Global Jacobian Mortar Algorithms for Multiphase Flow in Porous Media

Ben Ganis*

Collaborators: Kundan Kumar*, Gergina Pencheva*, Mary F. Wheeler*, Ivan Yotov**
*Center for Subsurface Modeling, ICES, UT Austin **University of Pittsburgh

ICES Seminar-Babuska Forum Series November 7, 2014

Multiscale Mortar Mixed FEM

- Mortar finite elements are a domain decomposition technique to couple unknowns across:
- Multiple Scales
- Multiple Physics
- Multiple Numerics
- Multiple Processors

- Note that Domain Decomposition is not the same as "Data Decomposition".
- The "Global Jacobian" algorithms developed in this research seek to have the best of both worlds.

Models used with mortars

- Mortars have been used with:
- 1,2,3 phase flows in porous media
- CG, Mixed, DG methods
- Linear elastic solid mechanics
- Bricks, prisms, tetrahedra
- Porescale network models
- Example:

Saturation field in two phase flow, with two subdomains.

- Prior to this research, the solution algorithm for nonlinear problems relied on two Newton loops with a forward difference approximation.

Center for

Selected References on Mortars

Single Phase Mortar Theory

- Glowinski, R., and Wheeler, M.F. 1988. Domain decomposition and mixed finite element methods for elliptic problems. In $1^{\text {st }}$ international symposium on domain decomposition methods for PDEs.
- Arbogast, T., Cowsar, L.C., Wheeler, M.F. and Yotov, I. 2000. Mixed finite element methods on nonmatching multiblock grids. SIAM Journal on Numerical Analysis 37 (4): 1295-1315.
- Arbogast, T., Pencheva, G., Wheeler, M.F., and Yotov, I. 2007. A multiscale mortar mixed finite element method. Multiscale Modeling \& Simulation 6 (1): 319-346.

Forward Difference (FD) Algorithms for Nonlinear problems

- Peszynska, M., Wheeler, M.F., and Yotov, I. 2002. Mortar upscaling for multiphase flow in porous media. Computational Geosciences 6 (1): 73-100.
- Yotov, I. 2001. A multilevel Newton-Krylov interface solver for multiphysics couplings of flow in porous media. Numerical Linear Algebra and Applications, 8 (8): 551-570.

Global Jacobian (GJ) Algorithms for Nonlinear problems

- Ganis, B., Juntunen, M., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of nonlinear porous media flows. SIAM Journal on Scientific Computation 36 (2): A522-A542.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of a fully-implicit two-phase flow model. Multiscale Modeling \& Simulation 12 (4): 1401-1423.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., Yotov, I. A multiscale mortar method and twostage preconditioner for multiphase flow using a global Jacobian approach. SPE 172990-MS.

Outline

1. Multiscale, Multiphase Problem Setting
2. Fully-implicit two-phase model for flow in porous media
3. Global Jacobian algorithms

- Schur complements
- Interface unknowns
- Upwinding scheme

4. Numerical results

- Strongly Heterogeneous Case
- Two Rock Type Case
- Non-matching Geometry Case

5. Two-Stage Preconditioner and Parallel Results

Problem Setting

- Non-overlapping domain decomposition on spatial domain

Use mixed finite elements on structured subdomain grids

- Application: Multiphase flow in porous media
- Goal: Develop simple algorithms with parallel scalability
- Key Idea: Global linearization
- Capillarity, gravity, and compressibility.

Center for

Algorithms for nonlinear mortar problems

- This algorithm uses local linearizations for subdomain and mortar unknowns separately.
- Two nested Newton-Krylov loops
- Outer loop formes a numerical Jacobian with a forward difference
- Requires delicate choice of four tolerances and difference parameter
- Challenging to precondition outer GMRES
+ Allows multiple physics and multiple time steps
$\diamond=$ convergence check
\square = forward difference approximation used

Center for

Algorithms for nonlinear mortar problems

New Methods

$\diamond=$ convergence check
\square = forward difference approximation used

Prior Method
FD Method

Center for

Novelty of this work

Global linearization:

- Augment linear systems to reuse codes.
- Utilize existing preconditioners for multiscale models.
- Simplify algorithms by having fewer nested iterations.
- Demonstrate parallel scaling with strong nonlinearities.
- Improve saturation with careful mobility upwinding.

Center for
Subsurface
Modeling

Parallel scaling, nonlinear single phase

Homogeneous,
No Preconditioning

Heterogeneous, AMG+ILU Preconditioner

Strong scaling, $\mathrm{O}\left(10^{6}\right)$ elements
[2] B. Ganis, M. Juntunen, G. Pencheva, M.F. Wheeler, I. Yotov. A global Jacobian method for mortar discretizations of nonlinear porous media flows. SIAM Journal on Scientific Computation, Vol. 36, No. 2, (2014) pp. A522-A542.

Two Phase Model

Mass Balance: $\quad \frac{\partial}{\partial t}\left(\phi s_{\alpha} \rho_{\alpha}\right)+\nabla \cdot \boldsymbol{u}_{\alpha}=q_{\alpha}$

$$
\text { in } \Omega^{k} \times(0, T]
$$

Auxiliary Velocity:

$$
\widetilde{\boldsymbol{u}}_{\alpha}=-K\left(\nabla p_{\alpha}-\rho_{\alpha} \boldsymbol{g}\right) \quad \text { in } \Omega^{k} \times(0, T]
$$

Darcy Law:

$$
\boldsymbol{u}_{\alpha}=\frac{k_{r \alpha} \rho_{\alpha}}{\mu_{\alpha}} \widetilde{\boldsymbol{u}}_{\alpha}
$$

$$
\text { in } \Omega^{k} \times(0, T]
$$

$$
\begin{aligned}
p_{\alpha} & =p_{\alpha, 0} & & \text { at } \Omega \times\{t=0\}, \\
\boldsymbol{u} \cdot \boldsymbol{n} & =0 & & \text { on } \partial \Omega \times(0, T] \\
p_{\alpha} & =p_{\alpha}^{\Gamma}\left(\lambda_{1}, \lambda_{2}\right) & & \text { on } \Gamma \times(0, T] \\
\boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{n}^{k}+\boldsymbol{u}_{\alpha}^{l} \cdot \boldsymbol{n}^{l} & =0 & & \text { on } \Gamma^{k l} \times(0, T]
\end{aligned}
$$

Saturation constraint:

$$
\begin{aligned}
s_{\mathrm{w}}+s_{\mathrm{o}} & =1 \\
p_{\mathrm{c}}\left(s_{\mathrm{w}}\right) & =p_{\mathrm{o}}-p_{\mathrm{w}}
\end{aligned}
$$

Capillary pressure:
Slightly compressible density: $\quad \rho_{\alpha}\left(p_{\alpha}\right)=\rho_{\alpha}^{\text {ref }} \mathrm{e}^{c_{\alpha} p_{\alpha}}$.

Center for
Subsurface Modeling

Finite element discretization

Primary Unknowns: $\left(p_{\mathrm{o}}, n_{\mathrm{o}}\right)$
Phase Velocities: $\quad\left(\widetilde{\boldsymbol{u}}_{\mathrm{o}}, \widetilde{\boldsymbol{u}}_{w}, \boldsymbol{u}_{\mathrm{o}}, \boldsymbol{u}_{\mathrm{w}}\right)$
Lagrange Multipliers: $\left(\lambda_{1}, \lambda_{2}\right)$

Lowest Order Raviart-
Thomas (RTO) mixed finite elements with mortars

Velocity, Pressure, Mortar Spaces:

$$
\begin{gathered}
\mathrm{V}_{h}=\bigoplus_{k=1}^{N_{\Omega}} \mathrm{V}_{h}^{k}, \quad \mathrm{~W}_{h}=\bigoplus_{k=1}^{N_{\Omega}} \mathrm{W}_{h}^{k} \\
\mathrm{M}_{H}=\bigoplus_{k=1}^{N_{\Omega}} \mathrm{M}_{H}^{k l}
\end{gathered}
$$

Time discretization:

- mortar
χ velocity
- pressure

$$
0=t^{0}<t^{1}<\cdots<t^{N_{T}}=T, \text { with } \delta t^{n}=t^{n}-t^{n-1}
$$

Fully discrete system

Expanded multiscale mortar method for fully-implicit two-

Phase concentration: $\quad n_{\alpha}=\rho_{\alpha} s_{\alpha}$ phase flow:

Phase mobility: $\quad m_{\alpha}=\frac{k_{r \alpha} \rho_{\alpha}}{\mu_{\alpha}}$

$$
A_{\alpha}^{k}=\int_{\Omega^{k}} \boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{v} d x-\int_{\Omega^{k}} m_{\alpha} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} d x=0
$$

$$
D_{\alpha}^{k}=\int_{\Omega^{k}} K^{-1} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} d x-\int_{\Omega^{k}} p_{\alpha}^{k} \nabla \cdot \boldsymbol{v} d x-\int_{\Omega^{k}} \rho_{\alpha} \boldsymbol{g} \cdot \boldsymbol{v} d x+\sum_{l=1, l \neq k}^{N_{\Omega}} \int_{\Gamma^{k l}} p_{\alpha}^{\Gamma} \boldsymbol{v} \cdot \boldsymbol{n} d \sigma=0
$$

$$
B_{\alpha}^{k}=\int_{\Omega^{k}} \frac{\phi n_{\alpha}^{k}-\phi n_{\alpha}^{n-1}}{\delta t} w d x+\int_{\Omega^{k}} \nabla \cdot \boldsymbol{u}_{\alpha}^{k} w d x-\int_{\Omega^{k}} q_{\alpha} w d x=0
$$

$$
H_{\alpha}=\int_{\Gamma^{k l}}\left(\boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{n}_{k}+\boldsymbol{u}_{\alpha}^{l} \cdot \boldsymbol{n}_{l}\right) \mu d \sigma=0
$$

Flux continuity equation

Forming Residual Equations

> Express 8 unknowns as linear combinations of finite element basis functions, insert into discrete form.

$$
p_{\mathrm{o}}^{k}=\sum_{i=1}^{N_{p}^{k}} P_{\mathrm{o}, i}^{k} w_{i}^{k}
$$

$$
\begin{aligned}
A_{\alpha}^{k} & =\int_{\Omega^{k}} \boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{v} d x-\int_{\Omega^{k}} m_{\alpha} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} d x=0 \\
D_{\alpha}^{k} & =\int_{\Omega^{k}} K^{-1} \widetilde{\boldsymbol{u}}_{\alpha}^{k} \cdot \boldsymbol{v} d x-\int_{\Omega^{k}} p_{\alpha}^{k} \nabla \cdot \boldsymbol{v} d x-\int_{\Omega^{k}} \rho_{\alpha} \boldsymbol{g} \cdot \boldsymbol{v} d x+\sum_{l=1, l \neq k}^{N_{\Omega}} \int_{\Gamma^{k l}} p_{\alpha}^{\Gamma} \boldsymbol{v} \cdot \boldsymbol{n} d \sigma=0 \\
B_{\alpha}^{k} & =\int_{\Omega^{k}} \frac{\phi n_{\alpha}^{k}-\phi n_{\alpha}^{n-1}}{\delta t} w d x+\int_{\Omega^{k}} \nabla \cdot \boldsymbol{u}_{\alpha}^{k} w d x-\int_{\Omega^{k}} q_{\alpha} w d x=0 \\
H_{\alpha} & =\int_{\Gamma^{k l}}\left(\boldsymbol{u}_{\alpha}^{k} \cdot \boldsymbol{n}_{k}+\boldsymbol{u}_{\alpha}^{l} \cdot \boldsymbol{n}_{l}\right) \mu d \sigma=0
\end{aligned}
$$

> Obtain a nonlinear system for the global coefficient vectors:

$$
\begin{array}{ccc}
\widetilde{U}_{\mathrm{o}}, \widetilde{U}_{\mathrm{w}}, U_{\mathrm{o}}, U_{\mathrm{w}} \in \mathbb{R}^{N_{u}} & P_{\mathrm{o}}, N_{\mathrm{o}} \in \mathbb{R}^{N_{p}} & \Lambda_{1}, \Lambda_{2} \in \mathbb{R}^{N_{\lambda}} \\
N_{\boldsymbol{u}}=\sum_{i=1}^{N_{\Omega}} N_{\boldsymbol{u}}^{k} & N_{p}=\sum_{i=1}^{N_{\Omega}} N_{p}^{k} & N_{\lambda}=\sum_{1 \leq k<l \leq N_{\Omega}} N_{\lambda}^{k l}
\end{array}
$$

Global nonlinear system

- Express all variables in terms of primary unknowns
- Nonlinear system of 8 equations in 8 unknowns

$$
\left.\begin{array}{rl}
A_{\mathrm{o}}\left(\widetilde{U}_{\mathrm{o}}, U_{\mathrm{o}}, P_{\mathrm{o}}, N_{\mathrm{o}}\right) & =0 \\
A_{\mathrm{w}}\left(\widetilde{U}_{\mathrm{w}}, U_{\mathrm{w}}, P_{\mathrm{o}}, N_{\mathrm{o}}\right) & =0 \\
D_{\mathrm{o}}\left(\widetilde{U}_{\mathrm{o}}, P_{\mathrm{o}}, \Lambda_{1}, \Lambda_{2}\right) & =0 \\
D_{\mathrm{w}}\left(\widetilde{U}_{\mathrm{w}}, P_{\mathrm{o}}, N_{\mathrm{o}}, \Lambda_{1}, \Lambda_{2}\right) & =0 \\
B_{\mathrm{o}}\left(U_{o}, N_{\mathrm{o}}\right) & =0 \\
B_{\mathrm{w}}\left(U_{w}, P_{\mathrm{o}}, N_{\mathrm{o}}\right) & =0 \\
H_{\mathrm{o}}\left(U_{\mathrm{o}}\right) & =0 \\
H_{\mathrm{w}}\left(U_{\mathrm{w}}\right) & =0
\end{array}\right\} \text { Aux. Velocity } \text { Darcy Velocity } \text { Mass Balance }
$$

Forming Jacobian entries

- Compute partial derivatives of each residual equation with respect to each type of unknown.

$$
\begin{aligned}
\left(A_{1}^{k}\right)_{j i} & =\frac{\partial A_{\mathrm{o}, j}^{k}}{\partial \widetilde{U}_{\mathrm{o}, i}}=-\left(m_{\mathrm{o}} \boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)_{k}, \\
\left(A_{2}^{k}\right)_{j i} & =\frac{\partial A_{\mathrm{o}, j}^{k}}{\partial U_{\mathrm{o}, i}}=\left(\boldsymbol{v}_{i}, \boldsymbol{v}_{j}\right)_{k}, \\
\left(\widehat{A}_{3}^{k}\right)_{j i} & =\frac{\partial A_{\mathrm{o}, j}^{k}}{\partial P_{\mathrm{o}, i}}=-\left(\left(\frac{c_{\mathrm{o}} n_{\mathrm{o}}}{\mu_{\mathrm{o}}} k_{r \mathrm{o}}^{\prime}+\frac{c_{\mathrm{o}} \rho_{\mathrm{o}}}{\mu_{o}} k_{r \mathrm{o}}\right) w_{i} \widetilde{\boldsymbol{u}}_{\mathrm{o}}, \boldsymbol{v}_{j}\right)_{k}, \quad \ldots
\end{aligned}
$$

- Drop slightly compressible terms. $\quad\left(\widehat{A}_{3}^{k}\right)_{j i} \approx 0$
- Group matrices together by subdomain and interface.

$$
A_{1}=\left(\begin{array}{ccc}
A_{1}^{1} & & \\
& \ddots & \\
& & A_{1}^{N_{\Omega}}
\end{array}\right), C_{3}=\left(\begin{array}{c}
C_{3}^{12} \\
\vdots \\
C_{3}^{\left(N_{\Omega}-1\right) N_{\Omega}}
\end{array}\right)
$$

Center for
Subsurface Modeling

Global Newton step

The $8 x 8$ fully implicit two phase global Jacobian system:
$\left[\begin{array}{cccccccc}A_{1} & 0 & A_{2} & 0 & 0 & A_{4} & 0 & 0 \\ 0 & B_{1} & 0 & B_{2} & 0 & B_{4} & 0 & 0 \\ C_{1} & 0 & 0 & 0 & C_{2} & 0 & C_{3} & C_{4} \\ 0 & D_{1} & 0 & 0 & D_{2} & D_{3} & D_{4} & D_{5} \\ 0 & 0 & E_{1} & 0 & 0 & E_{2} & 0 & 0 \\ 0 & 0 & 0 & F_{1} & F_{2} & F_{3} & 0 & 0 \\ 0 & 0 & L_{1} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & L_{2} & 0 & 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}\delta \widetilde{U}_{\mathrm{o}} \\ \delta \widetilde{U}_{\mathrm{w}} \\ \delta U_{\mathrm{o}} \\ \delta U_{\mathrm{w}} \\ \delta P_{\mathrm{o}} \\ \delta N_{\mathrm{o}} \\ \delta \Lambda_{1} \\ \delta \Lambda_{2}\end{array}\right]=-\left[\begin{array}{c}A_{\mathrm{o}} \\ A_{\mathrm{w}} \\ D_{\mathrm{o}} \\ D_{\mathrm{w}} \\ B_{\mathrm{o}} \\ B_{\mathrm{w}} \\ H_{\mathrm{o}} \\ H_{\mathrm{w}}\end{array}\right]$

Velocity elimination

- We first eliminate the 4 velocities to form $1^{\text {st }}$ Schur complement:

$$
\left[\begin{array}{ll}
J_{\Theta \Theta} & J_{\Theta \Lambda} \\
J_{\Lambda \Theta} & J_{\Lambda \Lambda}
\end{array}\right]\left[\begin{array}{l}
\delta \Theta \\
\delta \Lambda
\end{array}\right]=\left[\begin{array}{l}
R_{\Theta} \\
R_{\Lambda}
\end{array}\right]
$$

Subdomain unknowns

$$
\delta \Theta=\left[\begin{array}{l}
\delta P_{\mathrm{o}} \\
\delta N_{\mathrm{o}}
\end{array}\right]
$$

Mortar
$\delta \Lambda=\left[\begin{array}{l}\delta \Lambda_{1} \\ \delta \Lambda_{2}\end{array}\right]$

$$
\begin{array}{ll}
J_{\Theta \Theta}=\left[\begin{array}{ll}
J_{P_{o} P_{o}} & J_{P_{o} N_{o}} \\
J_{N_{o} P_{o}} & J_{N_{o} N_{o}}
\end{array}\right] & J_{\Theta \Lambda}=\left[\begin{array}{ll}
J_{P_{o} \Lambda_{1}} & J_{P_{o} \Lambda_{2}} \\
J_{N_{o} \Lambda_{1}} & J_{N_{o} \Lambda_{2}}
\end{array}\right] \\
J_{\Lambda \Theta}=\left[\begin{array}{ll}
J_{\Lambda_{1} P_{o}} & J_{\Lambda_{1} N_{o}} \\
J_{\Lambda_{2} P_{o}} & J_{\Lambda_{2} N_{o}}
\end{array}\right] & J_{\Lambda \Lambda}=\left[\begin{array}{ll}
J_{\Lambda_{1} \Lambda_{1}} & J_{\Lambda_{1} \Lambda_{2}} \\
J_{\Lambda_{2} \Lambda_{1}} & J_{\Lambda_{2} \Lambda_{2}}
\end{array}\right]
\end{array}
$$

Center for

3 Schur complements

- Starting from the saddle point system, we can form 3 different algorithms with different character by taking Schur complements:

1. Can eliminate velocities to form (Θ, Λ)-Schur complement

$$
\left[\begin{array}{ll}
J_{\Theta \Theta} & J_{\Theta \Lambda} \\
J_{\Lambda \Theta} & J_{\Lambda \Lambda}
\end{array}\right]\left[\begin{array}{c}
\delta \Theta \\
\delta \Lambda
\end{array}\right]=\left[\begin{array}{c}
R_{\Theta} \\
R_{\Lambda}
\end{array}\right] \quad \text { "GJ method" }
$$

2. Can eliminate subdomain unknowns to form Λ-Schur complement

$$
\begin{gathered}
\left(J_{\Lambda \Lambda}-J_{\Lambda \Theta} J_{\Theta \Theta}^{-1} J_{\Theta \Lambda}\right) \delta \Lambda=R_{\Lambda}-J_{\Lambda \Theta} J_{\Theta \Theta}^{-1} R_{\Theta} \\
\text { "GJS method" }
\end{gathered}
$$ Here, the action of $J_{\Theta \Theta}^{-1}$ requires solving linear subdomain problems.

3. Can eliminate mortar unknowns to form Θ-Schur complement

$$
\left(J_{\Theta \Theta}-J_{\Theta \Lambda} J_{\Lambda \Lambda}^{-1} J_{\Lambda \Theta}\right) \delta \Theta=R_{\Theta}-J_{\Theta \Lambda} J_{\Lambda \Lambda}^{-1} R_{\Lambda}
$$

Here, the matrix $J_{\Lambda \Lambda}^{-1}$ - can be computed with Sparse LU or mass lumping.

Sparsity Pattern of GJ Matrices

Unknowns $\left(\boldsymbol{\delta} \boldsymbol{P}_{\boldsymbol{O}}, \boldsymbol{\delta} \boldsymbol{N}_{o}, \boldsymbol{\delta} \boldsymbol{\Lambda}_{\mathbf{1}}, \boldsymbol{\delta} \boldsymbol{\Lambda}_{\mathbf{2}}\right)$

Unknowns ($\boldsymbol{\delta} \boldsymbol{P}_{o}, \boldsymbol{\delta} \boldsymbol{N}_{o}$) without mass lumping

Unknowns ($\boldsymbol{\delta P _ { o }}, \boldsymbol{\delta} \boldsymbol{N}_{\boldsymbol{o}}$) with mass lumping

Center for
Subsurface
Modeling

Choice of interface unknowns

- Flexibility in choosing physical meaning of Lagrange multipliers.
- Changes entries and condition number of GJ matrix.
- $\left(\right.$ Choice $\left.\lambda_{1}=p_{\mathrm{o}}^{\Gamma}, \lambda_{2}=p_{\mathrm{w}}^{\Gamma}\right)$.

$$
\begin{array}{ll}
\left(C_{3}^{k l}\right)_{j i}=\left\langle\eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l}, & \left(C_{4}^{k l}\right)_{j i}=0 \\
\left(D_{4}^{k l}\right)_{j i}=0, & \left(D_{5}^{k l}\right)_{j i}=\left\langle\eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l}
\end{array}
$$

- $\left(\right.$ Choice $\left.\lambda_{1}=p_{\mathrm{o}}^{\Gamma}, \lambda_{2}=p_{c}^{\Gamma}\right)$. With this choice, $p_{\mathrm{w}}^{\Gamma}=\lambda_{1}-\lambda_{2}$.

$$
\begin{aligned}
& \left(C_{3}^{k l}\right)_{j i}=\left\langle\eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l}, \quad\left(C_{4}^{k l}\right)_{j i}=0 \\
& \left(D_{4}^{k l}\right)_{j i}=\left\langle\eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l}, \quad\left(D_{5}^{k l}\right)_{j i}=\left\langle-\eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l}
\end{aligned}
$$

Choice of interface unknowns

- (Choice $\left.\lambda_{1}=p_{\mathrm{o}}^{\Gamma}, \lambda_{2}=n_{\mathrm{o}}^{\Gamma}\right)$. Using ρ_{o}, we have $s_{\mathrm{w}}=1-\lambda_{2} / \rho_{\mathrm{o}}$, hence

$$
\begin{gathered}
p_{\mathrm{w}}=\lambda_{1}-p_{\mathrm{c}}\left(1-\frac{\lambda_{2}}{\lambda_{1}}\right) . \\
\left(C_{3}^{k l}\right)_{j i}=\left\langle\eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l}, \\
\left(D_{4}^{k l}\right)_{j i}=\left\langle\left(1-c_{\mathrm{o}} \frac{p_{\mathrm{c}}^{\prime} \lambda_{2}}{\rho_{\mathrm{o}}}\right) \eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{j i}=0, \\
\left(D_{5 l}^{k l}\right)_{j i}=\left\langle\frac{p_{\mathrm{c}}^{\prime}}{\rho_{\mathrm{o}}} \eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l} . \\
\\
\left(D_{j i} \approx\left\langle\eta_{j}^{k l}, \boldsymbol{v}_{i}^{k} \cdot \boldsymbol{n}^{k}\right\rangle_{k l} .\right.
\end{gathered}
$$

Upwinding on a single domain

$$
\begin{gathered}
\triangle p_{o} \approx p_{o}^{R}-p_{o}^{L} \\
m_{o}^{u p}= \begin{cases}m_{o}^{L}, & \text { if } \triangle p_{o}<0 \\
m_{o}^{R}, & \text { if } \triangle p_{o}>0\end{cases} \\
\int_{\Omega} m_{o} \boldsymbol{u}_{o} \cdot \boldsymbol{u}_{o} d x \underset{T M}{\approx} m_{o}^{u p} \times\left(\frac{h_{x}^{L}}{2 h_{y} h_{z}}+\frac{h_{x}^{R}}{2 h_{y} h_{z}}\right)
\end{gathered}
$$

Center for
Subsurface Modeling

Upwinding "through a mortar"

$$
\begin{aligned}
& \triangle p_{o}^{L} \approx p_{o}^{\lambda}-p_{o}^{L} \\
& m_{o}^{u p, L}= \begin{cases}m_{o}^{L}, & \text { if } \Delta p_{o}^{L}<0 \\
m_{o}^{\lambda}, & \text { if } \Delta p_{o}^{L}>0\end{cases} \\
& m_{o}^{u p, R}= \begin{cases}m_{o}^{\lambda}, & \text { if } \Delta p_{o}^{R}<0 \\
m_{o}^{R}, & \text { if } \Delta p_{o}^{R}>0\end{cases} \\
& \int_{E^{L}} m_{o} \boldsymbol{u}_{o}^{L} \cdot \boldsymbol{u}_{o}^{L} d x \underset{T M}{\approx} m_{o}^{u p, L} \times\left(\frac{h_{x}^{L}}{2 h_{y} h_{z}}\right) \quad \int_{E^{R}} m_{o} \boldsymbol{u}_{o}^{R} \cdot \boldsymbol{u}_{o}^{R} d x \underset{T M}{\approx} m_{o}^{u p, R} \times\left(\frac{h_{x}^{R}}{2 h_{y} h_{z}}\right)
\end{aligned}
$$

What can go wrong?

- Excessive time step cuts
- Singular linear systems
- Loss of nonlinear convergence
- Loss of mass conservation
- No guarantee that $\mathrm{p}^{\mathrm{L}}<\mathrm{p}^{\lambda}<\mathrm{p}^{\mathrm{R}}$ or $\mathrm{p}^{\mathrm{L}}>\mathrm{p}^{\lambda}>\mathrm{p}^{R}$
- May create artificial sources/sinks on interfaces

Center for

Upwinding "block-to-block"

This technique was used in enhanced velocity method and IMPES models. It is new for the fully-implicit model.
$\Delta p_{o} \approx p_{o}^{R}-p_{o}^{L} \quad$ by directly projecting $\left.\left.\quad \Omega^{L}\right|_{\Gamma} \longleftrightarrow \Omega^{R}\right|_{\Gamma}$

$$
\begin{gathered}
m_{o}^{u p}= \begin{cases}m_{o}^{L}, & \text { if } \triangle p_{o}<0 \\
m_{o}^{R}, & \text { if } \triangle p_{o}>0\end{cases} \\
\int_{E^{R}} m_{o} \boldsymbol{u}_{o}^{R} \cdot \boldsymbol{u}_{o}^{R} d x \underset{T M}{\approx} m_{o}^{u p} \times\left(\frac{h_{x}^{R}}{2 h_{y} h_{z}}\right) \\
\int_{E^{L}} m_{o} \boldsymbol{u}_{o}^{L} \cdot \boldsymbol{u}_{o}^{L} d x \underset{T M}{\approx} m_{o}^{u p} \times\left(\frac{h_{x}^{L}}{2 h_{y} h_{z}}\right)
\end{gathered}
$$

Important consequences:

- No saturation info. is needed on interfaces.
- No longer need Pc^{-1} with extra "interface Newton".
- Sw is allowed to be discontinuous even when using a continuous mortar.

Heterogeneous Case

- Two-phase flow with gravity, compressibility, capillary pressure
- 8 subdomains, matching P0 mortars
- Challenging SPE10 industrial benchmark case, layer 1

Log Permeability

Oil Velocity Magnitude

Center for

Two Rock Type Example

Capillary Pressure

$$
\begin{gathered}
p_{c}\left(s_{w}\right)= \begin{cases}p_{d} s_{c 1}^{-1 / \lambda}, & \text { if } 0 \leq s_{e}<s_{c 1} \\
p_{d} s_{e}^{-1 / \lambda}, & \text { if } s_{c 1} \leq s_{e} \leq s_{c 2} \\
p_{d} s_{c 2}^{-1 / \lambda} \frac{1-s_{e}}{1-s_{c 2}}, & \text { if } s_{c 2}<s_{e} \leq 1\end{cases} \\
\text { Effective Saturation }
\end{gathered} \begin{aligned}
& \text { Relative Permeability } \\
& s_{e}=\frac{s_{w}-s_{r w}}{1-s_{r w}-s_{r o}} \quad \begin{array}{l}
k_{r w}=0.9 s_{e}^{2} \\
k_{r o}=0.5\left(1-s_{e}\right)^{2}
\end{array}
\end{aligned}
$$

Two Rock Types

	p_{d}	λ	K	ϕ
rock type 1	135 psi	2.49	504 md	0.2
rock type 2	37.7 psi	3.86	52.6 md	0.2

Saturation Errors

Accurate integration of phase mobility can improve mass conservation and solvability of linear and nonlinear systems.

Upwind using Lagrange multiplier

Max. Pointwise Error $=0.37$

Upwind using adjacent subdomain values

Max. Pointwise Error $=0.07$

Global Jacobian compared to Forward Difference Algorithm

FD Method									
Perm.	Intf. Newton		Intf. GMRES			Subdom. Newton			CPU
	Tot.	Avg. 1	Tot.	Avg. 1	Avg. 2	Tot.	Avg. 1	Avg. 2	Time
Barrier	331	1.66	6,355	31.78	19.20	20,662	103.31	3.25	161.49
Heterog.	241	1.21	2,629	13.15	10.91	9,212	46.06	3.50	71.18

GJ Method			
Perm.	Global Newton		
	CPU		
	Tot.	Avg.	Time
Barrier	342	1.71	11.80
Heterog.	212	1.06	7.71

FD: best preconditioned GMRES and loose inner tolerances

GJ: direct solver

Two-Stage Preconditioning

Two-Stage Preconditioners (or similar ideas) are necessary in fully-implicit multiphase models, because the linear systems have both elliptic and hyperbolic behaviors.

We applied the following preconditioner to the global Jacobian multiscale mortar system:

- Lacroix, S., Vassilevski, Y., Wheeler, M.F., 2001. Decoupling preconditioners in the implicit parallel accurate reservoir simulator (IPARS). Numerical linear algebra with applications, 8 (8), pp. 537-549.
- Four decoupling approaches are discussed:
- Constrained Pressure Reduction (CPR)
- Householder Reflection Decoupling ↔ We followed this approach.
- Quasi-IMPES Decoupling
- True IMPES Decoupling

More Two-Stage References

- Vassilevski, P.S., 1984. Fast algorithm for solving a linear algebraic problem with separable variables. Dokladi Na Bolgarskata Akademiya Na Naukite, 37 (3): 305-308.
- Wallis, J.R., Kendall, R.P., and Little, T.E., 1985. Constrained residual acceleration of conjugate residual methods. In SPE Reservoir Simulation Symposium, SPE 13536.
- Cao, H., Tchelepi, H.A., Wallis, J.R., et al. 2005. Parallel scalable unstructured CPR-type linear solver for reservoir simulation. In SPE Annual Technical Conference and Exhibition. SPE 96809.
- Han, C. et al., 2013. Adaptation of the CPR preconditioner for efficient solution of the adjoint equation. SPE Journal, 18(02), pp. 207-213.

Two-Stage Preconditioning for GJ

- Begin with the Schur complement system for subdomain unknowns.

$$
J^{3} \delta \Theta=\left(J_{\Theta \Theta}-J_{\Theta \Lambda} J_{\Lambda \Lambda}^{-1} J_{\Lambda \Theta}\right) \delta \Theta=R_{\Theta}-J_{\Theta \Lambda} J_{\Lambda \Lambda}^{-1} R_{\Lambda}=R^{3}
$$

- Perform Householder (QR) factorization to diagonal $2 x 2$ blocks.

$$
\begin{gathered}
\left(P^{-1} Q^{T} P J^{3}\right) \delta \Theta=P^{-1} Q^{T} P R^{3} \\
\Leftrightarrow H \delta \Theta=\left[\begin{array}{ll}
H_{P_{O} P_{O}} & H_{P_{O} N_{O}} \\
H_{N_{O} P_{O}} & H_{N_{O} N_{O}}
\end{array}\right]\left[\begin{array}{l}
\delta P_{O} \\
\delta N_{O}
\end{array}\right]=\left[\begin{array}{l}
b_{P_{O}} \\
b_{N_{O}}
\end{array}\right]=b .
\end{gathered}
$$

- Inside the outer gmres, get action $Y=M^{-1} Z$ in a three step process:

1. Solve the pressure equation $Y_{P_{0}}=\boldsymbol{g m r e s}\left(H_{P o P_{0}}, Z_{P_{0}}\right)$ with preconditioner $M_{1 S^{-1}}$ to a specified tolerance.
2. Update the linear residual $R=Z-H\left[Y_{P O}, 0\right]$.
3. Solve the second stage equation $Y=\operatorname{gmres}(H, R)+\left[Y_{P_{0}}, 0\right]$ with preconditioner $M_{2 S^{-1}}$ to a specified tolerance.

Expmple 1: The full SPE10 benchmark probl with mortars in two-phase model

CPU cores/ Subdomains	Total CPU time	Total Newton Steps Taken	Avg. Outer GMRES Iter. per Newton step	Time Step Cuts
$1 \times 1 \times 1=1$	8331.79	51	4.88	0
$1 \times 1 \times 2=2$	4675.22	51	5.00	0
$1 \times 1 \times 4=4$	3102.14	52	5.65	1
$1 \times 2 \times 4=8$	2727.95	51	5.04	0
$1 \times 2 \times 8=16$	1216.14	52	5.71	1
$1 \times 4 \times 8=32$	517.69	51	5.02	0
$1 \times 4 \times 16=64$	618.41	109	5.71	2

1st Stage: GMRES(20), 1e-6 tolerance, 100 max iterations, $M_{1 s^{-1}}=$ AMG Vcycle, 1 sweep ILU(0) smoother, coarse solve 1000×1000 with Sparse LU. 2nd Stage: GMRES(20), 1e-3 tolerance, no restarts, $M_{2 S^{-1}}=M_{1 S^{-1}}$.

Example 2: A multiscale problem on non-matching subdomain grids

1st Stage: GMRES(20), 1e-3 tolerance, no restarts, $M_{1 S^{-1}}=$ AMG V-cycle, 1 sweep ILU(0) smoother, coarse solve 1000×1000 with Sparse LU.
2nd Stage: GMRES(1), $M_{2 S^{-1}}=5$ Gauss-Seidel iterations.
Center for
Ben Ganis | GJ Mortar Algorithms | bganis@ices.utexas.edu

Total time steps	1007	Matrix assembly time	86.04
Total Newton iterations	1007	Outer GMRES time	8459.16
Total outer GMRES iterations	2449	Householder decoupling time	42.25
Average GMRES iterations per Newton step	2.43	Pressure solve GMRES time Second stage GMRES time	1394.55 3340.99
Average Newton iterations per time step	1.00	Mass lumping time	0.05 1206.87
Total time step cuts	0	Total CPU time	8571.76

1st Stage: GMRES(20), 1e-3 tolerance, no restarts, $M_{1 S^{-1}}=$ AMG V-cycle, 1 sweep ILU(0) smoother, coarse solve 1000x1000 with Sparse LU. 2nd Stage: GMRES(20), 1e-3 tolerance, no restarts, $M_{2 S^{-1}}=M_{1 S^{-1}}$.

Conclusions

- We have developed new mortar algorithms using global linearization for single and two phase flow.
- Easy to implement, fewer nested iterations and tolerances.
- Inexpensive, showed parallel scalability for nonlinear problems.
- Changed upwinding near interfaces for better fluid transport.
- Applied two-stage preconditioner for parallel scalability.

References

- Ganis, B., Juntunen, M., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of nonlinear porous media flows. SIAM Journal on Scientific Computation 36 (2): A522-A542.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., and Yotov, I. 2014. A global Jacobian method for mortar discretizations of a fullyimplicit two-phase flow model. Multiscale Modeling \& Simulation 12 (4): 1401-1423.
- Ganis, B., Kumar, K., Pencheva, G., Wheeler, M.F., Yotov, I. A multiscale mortar method and two-stage preconditioner for multiphase flow using a global Jacobian approach. SPE 172990-MS.

Thank you!

