accomplished by partial Gaussian elimination. The reduced system has the block
structure
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤

1

, �⇤
2

)T as unknowns. This linear interface prob-
lem has the form

JS �⇤ = RS , (13a)

where
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and (13b)
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⇥

. (13c)
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4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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This is accomplished by partial Gaussian elimination. The reduced system has the block
structure
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤

1

, �⇤
2

)T as unknowns. This linear interface prob-
lem has the form

JS �⇤ = RS , (13a)

where
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4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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This is accomplished by partial Gaussian elimination. The reduced system has the block
structure
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (13a)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.
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4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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This is accomplished by partial Gaussian elimination. The reduced system has the block
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and the residual vectors
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1

A�1

2

(A
1

C�1

1

D
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D
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D
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D
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)

�

. (13g)

The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (13a)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

9

Subdomain 
unknowns 

Mortar 
unknowns 
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3 Schur complements 

1.  Can eliminate velocities to form (Θ,Λ)–Schur complement 

4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns

�⇥ =



�P
o

�N
o

�

and �⇤ =



�⇤
1

�⇤
2

�

. (12a)

This is accomplished by partial Gaussian elimination. The reduced system has the block
structure
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with the matrices
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(12c)
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and the residual vectors
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤

1

, �⇤
2

)T as unknowns. This linear interface prob-
lem has the form

JS �⇤ = RS , (13a)

where

JS = J
⇤⇤

� J
⇤⇥

J�1

⇥⇥

J
⇥⇤

and (13b)

RS = R
⇤

� J
⇤⇥

J�1

⇥⇥

R
⇥

. (13c)
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2.  Can eliminate subdomain unknowns to form Λ–Schur complement 

Here, the action of            
requires solving linear 
subdomain problems. 

4.2 Velocity elimination

We first eliminate both primary and auxiliary mass fluxes for each fluid phase from system
(11) to form a Schur complement system with the unknowns
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and the residual vectors
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The GJ method (Algorithm 1), which recently appeared in [2] for slightly compressible
single phase flow, can now be directly applied to the fully implicit two phase system (12b)
with two Lagrange multipliers. Since the matrix J is highly nonsymmetric, we choose to
use the Generalized Minimum Residual Method (GMRES) method [3] to iteratively solve
the linear system on each Newton step.

4.3 Interface formulation

We can also eliminate subdomain primary variables from system (12b) to form a second
Schur complement system with �⇤ = (�⇤

1

, �⇤
2

)T as unknowns. This linear interface prob-
lem has the form

JS �⇤ = RS , (13a)

where

JS = J
⇤⇤
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and (13b)
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. (13c)
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3.  Can eliminate mortar unknowns to form Θ–Schur complement 

(J⇤⇤ � J⇤⇥J
�1
⇥⇥J⇥⇤) �⇤ = R⇤ � J⇤⇥J

�1
⇥⇥R⇥

(J⇥⇥ � J⇥⇤J
�1
⇤⇤J⇤⇥) �⇥ = R⇥ � J⇥⇤J

�1
⇤⇤R⇤

1

(J⇤⇤ � J⇤⇥J
�1
⇥⇥J⇥⇤) �⇤ = R⇤ � J⇤⇥J

�1
⇥⇥R⇥

(J⇥⇥ � J⇥⇤J
�1
⇤⇤J⇤⇥) �⇥ = R⇥ � J⇥⇤J

�1
⇤⇤R⇤

1

Here, the matrix           can be 
computed with Sparse LU or 
mass lumping. 

(J⇤⇤ � J⇤⇥J
�1
⇥⇥J⇥⇤) �⇤ = R⇤ � J⇤⇥J

�1
⇥⇥R⇥

(J⇥⇥ � J⇥⇤J
�1
⇤⇤J⇤⇥) �⇥ = R⇥ � J⇥⇤J

�1
⇤⇤R⇤

1

•  Starting from the saddle point system, we can form 3 different 
algorithms with different character by taking Schur complements: 

“GJ method” 

“GJS method” 
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Sparsity	  Pa4ern	  of	  GJ	  Matrices	  

Unknowns 
(𝜹𝑷𝑶,𝜹𝑵𝑶,𝜹𝚲𝟏,𝜹𝚲𝟐)  

 

Unknowns 
(𝜹𝑷𝑶,𝜹𝑵𝑶) without 

mass lumping  

Unknowns 
(𝜹𝑷𝑶,𝜹𝑵𝑶) with 
mass lumping  

nnz=41505 nnz=63642 nnz=44075 

We will precondition this  
system in this work. 
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Choice of interface unknowns 

Algorithm 1 The GJ method.

Given [⇥0,⇤0],
for n = 1, . . . , NT do

[⇥n,0,⇤n,0] = [⇥n�1,⇤n�1]
for k = 0, . . . ,NEWT MAX do

Rn,k = [R
⇥

, R
⇤

](⇥n,k,⇤n,k)
if (kRn,kk < NEWT TOL) then break k-loop
Jn,k = [J

⇥⇥

, J
⇥⇤

; J
⇤⇥

, J
⇤⇤

](⇥n,k,⇤n,k)
[�⇥, �⇤] = gmres(Jn,k, Rn,k)
[⇥n,k+1,⇤n,k+1] = [⇥n,k + �P,⇤n,k + �⇤]

end for

[⇥n,⇤n] = [Pn,k,⇤n,k]
end for

Note that J
⇥⇥

is a block diagonal matrix, and each decoupled block of subdomain pressure
unknowns is invertible.

Algorithm 2 The GJS method.

Given [⇥0,⇤0],
for n = 1, . . . , NT do

[⇥n,0,⇤n,0] = [⇥n�1,⇤n�1]
for k = 0, . . . ,NEWT MAX do

Rn,k = [R
⇥

, R
⇤

](⇥n,k,⇤n,k)
if (kRn,kk < NEWT TOL) then break k-loop
Jn,k = [J

⇥⇥

, J
⇥⇤

; J
⇤⇥

, J
⇤⇤

](⇥n,k,⇤n,k)
function JS(⇠) {return J

⇤⇤

⇠ � J
⇤⇥

gmres(J
⇥⇥

, J
⇥⇤

⇠)}
RS = R

⇤

� J
⇤⇥

gmres(J
⇥⇥

, R
⇥

)
�⇤ = gmres(JS , RS)
�⇥ = gmres(J

⇥⇥

, R
⇥

+ J
⇥⇤

�⇤)
[⇥n,k+1,⇤n,k+1] = [⇥n,k + �⇥,⇤n,k + �⇤]

end for

[⇥n,⇤n] = [⇥n,k,⇤n,k]
end for

4.4 Choice of interface unknowns

At the interface, our formation allows us to have a variety of interface conditions. This is
achieved by choosing di↵erent interpretations for the Lagrange multipliers. Each of these
choices lead to di↵erent C

3

, C
4

, D
4

, and D
5

matrices. Below we provide the illustrative
computation for the three representative choices.

(Choice �
1

= p�
o

,�
2

= p�
w

). Recall the definitions of C
3

, C
4

, D
4

, D
5

from (9k)-(9l), (9p)-(9q)
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and the representations of the solutions from (5) to obtain,

(Ckl
3

)ji =
D

⌘klj ,vk
i · nk

E

kl
, (Ckl

4

)ji = 0,

(Dkl
4

)ji = 0, (Dkl
5

)ji =
D

⌘klj ,vk
i · nk

E

kl
.

(Choice �
1

= p�
o

,�
2

= p�c ). With this choice, p�
w

= �
1

� �
2

. Again, using the definitions of
the matrices as above,

(Ckl
3

)ji =
D

⌘klj ,vk
i · nk

E

kl
, (Ckl

4

)ji = 0,

(Dkl
4

)ji =
D

⌘klj ,vk
i · nk

E

kl
, (Dkl

5

)ji =
D

�⌘klj ,vk
i · nk

E

kl
.

(Choice �
1

= p�
o

,�
2

= n�

o

). Using ⇢
o

, we have s
w

= 1� �
2

/⇢
o

, hence

p
w

= �
1

� p
c

✓

1� �
2

�
1

◆

.

Straightforward computations as before give

(Ckl
3
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D

⌘klj ,vk
i · nk

E

kl
, (Ckl

4
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(Dkl
4

)ji =
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1� c
o
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�
2

⇢
o

◆
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i · nk

�

kl

, (Dkl
5

)ji =

⌧

p0
c

⇢
o

⌘klj ,vk
i · nk

�

kl

.

With the approximation of small compressibility, the second term of (Dkl
4

)ji can be dropped,
leading to

(Dkl
4

)ji ⇡
D

⌘klj ,vk
i · nk

E

kl
.

5 Numerical Results

6 Conclusions
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•  Flexibility in choosing physical meaning of Lagrange multipliers. 
•  Changes entries and condition number of GJ matrix. 

•    

•    
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Upwinding on a single domain 
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Upwinding “through a mortar” 
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What can go wrong? 

•  Excessive time step cuts 

•  Singular linear systems 

•  Loss of nonlinear convergence 

•  Loss of mass conservation 

–  No guarantee that                          
pL < pλ < pR

   or  pL > pλ > pR 

–  May create artificial sources/sinks 
on interfaces 
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Upwinding “block-to-block” 

This technique was used in enhanced 
velocity method and IMPES models.     
It is new for the fully-implicit model. pLo pRopλo
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Important consequences: 
•  No saturation info. is 

needed on interfaces. 
•  No longer need Pc-1 with 

extra “interface Newton”. 
•  Sw is allowed to be 

discontinuous even when 
using a continuous mortar. 
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Heterogeneous Case 

Water  
Saturation 

Oil Velocity  
Magnitude 

logYPERM

7
5
3
1

-1
-3
-5

Log Permeability 

•  Challenging SPE10 industrial 
benchmark case, layer 1 

•  8 subdomains, matching P0 mortars 

•  Two-phase flow with gravity, 
compressibility, capillary pressure 
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2 

Two Rock Type Example 

Water Saturation 
pd and the grain size exponents � are given for each rock type in (14c), along with absolute
permeability K and porosity �. Remaining parameters are given in (14d).
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(14d)
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krw = 0.9 s2e

kro = 0.5 (1� se)
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Effective Saturation 
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Relative Permeability 
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Capillary Pressure 
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Two Rock Types P1 mortar 
H=h2/3 
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Saturation Errors 

pLo pRopλo

uL
o uR

o

Upwind using Lagrange multiplier 

Max. Pointwise Error = 0.37 

Upwind using adjacent subdomain values 

Max. Pointwise Error = 0.07 

Accurate integration of phase mobility can 
improve mass conservation and solvability 
of linear and nonlinear systems. 
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Global	  Jacobian	  compared	  to	  Forward	  
Difference	  Algorithm	  

6.1 Fault example

This example has non-conforming spatial geometry in the form of a fault between two
subdomains with di↵erent mesh resolutions. This highlights the ability of the multiscale
mortar method to resolve complex geologic features such as faults and lithology. The
geometry and discretization are shown in Figure 4, with positive x representing the depth
direction. The size of subdomain ⌦1 is 20⇥ 100⇥ 100 ft with a uniform grid of 10⇥ 10⇥ 10
elements. The subdomain ⌦2 is o↵set by 8 ft in the x-direction and 10 ft in the z-direction,
and has a size of 21⇥100⇥105 ft with a uniform grid of 7⇥7⇥7 elements. The mortar grid
is defined in the area of overlap on the fault plane with a uniform grid of 2 ⇥ 5 elements,
and uses a continuous linear mortar.

X

YZ

X

YZ
X Y

Z

Figure 4: Geometry and discretization for Example 6.1: subdomain grids in x � y plane
(left), subdomain grids in y � z plane (middle), and mortar grid (right).

On this grid we have two absolute permeability datasets for the x-component of the
diagonal tensor K, shown in Figure 5. The y and z-components of this tensor multiply the
x component by a factor of 2.
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Figure 5: Absolute permeability datasets for Example 6.1: Barrier case (left) and logarithm
of SPE10 case (right).

The first dataset is denoted the barrier case with a background permeability of 100 md,
a high permeability streak of 1000 md, and four low permeability barriers of 0.1 md. On
subdomain ⌦1, the streak is on x-layer 6, and the barriers are on y-columns 4 and 7. On
subdomain ⌦2, the streak is on x-layer 2, and the barriers are on y-columns 3 and 5. The
porosity in this case is � = 0.2.
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FD Method
Perm. Intf. Newton Intf. GMRES Subdom. Newton CPU

Tot. Avg. 1 Tot. Avg. 1 Avg. 2 Tot. Avg. 1 Avg. 2 Time
Barrier 331 1.66 6,355 31.78 19.20 20,662 103.31 3.25 161.49
Heterog. 241 1.21 2,629 13.15 10.91 9,212 46.06 3.50 71.18

GJ Method
Perm. Global Newton CPU

Tot. Avg. 1 Time
Barrier 342 1.71 11.80
Heterog. 212 1.06 7.71

Table 2: Computational cost for Example 6.1 measured in terms of iteration counts and
CPU time until t = 200 days. Tot. is the total iteration count for the entire simulation,
Avg. 1 is the average number of iterations per time step, and Avg. 2 is the average number
of iterations per next outermost iteration. Nonlinear subdomain solves are performed by
solving a global block diagonal nonlinear system with blocks corresponding to subdomains,
using a global Newton iteration. All subdomain computations are decoupled due to the
block diagonal structure of the system, and subdomain Newton iterations are reported as
the number of iterations for the global Newton solve.

6.2 Multiple rock type example

This example is based on a lab experiment by Kueper in [24] with multiple rock types and
strong capillary e↵ects. Here we perform a simplified version of this experiment from [40]
with two rock types. The domain is ⌦ = 70⇥50 ft with a fine grid resolution of 1⇥1 ft. This
grid is divided into N

⌦

= 2 ⇥ 2 = 4 subdomains with a coarse mortar such that H = h2/3

with continuous linear elements as shown in Figure 7. There are two injection wells at the
top center of the domains with a bottom hole pressure of 1600 psi, and there are a total of
ten production wells spaced evenly on the left and right sides of the domain with a bottom
hole pressure of 1000 psi. External boundary conditions are no-flow.

XPERM

504

52.6

Figure 7: Absolute permeability (left) and an exploded view of the division into four sub-
domains with coarse mortars (right) for Example 6.2.
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FD:  best preconditioned 
GMRES and loose inner 
tolerances 
 
GJ:  direct solver 



 Center for 
Subsurface 
Modeling Ben Ganis | GJ Mortar Algorithms | bganis@ices.utexas.edu 

Two-‐Stage	  PrecondiBoning	  

Two-Stage Preconditioners (or similar ideas) are necessary in fully-implicit 
multiphase models, because the linear systems have both elliptic and 
hyperbolic behaviors. 
 
We applied the following preconditioner to the global Jacobian multiscale 
mortar system: 

•  Lacroix, S., Vassilevski, Y., Wheeler, M.F., 2001. Decoupling 
preconditioners in the implicit parallel accurate reservoir simulator 
(IPARS). Numerical linear algebra with applications, 8 (8), pp. 537–549. 

–  Four decoupling approaches are discussed: 
•  Constrained Pressure Reduction (CPR) 
•  Householder Reflection Decoupling  ç  We followed this 

approach. 
•  Quasi-IMPES Decoupling 
•  True IMPES Decoupling 
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More	  Two-‐Stage	  References	  

•  Vassilevski, P.S., 1984. Fast algorithm for solving a linear algebraic 
problem with separable variables. Dokladi Na Bolgarskata Akademiya 
Na Naukite, 37 (3): 305–308.  

•  Wallis, J.R., Kendall, R.P., and Little, T.E., 1985. Constrained residual 
acceleration of conjugate residual methods. In SPE Reservoir 
Simulation Symposium, SPE 13536. 

•  Cao, H., Tchelepi, H.A., Wallis, J.R., et al. 2005. Parallel scalable 
unstructured CPR-type linear solver for reservoir simulation. In SPE 
Annual Technical Conference and Exhibition. SPE 96809.  

•  Han, C. et al., 2013. Adaptation of the CPR preconditioner for efficient 
solution of the adjoint equation. SPE Journal, 18(02), pp. 207–213. 
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Two-‐Stage	  PrecondiBoning	  for	  GJ	  

 !!!!Θ = !!! − !!"!!!!!!!" !!Θ = !! − !!"!!!!!!! = !!. (4) 
 

•  Begin with the Schur complement system for subdomain unknowns. 

•  Perform Householder (QR) factorization to diagonal 2x2 blocks. 

 !!!!!!!!! !!Θ = !!!!!!!!! 

⟺ !!!Θ = !!!!! !!!!!
!!!!! !!!!!

!!!
!!! = !!!

!!!
= !. (5) 

 
•  Inside the outer gmres, get action Y = M-1 Z in a three step process: 

1.  Solve the pressure equation YPo = gmres(HPoPo ,ZPo) with 
preconditioner M1S

-1 to a specified tolerance. 

2.  Update the linear residual R = Z - H[YPo,0]. 

3.  Solve the second stage equation Y = gmres(H,R) + [YPo ,0] with 
preconditioner M2S

-1 to a specified tolerance. 
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Example	  1:	  The	  full	  SPE10	  benchmark	  problem	  
with	  mortars	  in	  two-‐phase	  model	  

CPU cores/ 
Subdomains 

Total CPU 
time 

Total 
Newton 

Steps Taken 

Avg. Outer 
GMRES Iter. 
per Newton 

step 

Time Step 
Cuts 

1×1×1=1 8331.79 51 4.88 0 
1×1×2=2 4675.22 51 5.00 0 
1×1×4=4 3102.14 52 5.65 1 
1×2×4=8 2727.95 51 5.04 0 

1×2×8=16 1216.14 52 5.71 1 
1×4×8=32 517.69 51 5.02 0 

1×4×16=64 618.41 109 5.71 2 

1st Stage: GMRES(20), 1e–6 tolerance, 100 max iterations, M1S
-1 = AMG V-

cycle, 1 sweep ILU(0) smoother, coarse solve 1000x1000 with Sparse LU. 

2nd Stage: GMRES(20), 1e–3 tolerance, no restarts, M2S
-1 = M1S

-1. 
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Example	  2:	  A	  mulBscale	  problem	  on	  	  
non-‐matching	  subdomain	  grids	  

1st Stage: GMRES(20), 1e–3 tolerance, no restarts, M1S
-1 = AMG V-cycle, 1 

sweep ILU(0) smoother, coarse solve 1000x1000 with Sparse LU. 

2nd Stage: GMRES(1), M2S
-1 = 5 Gauss-Seidel iterations. 
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Example	  3:	  A	  heterogeneous	  10M	  Cell	  Problem	  
with	  mortars	  on	  1024	  Processors	  

Total	  Bme	  steps	   1007	  

Total	  Newton	  iteraBons	   1007	  

Total	  outer	  GMRES	  iteraBons	   2449	  

Average	  GMRES	  itera/ons	  
per	  Newton	  step	  

2.43	  

Average	  Newton	  iteraBons	  per	  
Bme	  step	  

1.00	  

Total	  Bme	  step	  cuts	   0	  

Matrix	  assembly	  Bme	   86.04	  

Outer	  GMRES	  Bme	   8459.16	  

Householder	  decoupling	  Bme	   42.25	  

Pressure	  solve	  GMRES	  Bme	   1394.55	  

Second	  stage	  GMRES	  Bme	   3340.99	  

Mass	  lumping	  Bme	   0.05	  

Matrix-‐matrix	  mulBply	  Bme	   1206.87	  

Total	  CPU	  Bme	   8571.76	  

1st Stage: GMRES(20), 1e–3 tolerance, no restarts, M1S
-1 = AMG V-cycle, 1 

sweep ILU(0) smoother, coarse solve 1000x1000 with Sparse LU. 

2nd Stage: GMRES(20), 1e–3 tolerance, no restarts, M2S
-1 = M1S

-1. 
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Conclusions 

•  We have developed new mortar algorithms using global linearization 
for single and two phase flow. 

–  Easy to implement, fewer nested iterations and tolerances. 
–  Inexpensive, showed parallel scalability for nonlinear problems. 
–  Changed upwinding near interfaces for better fluid transport. 
–  Applied two-stage preconditioner for parallel scalability. 
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