Predictability of Coarse-Grained Models of Atomistic Systems in the Presence of Uncertainty

J. Tinsley Oden

Institute for Computational Engineering and Sciences
The University of Texas at Austin

Belytschko Lecture

Theoretical and Applied Mechanics Program Departments of Mechanical Engineering and Civil and Environmental Engineering

Northwestern University

October 14, 2014

Acknowledgements:
Collaborators: Kathryn Farrell Danial Faghihi

DOE-DE-SC009286 MMICC AFOSR: FA9550-12-1-0484 DOE Eureka: DE-SC0010518

Outline

1 The Logic of Predictive Science: What is it and Why Now?

2 The Tyranny of Scales: Predictivity of Multiscale Models

3 Bayesian Model Calibration, Validation, and Prediction

4 The Prediction Process: Traveling up the Prediction Pyramid

5 Exploratory Examples

6 Model Inadequacy - Specified and Misspecified Models

7 Conclusions

1. The Logic of Predictive Science: What is Predictive Science?

Predictive Science: the scientific discipline concerned with assessing the predictability of mathematical and computational models of physical events. It embraces the processes of model selection, calibration, validation, verification, and their use in forecasting features of physical events with quantified uncertainty.

Comprehensive Nuclear Test Ban: UN 1996
Space Shuttle Accident, 2003
Climate/Weather Prediction
Predictive Medicine

1. The Logic of Predictive Science: What is Predictive Science?

```
Mathematical constructions based on physical
principles or empirical relations-generally
based on inductive theories which attempt to
characterize abstractions of physical reality
```

Predictive Science: the scientific discipline concerned with assessing the predictability of mathematical and computational models of physical events. It embraces the processes of model selection, calibration, validation, verification, and their use in forecasting features of physical events with quantified uncertainty.

Comprehensive Nuclear Test Ban: UN 1996 Space Shuttle Accident, 2003
Climate/Weather Prediction
Predictive Medicine

1. The Logic of Predictive Science: What is Predictive Science?

The process of adjusting the parameters of a model to improve the agreement of model predictions with experimental measurements

Predictive Science the scientific discipline concerned with assessing the predictability of mathematical and computational models of physical events. It embraces the processes of model selection, calibration, validation, verification, and their use in forecasting features of physical events with quantified uncertainty.

Comprehensive Nuclear Test Ban: UN 1996 Space Shuttle Accident, 2003
Climate/Weather Prediction
Predictive Medicine

1. The Logic of Predictive Science: What is Predictive Science?

The process of adjusting the parameters of a model to improve the agreement of model predictions with experimental measurements

The process of determining the accuracy with which a model can predict features of physical reality

Predictive Science, the scientific discipline concerned wilthassessing the predictability of mathematical and computational models of physical events. It embraces the processes of model selection, calibration, validation, verification, and their use in forecasting features of physical events with quantified uncertainty.

Comprehensive Nuclear Test Ban: UN 1996 Space Shuttle Accident, 2003
Climate/Weather Prediction
Predictive Medicine

1. The Logic of Predictive Science: What is Predictive Science?

The process of adjusting the parameters of a model to improve the agreement of model predictions with experimental measurements

$$
\begin{aligned}
& \text { Mathematical constructions based on physical } \\
& \text { principles or empirical relations-generally } \\
& \text { based on inductive theories which attempt to } \\
& \text { characterize abstractions of physical reality }
\end{aligned}
$$

The process of determining the accuracy with which a model can predict features of physical reality

Predictive Science the scientific discipline concerned with assessing the predictability of mathematical and computational models of physical events. It embraces the processes of model selection, calibration, validation, verification, and their use in forecasting features of physical events with quantified uncertainty.

The Quantities of Interest (Qols): the goals of the simulation

Comprehensive Nuclear Test Ban: UN 1996 Space Shuttle Accident, 2003
Climate/Weather Prediction
Predictive Medicine

1. The Logic of Predictive Science: What is Predictive Science?

The process of adjusting the parameters of a model to improve the agreement of model predictions with experimental measurements

Mathematical constructions based on physical principles or empirical relations-generally based on inductive theories which attempt to characterize abstractions of physical reality

The process of determining the accuracy with which a model can predict features of physical reality

Predictive Science the scientific discipline concerned with assessing the predictability of mathematical and computational models of physical events. It embraces the processes of model selection, calibration, validation, verification, and their use in forecasting features of physical events with quantified uncertainty.

The Quantities of Interest (Qols): the goals of the simulation
UQ: quantifying the uncertainty in predicted Qols

Comprehensive Nuclear Test Ban: UN 1996 Space Shuttle Accident, 2003
Climate/Weather Prediction
Predictive Medicine

1. The Logic of Predictive Science: What is Predictive Science?

The process of adjusting the parameters of a model to improve the agreement of model predictions with experimental measurements

Mathematical constructions based on physical principles or empirical relations-generally based on inductive theories which attempt to characterize abstractions of physical reality

The process of determining the accuracy with which a model can predict features of physical reality

Predictive Science the scientific discipline concerned with assessing the predictability of mathematical and computational models of physical events. It embraces the processes of model selection, calibration, validation, verification, and their use in forecasting features of physical events with quantified uncertainty.

The Quantities of Interest (Qols): the goals of the simulation

Comprehensive Nuclear Test Ban: UN 1996 Space Shuttle Accident, 2003 Climate/Weather Prediction Predictive Medicine

Predictability requires knowledge of the physical laws that are proposed to explain realities and requires recognizing and quantifying uncertainties

The Nature of Science

Science - The activity concerned with the systematic acquisition of knowledge

The Pillars of Science - I. Theory - inductive hypotheses
II. Observation - experiments
III. Computational Science

The Scientific Method - Test statements that are logical consequences of scientific hypotheses (theories) or related computer models and simulation through repeatable experiments or observations

Logic: The science dealing with the formal principles of reasoning (or the study of reasoning)

Deductive Reasoning (or deductive logic)
The process of reasoning from one or more general statements (axioms or premises) to reach logically certain conclusions

- "Top-down logic": premises \Rightarrow conclusions
- Established as a formal discipline by Aristotle 384-322 B.C.

Inductive Reasoning (or inductive logic)
The process of reasoning by generalizing or extrapolating from initial information or hypotheses

- "Bottom-up logic": an open system including domains of epistemic uncertainty (allowing a conclusion to be false)

The Imperfect Paths to Knowledge

Cox's Theorem

Every natural extension of Aristotelian logic with uncertainties is Bayesian

Precisely:
There exists a continuous, strictly increasing, real-valued, non-negative function p, the plausibility of a proposition conditioned on information X, such that for every proposition A and B and consistent X
$1 p(A \mid X)=0$ iff A is false given the information in X
$2 p(A \mid X)=1$ iff A is true given the information in X
$30 \leq p(A \mid X) \leq 1$
4

$$
p(A \wedge B \mid X)=p(A \mid X) p(B \mid A X)
$$

$5 p(\bar{A} \mid X)=1-p(A \mid X)$ if X is consistent
Richard Trelked Cox, Am. J. Physics, 1946
Edwin T. Jaynes, Probability Theory: The Logic of Science, 2003
Kevin van Horn, J. Approx. Reasoning, 2003

Cox's Theorem

Every natural extension of Aristotelian logic with uncertainties is Bayesian

Precisely:

$\nexists A$ s.t. $(A \mid X)$ and $(\bar{A} \mid X)$ are true

There exists a continuous, strictly increasing, real-रalued, non-negative function p, the plausibility of a proposition conditioned on information X, such that for every proposition A and B and consistent X
$1 p(A \mid X)=0$ iff A is false given the information in X
$2 p(A \mid X)=1$ iff A is true given the information in X
з $0 \leq p(A \mid X) \leq 1$
4

$$
p(A \wedge B \mid X)=p(A \mid X) p(B \mid A X)
$$

$5 p(\bar{A} \mid X)=1-p(A \mid X)$ if X is consistent
Richard Trelked Cox, Am. J. Physics, 1946
Edwin T. Jaynes, Probability Theory: The Logic of Science, 2003
Kevin van Horn, J. Approx. Reasoning, 2003

Cox's Theorem

Every natural extension of Aristotelian logic with uncertainties is Bayesian

Precisely:

```
# A s.t. (A|X) and
(\overline{A}|X) are true
```

There exists a continuous, strictly increasing, real-yalued, non-negative function p, the plausibility of a proposition conditioned on information X, such that for every proposition A and B and consistent X
$1 p(A \mid X)=0$ iff A is false given the information in X
$2 p(A \mid X)=1$ iff A is true given the information in X
з $0 \leq p(A \mid X) \leq 1$
4

$$
p(A \wedge B \mid X)=p(A \mid X) p(B \mid A X)
$$

Bayes' Rule

$5 p(\bar{A} \mid X)=1-p(A \mid X)$ if X is consistent
Richard Trelked Cox, Am. J. Physics, 1946
Edwin T. Jaynes, Probability Theory: The Logic of Science, 2003
Kevin van Horn, J. Approx. Reasoning, 2003

Post-Cox Developments

- Halpern, Joseph Y., Counterexample to Cox's Theorem - then a correction in an "Addendum to Cox's Theorem" (1999), then refuted by van Horn (2003)
- Amborg, Stephan and Sjodin, Gunnar $(1999,2000)$
- Van Horn, Kevin S., "Constructing a Logic of Plausibility - A Guide to Cox's Theorem," J. Approx. Reasoning (2003)
- Jaynes, Edwin T., Probability Theory: The Logic of Science (2003)
- Dupre, Maurice J. and Tipler, Frank J., "A Trivial Proof of Cox's Theorem" (2009)
- McGrayne, Sharon B., The Theory That Would Not Die (2012)
- Freedman, David $(1999,2006)$
- Kleijn, B. J. K. and van der Vaart, A. W., The Bernstein-von-Mises Theorem Under Misspecification (2012)
- Owhadi, Houman, Scoval, Clint and Sullivan, Tim, "Bayesian Brittleness: Why no Bayesian Model is Good Enough" (2013)

The Logic of Science: Bayesian Inference

Bayes' Rule

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Thomas Bayes (1763): "An Essay Towards Solving a Problem in the Doctrine of Chances" PRS

* Logical Probability \supset frequency based theory

Bayesian Model Calibration, Validation, and Prediction

2. The Tyranny of Scales: Predictivity of Multiscale

 Models

All-Atom
(AA)
Model

Coarse-Grained (CG) Model

Macro
(Continuum)
Model

The confluence of all challenges in Predictive Science: Exactly what is the model? Is it "valid"? What is the level of uncertainty in the prediction?

Nanomanufacturing

a) Semiconductor Component

c) Manufacturing detail

b) Multiblock Component

National Medal of Technology, 2008 Japan Prize, 2013
C. Grant Willson, UT Austin

Motivation for Coarse Graining

Coarse Graining as a Reduced Order Method

- M.L. Huggins, Journal of Chemical Physics, 1941
- P.J. Flory, Journal of Computational Physics, 1942
- S. Izvekov, M. Parrienllo, C.J. Burnham, and G.A. Voth, Journal of Chemical Physics, 2004
- S. Izvekov and G.A. Voth, Journal of Physical Chemistry B, 2005, Journal of Chemical Physics, 2005, 2006
- W.G. Noid, J.-W. Chu, P. Liu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth, A. Das, and H.C. Anderson, The Journal of Chemical Physics, 2008
- J.W. Mullinax and W.G. Noid, Journal of Chemical Physics, 2009
- S. Izvekov, P.W. Chung, B.M. Rice, Journal of Chemical Physics, 2010
- E. Brini, V. Marcon, and N.F.A. van der Vegt, Physical Chemistry Chemical Physics, 2011
- A. Chaimovich and M.S. Shell, Journal of Chemical Physics, 2011
- E. Brini and N.F.A. van der Vegt, Journal of Chemical Physics, 2012
- S.P. Carmichael and M.S. Shell, Journal of Physical Chemistry B, 2012
- Y. Li, B.C. Abberton, M. Kroger, W.K.Liu, Polymers, 2013.
- W.G. Noid, Journal of Chemical Physics, 2013

Various CG Methods

- Force-matching methods
- Multiscale coarse-graining
- Iterative Boltzmann inversion
- Reverse Monte Carlo
- Conditional Reverse Work
- Minimum Relative Entropy

While often advocated, few take into account uncertainties in data, parameters, model inadequacy, ...

Parametric Model Classes \mathcal{M}_{k}

$$
\mathcal{M}=\left\{\mathcal{M}_{1}, \mathcal{M}_{2}, \ldots, \mathcal{M}_{k}\right\}
$$

CG Model

$$
\begin{aligned}
& \frac{\partial U(G(\omega) ; \boldsymbol{\theta})}{\partial \mathbf{R}_{i}}-\mathbf{F}_{i}=\mathbf{0}, \quad i=1,2, \ldots, n \quad(+ \text { B.C.'s }) \\
& U(G(\omega) ; \boldsymbol{\theta})=\sum_{i=1}^{N_{c o}} \frac{k_{i}}{2}\left(\mathbf{R}-\mathbf{R}_{0 i}\right)^{2}+\sum_{i=1}^{N_{\theta}} \frac{\kappa_{i}}{2}\left(\theta_{i}-\theta_{0 i}\right)^{2} \\
& \quad+\sum_{i=1}^{N_{\omega}} \frac{\kappa_{i}^{t}}{2}(1+\cos (i \omega-\gamma))^{2} \\
& \quad+\sum_{i=1}^{N} \sum_{j=i+1}^{N}\left\{4 \varepsilon_{i j}\left[\left(\frac{\sigma_{i j}}{R_{i j}}\right)^{12}-\left(\frac{\sigma_{i j}}{R_{i j}}\right)^{6}\right]+\frac{q_{i} q_{j}}{4 \pi \varepsilon_{0} R_{i j}}\right\} \\
& \boldsymbol{\theta}=\text { CG model parameters }=\left\{k_{i}, \kappa_{i}, \kappa_{i}^{t}, \varepsilon_{i j}, \gamma, \sigma_{i j}\right\}
\end{aligned}
$$

Macroscale Model

$$
\begin{aligned}
& \operatorname{Div} \frac{\partial W(\boldsymbol{\mu} ; \mathbf{w})}{\partial \mathbf{F}}-\mathbf{f}=\mathbf{0}, \quad \mathbf{x} \in \Omega \subset \mathbb{R}^{3} \quad\left(+ \text { B.C.' }^{\prime} \mathrm{s}\right) \\
& W(\boldsymbol{\mu} ; \mathbf{w})=\alpha\left(I_{1}(\mathbf{C})-3\right)+\beta\left(I_{2}(\mathbf{C})-3\right)-\kappa \ln J(\mathbf{C}) \\
& \left(\mathbf{C}=\mathbf{F}^{T} \mathbf{F} ; \quad \mathbf{F}=\mathbf{I}+\boldsymbol{\nabla} \mathbf{w}\right)
\end{aligned}
$$

$$
\boldsymbol{\mu}=\text { macromodel parameters }=(\alpha, \beta, \kappa)
$$

Parametric Model Classes \mathcal{M}_{k}

\mathcal{M}_{k} :

$\mathcal{P}_{k 1}$

$$
\mathcal{M}_{i}=\left\{\mathcal{P}_{i 1}\left(\boldsymbol{\theta}_{i 1}\right), \mathcal{P}_{i 2}\left(\boldsymbol{\theta}_{i 2}\right), \ldots, \mathcal{P}_{i m}\left(\boldsymbol{\theta}_{i m}\right)\right\}, \quad i=1,2, \ldots, k
$$

For simplicity in notation:

$$
\mathcal{M}=\left\{\mathcal{P}_{1}\left(\boldsymbol{\theta}_{1}\right), \mathcal{P}_{2}\left(\boldsymbol{\theta}_{2}\right), \ldots, \mathcal{P}_{m}\left(\boldsymbol{\theta}_{m}\right)\right\}
$$

What are the Models?

AA Model

CG Model

$$
\begin{array}{ll}
G_{A \alpha} \mathbf{r}_{\alpha}=\mathbf{R}_{A} ; \quad G_{\alpha A} \mathbf{R}_{A}=\mathbf{r}_{\alpha} \quad \begin{array}{l}
1 \leq \alpha \leq n \\
1 \leq A \leq N
\end{array}
\end{array}
$$

Observables

AA $\langle q\rangle=\int_{\Gamma_{A A}} \rho_{A A}\left(\mathbf{r}^{n}\right) q\left(\mathbf{r}^{n}\right) d \mathbf{r}^{n}=\lim _{\tau \rightarrow \infty} \tau^{-1} \int_{0}^{\tau} q\left(\mathbf{r}^{n}(t)\right) d t$
$\mathrm{CG} \quad Q(\boldsymbol{\theta})=\int_{\Gamma_{C G}} \rho_{C G}\left(\mathbf{R}^{N}, \boldsymbol{\theta}\right) q\left(\mathbf{R}^{N}\right) d \mathbf{R}^{N}=\lim _{\tau \rightarrow \infty} \tau^{-1} \int_{0}^{\tau} q\left(\mathbf{R}^{N}(t), \boldsymbol{\theta}\right) d t$

What are the Models?

AA

$$
\begin{array}{cc}
m_{\alpha \beta} \ddot{r}_{\beta i}+\frac{\partial}{\partial r_{\alpha i}} u_{A A}\left(\mathbf{r}^{n}\right)-f_{\alpha i}=0 & 1 \leq \alpha, \beta \leq n \\
1 \leq i \leq 3
\end{array}
$$

CG

$$
M_{A B} \ddot{R}_{B i}+\frac{\partial}{\partial R_{A i}} U\left(\mathbf{R}^{N}, \boldsymbol{\theta}\right)-F_{A i}=0 \quad 1 \leq A, B \leq N
$$

Adjoint

$$
\begin{gathered}
m_{\alpha \beta} \ddot{z}_{\beta i}+H_{\alpha i \beta j}\left(\mathbf{r}^{n}\right) z_{\beta j}-\frac{\partial}{\partial r_{\alpha i}} q\left(\mathbf{r}^{n}\right)=0 \\
H_{\alpha i \beta j}\left(\mathbf{r}^{n}\right)=\frac{\partial^{2} u_{A A}\left(\mathbf{r}^{n}\right)}{\partial r_{\alpha i} \partial r_{\beta j}}
\end{gathered}
$$

What are the Models?

Residual

$$
\begin{aligned}
\mathcal{R}\left(\mathbf{R}^{N}(\boldsymbol{\theta}), \mathbf{z}^{n}\right)=\lim _{\tau \rightarrow \infty} \tau^{-1} \int_{0}^{\tau} & \left(z_{\alpha i} G_{\alpha A} M_{A B} \ddot{R}_{B i}+z_{\alpha i} G_{\alpha B} \frac{\partial}{\partial R_{B i}} U\left(\mathbf{R}^{N}, \boldsymbol{\theta}\right)\right. \\
& \left.-z_{\alpha i} G_{\alpha B} F_{B i}\right) d t
\end{aligned}
$$

Theorem
(Under suitable smoothness conditions), the error in the observables due to the CG approximation is, $\forall \boldsymbol{\theta} \in \Theta$,

$$
\varepsilon(\boldsymbol{\theta})=\langle q\rangle-Q(\boldsymbol{\theta})=\mathcal{R}\left(\mathbf{R}^{N}(\boldsymbol{\theta}), \mathbf{z}^{n}\right)+\Delta \approx \mathcal{R}\left(\mathbf{R}^{N}(\boldsymbol{\theta}), \mathbf{z}^{n}\right)
$$

where Δ is a remainder of higher order in " $\left\|\mathbf{r}^{n}-\mathbf{R}^{N}\right\|$ "

Information Entropy

Suppose

$$
\begin{aligned}
Q\left(\mathbf{r}^{n}\right) & =\int_{\Gamma} \rho\left(\mathbf{r}^{n}\right) q\left(\mathbf{r}^{n}\right) d \mathbf{r}^{n} \\
Q\left(\mathbf{R}^{N}(\boldsymbol{\theta})\right) & =\int_{\Gamma} \rho\left(\mathbf{r}^{n}\right) q\left(G\left(\mathbf{r}^{n}(\boldsymbol{\theta})\right)\right) d \mathbf{r}^{n} \\
q\left(\mathbf{r}^{n}\right) & =\log \rho\left(\mathbf{r}^{n}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
Q\left(\mathbf{r}^{n}\right)-Q\left(\mathbf{R}^{N}(\boldsymbol{\theta})\right) & =D_{K L}\left(\rho\left(\mathbf{r}^{n}\right) \| \rho\left(G\left(\mathbf{r}^{n}(\boldsymbol{\theta})\right)\right)\right) \\
& =\mathcal{R}\left(\mathbf{R}^{N}(\boldsymbol{\theta}), \mathbf{z}^{n}\right)
\end{aligned}
$$

Information Entropy

Suppose

$$
\begin{aligned}
Q\left(\mathbf{r}^{n}\right) & =\int_{\Gamma} \rho\left(\mathbf{r}^{n}\right) q\left(\mathbf{r}^{n}\right) d \mathbf{r}^{n} \\
Q\left(\mathbf{R}^{N}(\boldsymbol{\theta})\right) & =\int_{\Gamma} \rho\left(\mathbf{r}^{n}\right) q\left(G\left(\mathbf{r}^{n}(\boldsymbol{\theta})\right)\right) d \mathbf{r}^{n} \\
q\left(\mathbf{r}^{n}\right) & =\log \rho\left(\mathbf{r}^{n}\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
Q\left(\mathbf{r}^{n}\right)-Q\left(\mathbf{R}^{N}(\boldsymbol{\theta})\right)= & D_{K L}\left(\rho\left(\mathbf{r}^{n}\right) \| \rho\left(G\left(\mathbf{r}^{n}(\boldsymbol{\theta})\right)\right)\right) \\
= & \mathcal{R}\left(\mathbf{R}^{N}(\boldsymbol{\theta}), \mathbf{z}^{n}\right)
\end{aligned}
$$

$$
=\int \rho(\omega) \log \frac{\rho(\omega)}{\rho(G(\omega))} d \omega
$$

3. Bayesian Model Calibration, Validation, and Prediction

"The essence of 'honesty' or 'objectivity' demands that we take into account all of the evidence we have, not just some arbitrarily chosen subset of it."
-E.T. Jaynes, 2003

Climbing the Prediction Pyramid

Qol

Basic Ideas:

- Use statistical inverse methods based on Bayes' rule to calibrate parameters

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{c} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta})}{\pi\left(\mathbf{y}_{c}\right)}
$$

- Design validation experiments to challenge model assumptions and inform model of Qols

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v} \mid \mathbf{y}_{c}\right)}
$$

- Is model "valid" (not invalid) for the validation Qol (observable) given the data and predictions $\pi\left(Q_{v k} \mid \mathbf{y}_{v k}\right), \pi\left(Q \mid \mathbf{y}_{c}\right)$?
- Solve forward problem for the Qol (not observable) using validation parameters

$$
\pi(Q)=\int \pi\left(Q \mid \boldsymbol{\theta}, \mathbf{y}_{v k}, \mathbf{y}_{v k-1}, \ldots, \mathbf{y}_{c}\right) d \boldsymbol{\theta}
$$

- Compute quantity of uncertainty in $\pi(Q)$

Basic Ideas:

- Use statistical inverse methods based on Bayes' rule to calibrate parameters

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{c} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta})}{\pi\left(\mathbf{y}_{c}\right)}
$$

What is the likelihood function?
What are the priors? How does one compute the posterior?

- Design validation experiments to challenge model assumptions and inform model of Qols

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v} \mid \mathbf{y}_{c}\right)}
$$

- Is model "valid" (not invalid) for the validation Qol (observable) given the data and predictions $\pi\left(Q_{v k} \mid \mathbf{y}_{v k}\right), \pi\left(Q \mid \mathbf{y}_{c}\right)$?
- Solve forward problem for the Qol (not observable) using validation parameters

$$
\pi(Q)=\int \pi\left(Q \mid \boldsymbol{\theta}, \mathbf{y}_{v k}, \mathbf{y}_{v k-1}, \ldots, \mathbf{y}_{c}\right) d \boldsymbol{\theta}
$$

- Compute quantity of uncertainty in $\pi(Q)$

Basic Ideas:

- Use statistical inverse methods based on Bayes' rule to calibrate parameters

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{c} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta})}{\pi\left(\mathbf{y}_{c}\right)}
$$

What is the likelihood function?
What are the priors? How does one compute the posterior?

- Design validation experiments to challenge model assumptions and inform model of Qols

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v} \mid \mathbf{y}_{c}\right)}
$$ Is the validation experiment well chosen? Has it resulted in an information gain over the calibration?

- Is model "valid" (not invalid) for the validation Qol (observable) given the data and predictions $\pi\left(Q_{v k} \mid \mathbf{y}_{v k}\right), \pi\left(Q \mid \mathbf{y}_{c}\right)$?
- Solve forward problem for the Qol (not observable) using validation parameters

$$
\pi(Q)=\int \pi\left(Q \mid \boldsymbol{\theta}, \mathbf{y}_{v k}, \mathbf{y}_{v k-1}, \ldots, \mathbf{y}_{c}\right) d \boldsymbol{\theta}
$$

- Compute quantity of uncertainty in $\pi(Q)$

Basic Ideas:

- Use statistical inverse methods based on Bayes' rule to calibrate parameters

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{c} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta})}{\pi\left(\mathbf{y}_{c}\right)}
$$

What is the likelihood function?
What are the priors? How does one compute the posterior?

- Design validation experiments to challenge model assumptions and inform model of Qols

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v} \mid \mathbf{y}_{c}\right)}
$$ Is the validation experiment well chosen? Has it resulted in an information gain over the calibration?

- Is model "valid" (not invalid) for the validation Qol (observable) given the data and predictions $\pi\left(Q_{v k} \mid \mathbf{y}_{v k}\right), \pi\left(Q \mid \mathbf{y}_{c}\right)$?

What is the criterion for "validity" of a model?

- Solve forward problem for the Qol (not observable) using validation parameters

$$
\pi(Q)=\int \pi\left(Q \mid \boldsymbol{\theta}, \mathbf{y}_{v k}, \mathbf{y}_{v k-1}, \ldots, \mathbf{y}_{c}\right) d \boldsymbol{\theta}
$$

- Compute quantity of uncertainty in $\pi(Q)$

Basic Ideas:

- Use statistical inverse methods based on Bayes' rule to calibrate parameters

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{c} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta})}{\pi\left(\mathbf{y}_{c}\right)}
$$

What is the likelihood function?
What are the priors? How does one compute the posterior?

- Design validation experiments to challenge model assumptions and inform model of Qols

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v} \mid \mathbf{y}_{c}\right)}
$$ Is the validation experiment well chosen? Has it resulted in an information gain over the calibration?

- Is model "valid" (not invalid) for the validation Qol (observable) given the data and predictions $\pi\left(Q_{v k} \mid \mathbf{y}_{v k}\right), \pi\left(Q \mid \mathbf{y}_{c}\right)$?

What is the criterion for "validity" of a model?

- Solve forward problem for the Qol (not observable) using validation parameters

$$
\pi(Q)=\int \pi\left(Q \mid \boldsymbol{\theta}, \mathbf{y}_{v k}, \mathbf{y}_{v k-1}, \ldots, \mathbf{y}_{c}\right) d \boldsymbol{\theta}
$$

How do we solve the
forward problem?

- Compute quantity of uncertainty in $\pi(Q)$

Basic Ideas:

- Use statistical inverse methods based on Bayes' rule to calibrate parameters

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{c} \mid \boldsymbol{\theta}\right) \pi(\boldsymbol{\theta})}{\pi\left(\mathbf{y}_{c}\right)}
$$

What is the likelihood function?
What are the priors? How does one compute the posterior?

- Design validation experiments to challenge model assumptions and inform model of Qols

$$
\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v} \mid \mathbf{y}_{c}\right)}
$$ Is the validation experiment well chosen? Has it resulted in an information gain over the calibration?

- Is model "valid" (not invalid) for the validation Qol (observable) given the data and predictions $\pi\left(Q_{v k} \mid \mathbf{y}_{v k}\right), \pi\left(Q \mid \mathbf{y}_{c}\right)$?

What is the criterion for "validity" of a model?

- Solve forward problem for the Qol (not observable) using validation parameters

$$
\pi(Q)=\int \pi\left(Q \mid \boldsymbol{\theta}, \mathbf{y}_{v k}, \mathbf{y}_{v k-1}, \ldots, \mathbf{y}_{c}\right) d \boldsymbol{\theta}
$$

- Compute quantity of uncertainty in $\pi(Q)$

How do we solve the forward problem?

How do we "quantify"
uncertainty?

The Prior

We seek a logical measure $H(p)$ of the amount of uncertainty in a probability distribution $p=$ $\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}, p_{i}=p\left(x_{i}\right)$
${ }_{1} H(p) \in \mathbb{R}$
2 $H \in C^{0}(\mathbb{R})$
3 "common sense:" $H\left(\frac{1}{n}, \frac{1}{n}, \ldots\right) \uparrow$ as $n \rightarrow \infty$
4 Consistency

Shannon's Theorem

The only function satisfying four logical desiderata is the information entropy

$$
H(p)=-\sum_{i=1}^{n} p_{i} \log p_{i} \quad\left(\text { or }-\int p \log p / m d x\right)
$$

Moreover, the actual probability p maximizes $H(p)$ subject to constraints imposed by available information

Relative Entropy

Given two pdfs p and q, the relative entropy is given by the Kullback-Leibler divergence,

$$
D_{K L}(p \| q)=\int p(x) \log \frac{p(x)}{q(x)} d x=-H(p)+H(p, q)
$$

The Prior

Maximize $H(p)$ subject to prior information constraints:

- $\langle x\rangle$

$$
\begin{aligned}
\mathcal{L}(p, \lambda) & =H(p)-\lambda_{0}\left(\sum_{i=1}^{n} p_{i}-1\right)-\lambda_{1}\left(\sum_{i=1}^{n} p_{i} x_{i}-\langle x\rangle\right) \\
& \Rightarrow \quad \pi(\boldsymbol{\theta})=\frac{1}{\langle x\rangle} \exp \{-x /\langle x\rangle\}
\end{aligned}
$$

- $\langle x\rangle, \sigma_{x}^{2}$

$$
\begin{aligned}
\mathcal{L}(p, \lambda)= & H(p)-\lambda_{0}\left(\sum_{i=1}^{n} p_{i}-1\right)-\lambda_{1}\left(\sum_{i=1}^{n} p_{i} x_{i}-\langle x\rangle\right) \\
& -\lambda_{2}\left(\sum_{i=1}^{n} p_{i}\left(x_{i}-\langle x\rangle\right)^{2}-\sigma_{x}^{2}\right)
\end{aligned}
$$

E. T. Jaynes (1988)

$$
\pi(\boldsymbol{\theta})=\frac{1}{\sqrt{2 \pi} \sigma_{x}} \exp \left\{\frac{-(x-\langle x\rangle)^{2}}{2 \sigma_{x}^{2}}\right\}
$$

Determining Calibration Priors: Bonds

Bond Equilibrium Distance: R_{0}
$\left\langle R_{0}\right\rangle=2.5219$
$\sigma_{R_{0}}^{2}=4.1097 \times 10^{-3}$
Spring Constant: $k_{R_{0}}$

$$
\left\langle k_{R}\right\rangle=k_{B} T / 2 \sigma_{R_{0}}^{2}
$$

$$
=72.5264
$$

Equilibrium Angle: θ_{0}, $\left\langle\theta_{0}\right\rangle=105.5117$
$\sigma_{\theta_{0}}^{2}=192.8262$
Spring Constant: k_{θ}
$\left\langle k_{\theta}\right\rangle=k_{B} T / 2 \sigma_{\theta_{0}}^{2}$

$$
=1.5458 \times 10^{-3}
$$

The Likelihood Function

R.A. Fisher, 1922: The likelihood that any parameter should have any assigned value is proportional to the probability that if this were true the totality of all observations should be that observed.

Consider n i.i.d. random observables $y_{1}, y_{2}, \ldots, y_{n}$
For each sample,

$$
\pi\left(y_{i} \mid \boldsymbol{\theta}\right)=p\left(y_{i}-d_{i}(\boldsymbol{\theta})\right)
$$

For many samples,

$$
\pi\left(y_{1}, y_{2}, \ldots, y_{n} \mid \boldsymbol{\theta}\right)=\prod_{i=1}^{n} \pi\left(y_{i} \mid \boldsymbol{\theta}\right)
$$

Then the log-likelihood is

$$
L_{n}(\boldsymbol{\theta})=\sum_{i=1}^{n} \log \pi\left(y_{i} \mid \boldsymbol{\theta}\right)
$$

The Model Evidence - Model Plausibilities: Which model is "best"?

$\mathcal{M}=$ set of parametric model classes $=\left\{\mathcal{P}_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{m}\right\}$
Each \mathcal{P} has its own likelihood and parameters $\boldsymbol{\theta}_{j}$
Bayes' rule in expanded form:

$$
\pi\left(\boldsymbol{\theta}_{j} \mid \mathbf{y}, \mathcal{P}_{j}, \mathcal{M}\right)=\frac{\pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}, \mathcal{P}_{j}, \mathcal{M}\right) \pi\left(\boldsymbol{\theta}_{j} \mid \mathcal{P}_{j}, \mathcal{M}\right)}{\pi\left(\mathbf{y} \mid \mathcal{P}_{j}, \mathcal{M}\right)}, \quad 1 \leq j \leq m
$$

Now apply Bayes' rule to the evidence:

$$
\begin{aligned}
\rho_{j} & =\pi\left(\mathcal{P}_{j} \mid \mathbf{y}, \mathcal{M}\right)=\frac{\pi\left(\mathcal{P}_{j} \mid \mathcal{M}\right)}{\pi(\mathbf{y} \mid \mathcal{M})} \pi\left(\mathbf{y} \mid \mathcal{P}_{j}, \mathcal{M}\right) \\
& =\text { the posterior model plausibility }
\end{aligned}
$$

$$
\sum_{j=1}^{m} \rho_{j}=\frac{1}{\pi(\mathbf{y} \mid \mathcal{M})} \sum_{j=1}^{m} \pi\left(\mathbf{y} \mid \mathcal{P}_{j}, \mathcal{M}\right) \pi\left(\mathcal{P}_{j} \mid \mathcal{M}\right)=1
$$

4. The Prediction Process: Traveling up the Prediction

 Pyramid

SFIL Coarse Graining

Constituents of Etch Barrier

Monomer 1
Monomer 2
Crosslinker
Initiator

Farrell and Oden 2013

SFIL Coarse Graining

Constituents of Etch Barrier

SFIL Coarse Graining

Constituents of Etch Barrier

Monomer 1
Monomer 2
Crosslinker
Initiator

SFIL Calibration Scenarios: S_{c}

SFIL Coarse Graining

AA System 827 atoms 503 parameters

CG System
61 particles

SFIL Validation Scenario: S_{v}

Series of scenarios increasing in size

$S_{v, 1}$

$S_{v, 2}$

$S_{v, 3}$

For each scenario compute the Qol:

$$
\begin{gathered}
Q=\int_{\Gamma_{A A}} \rho\left(\mathbf{r}^{n}\right) u_{A A}\left(\mathbf{r}^{n}\right) d \mathbf{r}^{n} ; Q_{v, k}(\boldsymbol{\theta})=\int_{\Gamma_{C G, k}} \rho\left(\mathbf{R}^{N}\right) U_{C G}\left(\mathbf{R}^{N} ; \boldsymbol{\theta}\right) d \mathbf{R}^{N} \\
\rho\left(\mathbf{r}^{n}\right) \propto \exp \left\{-\beta u\left(\mathbf{r}^{n}\right)\right\}
\end{gathered}
$$

SFIL Validation Scenario: S_{v}

Series of scenarios increasing in size

$S_{v, 1}$

$S_{v, 3}$

Compare the computed Qol to AA data: if

$$
D_{K L}\left(\pi\left(\left.u_{A A}\right|_{S_{v}}\right) \| \pi\left(Q_{v}\right)\right)<\gamma_{t o l}
$$

the model is considered validated

SFIL Model Classes

Model	Bonds	Angles	Dihedrals	Non-Bonded	\# of Parameters
\mathcal{P}_{1}				\checkmark	12
\mathcal{P}_{2}	\checkmark				18
\mathcal{P}_{3}	\checkmark			\checkmark	30
\mathcal{P}_{4}		\checkmark			32
\mathcal{P}_{5}		\checkmark		\checkmark	44
\mathcal{P}_{6}	\checkmark	\checkmark			50
\mathcal{P}_{7}	\checkmark	\checkmark		\checkmark	62
\mathcal{P}_{8}			\checkmark		96
\mathcal{P}_{9}			\checkmark	\checkmark	108
\mathcal{P}_{10}	\checkmark		\checkmark		114
\mathcal{P}_{11}	\checkmark		\checkmark	\checkmark	126
\mathcal{P}_{12}		\checkmark	\checkmark		128
\mathcal{P}_{13}		\checkmark	\checkmark	\checkmark	140
\mathcal{P}_{14}	\checkmark	\checkmark	\checkmark		146
\mathcal{P}_{15}	\checkmark	\checkmark	\checkmark	\checkmark	158

Sensitivity Analysis

- PIRT (Phenomena Identification and Ranking Table)
- Importance Measures (Hora and Iman, 1995)
- Correlation Ratios (McKay, 1995)
- Sensitivity Analysis (Saltelli, Chan, Scott, 2000, Saltelli et. al. 2008)
- Variance-based

$$
\begin{aligned}
& \text { - Entropy-based } \\
& K L_{i}\left(p_{1} \| p_{0}\right)=\int_{-\infty}^{\infty} p_{1}\left(y\left(\theta_{1}, \theta_{2}, \ldots, \bar{\theta}_{i}, \ldots, \theta_{m}\right)\right) \\
& \times\left|\log \frac{p_{0}\left(y\left(\theta_{1}, \theta_{2}, \ldots, \bar{\theta}_{i}, \ldots, \theta_{m}\right)\right)}{p_{1}\left(y\left(\theta_{1}, \theta_{2}, \ldots, \theta_{i}, \ldots, \theta_{m}\right)\right)}\right| d y, \quad \bar{\theta}_{i}=\left\langle\theta_{i}\right\rangle \\
& =D_{K L}
\end{aligned}
$$

- Scatter Plots, etc

Saltelli, A., et.al. (2001)
Auder, B. and looss, B. (2009)
Chen, W et.al (2005)

Sensitivity Analysis: Variance-Based Method

$Y(\boldsymbol{\theta})=$ model output $\left(e . g . Y(\boldsymbol{\theta})=\left\langle U(\cdot ; \boldsymbol{\theta}\rangle_{C G}\right)\right.$
$V(Y)=$ output variance $=\mathbb{E}\left(Y^{2}\right)-\mathbb{E}^{2}(Y)$

$$
V(Y)=V_{\boldsymbol{\theta}_{\sim i}}\left[\left(\mathbb{E}_{X_{i}}\left(Y \mid \boldsymbol{\theta}_{\sim i}\right)\right)\right]+\mathbb{E}_{\boldsymbol{\theta}_{\sim i}}\left[\left(V_{X_{i}}\left(Y \mid \boldsymbol{\theta}_{\sim i}\right)\right)\right]
$$

$$
S_{T_{i}}=1-\frac{V_{\boldsymbol{\theta}_{\sim i}}\left[\mathbb{E}_{\theta_{i}}\left(Y \mid \boldsymbol{\theta}_{\sim i}\right)\right]}{V(Y)}
$$

(Total effect sensitivity index)

Example: Polyethylene chain with 24 beads

Saltelli, A., et.al. (2001)

Sensitivity Analysis: Monte Carlo Scatterplots

Sensitivity Analysis: Comparison

The sensitivity indices and scatterplots show that the dihedral parameters are unimportant, but how important are they?

Occam's Razor

Principle of Occam's Razor

Among competing theories that lead to the same prediction, the one that relies on the fewest assumptions is the best.

When choosing among a set of models: The simplest valid model is the best choice.

Occam's Razor

Principle of Occam's Razor

Among competing theories that lead to the same prediction, the one that relies on the fewest assumptions is the best.

When choosing among a set of models: The simplest valid model is the best choice.

- simple \Rightarrow number of parameters
- valid \Rightarrow passes Bayesian validation test

How do we choose a model that adheres to this principle?

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

Submit \mathcal{P}_{j}^{*} to validation test

5. Exploratory Example: Polyethylene

Consider as an example polyethylene

$\mathrm{C}_{24} \mathrm{H}_{50}$

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

Example: Occam-Plausibility Algorithm

Consider as an example polyethylene

Define the coarse-grained map: 2 carbons per bead

Example: Occam-Plausibility Algorithm (cont)

 Representation of the CG potential using OPLS form| Model | Bonds | Angles | Dihedrals | Non-Bonded | Params |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \mathcal{P}_{1} | \checkmark | | | | 2 |
| \mathcal{P}_{2} | | \checkmark | | | 2 |
| \mathcal{P}_{3} | | | | \checkmark | 2 |
| \mathcal{P}_{4} | \checkmark | \checkmark | | | 4 |
| \mathcal{P}_{5} | \checkmark | | | \checkmark | 4 |
| \mathcal{P}_{6} | | \checkmark | | \checkmark | 4 |
| \mathcal{P}_{7} | \checkmark | \checkmark | | \checkmark | 6 |
| \mathcal{P}_{8} | | | \checkmark | | 4 |
| \mathcal{P}_{9} | \checkmark | | \checkmark | | 6 |
| \mathcal{P}_{10} | | \checkmark | \checkmark | | 6 |
| \mathcal{P}_{11} | | | \checkmark | \checkmark | 6 |
| \mathcal{P}_{12} | \checkmark | \checkmark | \checkmark | | 8 |
| \mathcal{P}_{13} | \checkmark | | \checkmark | \checkmark | 8 |
| \mathcal{P}_{14} | | \checkmark | \checkmark | \checkmark | 8 |
| \mathcal{P}_{15} | \checkmark | \checkmark | \checkmark | \checkmark | 10 |

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with parameters to which the model output is insensitive

ITERATIVE OCCAM STEP
Choose models in next
Occam category

Identify a new set of possible models

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

Example: Occam-Plausibility Algorithm (cont)

$Y=\langle U(; \boldsymbol{\theta})\rangle=$ potential energy

Example: Occam-Plausibility Algorithm (cont)

Model	Bonds	Angles	Dihedrals	Non-Bonded	Params
\mathcal{P}_{1}	\checkmark				2
\mathcal{P}_{2}		\checkmark			2
\mathcal{P}_{3}				\checkmark	2
\mathcal{P}_{4}	\checkmark	\checkmark			4
\mathcal{P}_{5}	\checkmark			\checkmark	4
\mathcal{P}_{6}		\checkmark		\checkmark	4
\mathcal{P}_{7}	\checkmark	\checkmark		\checkmark	6
\mathcal{P}_{8}			\checkmark		4
\mathcal{P}_{9}	\checkmark		\checkmark		6
\mathcal{P}_{10}		\checkmark	\checkmark		6
\mathcal{P}_{11}			\checkmark	\checkmark	6
\mathcal{P}_{12}	\checkmark	\checkmark	\checkmark		8
\mathcal{P}_{13}	\checkmark		\checkmark	\checkmark	8
\mathcal{P}_{14}		\checkmark	\checkmark	\checkmark	8
\mathcal{P}_{15}	\checkmark	\checkmark	\checkmark	\checkmark	10

Example: Occam-Plausibility Algorithm (cont)

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params
$\overline{\mathcal{P}}_{1}$	\checkmark					2
$\overline{\mathcal{P}}_{2}$		\checkmark				2
$\overline{\mathcal{P}}_{3}$				\checkmark		2
$\overline{\mathcal{P}}_{4}$					\checkmark	2
$\overline{\mathcal{P}}_{5}$	\checkmark	\checkmark				4
$\overline{\mathcal{P}}_{6}$	\checkmark			\checkmark		4
$\overline{\mathcal{P}}_{7}$	\checkmark				\checkmark	4
$\overline{\mathcal{P}}_{8}$		\checkmark		\checkmark		4
$\overline{\mathcal{P}}_{9}$		\checkmark			\checkmark	4
$\overline{\mathcal{P}}_{10}$	\checkmark	\checkmark		\checkmark		6
$\overline{\mathcal{P}}_{11}$	\checkmark			\checkmark	\checkmark	6

Example: Occam-Plausibility Algorithm (cont)

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Category
$\overline{\mathcal{P}}_{1}$	\checkmark					2	1
$\overline{\mathcal{P}}_{2}$		\checkmark				2	
$\overline{\mathcal{P}}_{3}$				\checkmark		2	
$\overline{\mathcal{P}}_{4}$					\checkmark	2	
$\overline{\mathcal{P}}_{5}$	\checkmark	\checkmark				4	2
$\overline{\mathcal{P}}_{6}$	\checkmark			\checkmark		4	
$\overline{\mathcal{P}}_{7}$	\checkmark				\checkmark	4	
$\overline{\mathcal{P}}_{8}$		\checkmark		\checkmark		4	
$\overline{\mathcal{P}}_{9}$		\checkmark			\checkmark	4	
$\overline{\mathcal{P}}_{10}$	\checkmark	\checkmark		\checkmark		6	3
$\overline{\mathcal{P}}_{11}$	\checkmark			\checkmark	\checkmark	6	

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

ITERATIVE OCCAM STEP

Choose models in next
Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

 Submit \mathcal{P}_{j}^{*} to validation test
Example: Occam-Plausibility Algorithm (cont)

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Category
$\overline{\mathcal{P}}_{1}$	\checkmark					2	1
$\overline{\mathcal{P}}_{2}$		\checkmark				2	
$\overline{\mathcal{P}}_{3}$				\checkmark		2	
$\overline{\mathcal{P}}_{4}$					\checkmark	2	
$\overline{\mathcal{P}}_{5}$	\checkmark	\checkmark				4	2
$\overline{\mathcal{P}}_{6}$	\checkmark			\checkmark		4	
$\overline{\mathcal{P}}_{7}$	\checkmark				\checkmark	4	
$\overline{\mathcal{P}}_{8}$		\checkmark		\checkmark		4	
$\overline{\mathcal{P}}_{9}$		\checkmark			\checkmark	4	
$\overline{\mathcal{P}}_{10}$	\checkmark	\checkmark		\checkmark		6	3
$\overline{\mathcal{P}}_{11}$	\checkmark			\checkmark	\checkmark	6	

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next
Occam category

no

1

Does \mathcal{P}_{j}^{*} have the most parameters in $\overline{\mathcal{M}}$

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

Submit \mathcal{P}_{j}^{*} to validation test

Example: Occam-Plausibility Algorithm (cont)

Calibration

$$
\pi\left(\boldsymbol{\theta}_{j}^{*} \mid \mathbf{y}, \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)=\frac{\pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}^{*}, \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right) \pi\left(\boldsymbol{\theta}_{j}^{*} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)}{\pi\left(\mathbf{y} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)}
$$

Here, $\mathbf{y}=$ potential energy of $\mathrm{C}_{6} \mathrm{H}_{14}$
Plausibility

$$
\rho_{j}^{*}=\pi\left(\mathcal{P}_{j}^{*} \mid \mathbf{y}, \mathcal{M}^{*}\right)=\frac{\pi\left(\mathbf{y} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right) \pi\left(\mathcal{P}_{j}^{*} \mid \mathcal{M}^{*}\right)}{\pi\left(\mathbf{y} \mid \mathcal{M}^{*}\right)}
$$

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Plausibility
\mathcal{P}_{1}^{*}	\checkmark					2	1
\mathcal{P}_{2}^{*}		\checkmark				2	0
\mathcal{P}_{3}^{*}				\checkmark		2	0
\mathcal{P}_{4}^{*}					\checkmark	2	0

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

$$
\text { -yes- Is } \mathcal{P}_{j}^{*} \text { valid? }
$$

VALIDATION STEP

 Submit \mathcal{P}_{j}^{*} to validation test
Example: Occam-Plausibility Algorithm (cont)

As a validation scenario, we consider $\mathrm{C}_{18} \mathrm{H}_{38}$ at $\mathrm{T}=300 \mathrm{~K}$ in a canonical ensemble.

Validation

$$
\pi\left(\boldsymbol{\theta}_{1}^{*} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}_{1}^{*}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta}_{1}^{*} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v}\right)}
$$

Here, \mathbf{y}_{v} is the potential energy

How well does this updated model reproduce the desired observable?
Let

- $\pi(Q)=\pi\left(u_{A A}\right) \Rightarrow \pi\left(Q \mid \boldsymbol{\theta}^{*}\right)=\pi\left(U\left(\cdot ; \boldsymbol{\theta}^{*}\right)\right), \quad \gamma_{t o l, 1}=0.05 \sigma_{A A}^{2}$
- $Q=\left\langle u_{A A}\right\rangle \quad \Rightarrow \quad \mathbb{E}\left[\pi\left(Q \mid \boldsymbol{\theta}^{*}\right)\right]=\mathbb{E}\left[\left\langle U\left(\cdot ; \boldsymbol{\theta}^{*}\right)\right\rangle\right], \gamma_{t o l, 2}=0.2 Q$

Example: Occam-Plausibility Algorithm (cont)

If we compare the distributions,

$$
\begin{aligned}
& D_{K L}\left(\pi\left(Q_{A A}\right) \| \pi\left(Q_{C G}\right)\right)=0.2435 \sigma_{A A}^{2}>\gamma_{1, t o l} \\
& \text { where } \gamma_{t o l, 1}=0.05 \sigma_{A A}^{2}
\end{aligned}
$$

If we compare the ensemble average,
$\left|Q_{A A}-\mathbb{E}_{\pi_{\text {post }}^{v}}\left[\pi\left(Q_{v} \mid \boldsymbol{\theta}\right)\right]\right|=0.67173 Q>\gamma_{2, \text { tol }}$
where $\gamma_{t o l, 2}=0.2 Q_{A A}$

Model is invalid

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

 Submit \mathcal{P}_{j}^{*} to validation test
The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

ITERATIVE OCCAM STEP

Choose models in next
Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

no

I

Does \mathcal{P}_{j}^{*} have the most parameters in $\overline{\mathcal{M}}$

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

Submit \mathcal{P}_{j}^{*} to validation test

Example: Occam-Plausibility Algorithm (cont)

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Category
$\overline{\mathcal{P}}_{1}$	\checkmark					2	1
$\overline{\mathcal{P}}_{2}$		\checkmark				2	
$\overline{\mathcal{P}}_{3}$				\checkmark		2	
$\overline{\mathcal{P}}_{4}$					\checkmark	2	
$\overline{\mathcal{P}}_{5}$	\checkmark	\checkmark				4	2
$\overline{\mathcal{P}}_{6}$	\checkmark			\checkmark		4	
$\overline{\mathcal{P}}_{7}$	\checkmark				\checkmark	4	
$\overline{\mathcal{P}}_{8}$		\checkmark		\checkmark		4	
$\overline{\mathcal{P}}_{9}$		\checkmark			\checkmark	4	
$\overline{\mathcal{P}}_{10}$	\checkmark	\checkmark		\checkmark		6	3
$\overline{\mathcal{P}}_{11}$	\checkmark			\checkmark	\checkmark	6	

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

Does \mathcal{P}_{j}^{*} have the most parameters in $\overline{\mathcal{M}}$

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

 Submit \mathcal{P}_{j}^{*} to validation test
Example: Occam-Plausibility Algorithm (cont)

Calibration

$$
\pi\left(\boldsymbol{\theta}_{j}^{*} \mid \mathbf{y}, \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)=\frac{\pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}^{*}, \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right) \pi\left(\boldsymbol{\theta}_{j}^{*} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)}{\pi\left(\mathbf{y} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)}
$$

Here, $\mathbf{y}=$ potential energy of $\mathrm{C}_{6} \mathrm{H}_{14}$
Plausibility

$$
\rho_{j}^{*}=\pi\left(\mathcal{P}_{j}^{*} \mid \mathbf{y}, \mathcal{M}^{*}\right)=\frac{\pi\left(\mathbf{y} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right) \pi\left(\mathcal{P}_{j}^{*} \mid \mathcal{M}^{*}\right)}{\pi\left(\mathbf{y} \mid \mathcal{M}^{*}\right)}
$$

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Plausibility
\mathcal{P}_{1}^{*}	\checkmark	\checkmark				4	3.7891×10^{-7}
\mathcal{P}_{2}^{*}	\checkmark			\checkmark		4	0.3420
\mathcal{P}_{3}^{*}	\checkmark				\checkmark	4	0.6580

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

 Submit \mathcal{P}_{j}^{*} to validation test
Example: Occam-Plausibility Algorithm (cont)

As a validation scenario, we consider $\mathrm{C}_{18} \mathrm{H}_{38}$ at $\mathrm{T}=300 \mathrm{~K}$ in a canonical ensemble.

Validation

$$
\pi\left(\boldsymbol{\theta}_{3}^{*} \mid \mathbf{y}_{v}, \mathbf{y}_{c}\right)=\frac{\pi\left(\mathbf{y}_{v} \mid \boldsymbol{\theta}_{3}^{*}, \mathbf{y}_{c}\right) \pi\left(\boldsymbol{\theta}_{3}^{*} \mid \mathbf{y}_{c}\right)}{\pi\left(\mathbf{y}_{v}\right)}
$$

Here, \mathbf{y}_{v} is the potential energy

How well does this updated model reproduce the desired observable?
Let

- $\pi(Q)=\pi\left(u_{A A}\right) \Rightarrow \pi\left(Q \mid \boldsymbol{\theta}^{*}\right)=\pi\left(U\left(\cdot ; \boldsymbol{\theta}^{*}\right)\right), \quad \gamma_{1, t o l}=0.05 \sigma_{A A}^{2}$
- $Q=\left\langle u_{A A}\right\rangle \quad \Rightarrow \quad \mathbb{E}\left[\pi\left(Q \mid \boldsymbol{\theta}^{*}\right)\right]=\mathbb{E}\left[\left\langle U\left(\cdot ; \boldsymbol{\theta}^{*}\right)\right\rangle\right], \gamma_{2, \text { tol }}=0.2 Q$

Example: Occam-Plausibility Algorithm (cont)

If we compare the distributions,

$$
\begin{aligned}
& D_{K L}\left(\pi\left(Q_{A A}\right) \| \pi\left(Q_{C G}\right)\right)=0.2084 \sigma_{A A}^{2}>\gamma_{1, t o l} \\
& \text { where } \gamma_{t o l, 1}=0.05 \sigma_{A A}^{2}
\end{aligned}
$$

If we compare the ensemble average,
$\left|Q_{A A}-\mathbb{E}_{\pi_{p o s t}^{v}}\left[\pi\left(Q_{v} \mid \boldsymbol{\theta}\right)\right]\right|=0.5731 Q>\gamma_{2, \text { tol }}$
where $\gamma_{t o l, 2}=0.2 Q_{A A}$

Model is invalid

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

Submit \mathcal{P}_{j}^{*} to validation test

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

ITERATIVE OCCAM STEP

Choose models in next
Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

no

I

Does \mathcal{P}_{j}^{*} have the most parameters in $\overline{\mathcal{M}}$

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

Submit \mathcal{P}_{j}^{*} to validation test

Example: Occam-Plausibility Algorithm (cont)

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Category
$\overline{\mathcal{P}}_{1}$	\checkmark					2	1
$\overline{\mathcal{P}}_{2}$		\checkmark				2	
$\overline{\mathcal{P}}_{3}$				\checkmark		2	
$\overline{\mathcal{P}}_{4}$					\checkmark	2	
$\overline{\mathcal{P}}_{5}$	\checkmark	\checkmark				4	2
$\overline{\mathcal{P}}_{6}$	\checkmark			\checkmark		4	
$\overline{\mathcal{P}}_{7}$	\checkmark				\checkmark	4	
$\overline{\mathcal{P}}_{8}$		\checkmark		\checkmark		4	
$\overline{\mathcal{P}}_{9}$		\checkmark			\checkmark	4	
$\overline{\mathcal{P}}_{10}$	\checkmark	\checkmark		\checkmark		6	3
$\overline{\mathcal{P}}_{11}$	\checkmark			\checkmark	\checkmark	6	

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next
Occam category

no

1

Does \mathcal{P}_{j}^{*} have the most parameters in $\overline{\mathcal{M}}$

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

Submit \mathcal{P}_{j}^{*} to validation test

Example: Occam-Plausibility Algorithm (cont)

Calibration

$$
\pi\left(\boldsymbol{\theta}_{j}^{*} \mid \mathbf{y}, \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)=\frac{\pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{j}^{*}, \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right) \pi\left(\boldsymbol{\theta}_{j}^{*} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)}{\pi\left(\mathbf{y} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right)}
$$

Here, $\mathbf{y}=$ potential energy of $\mathrm{C}_{6} \mathrm{H}_{14}$
Plausibility

$$
\rho_{j}^{*}=\pi\left(\mathcal{P}_{j}^{*} \mid \mathbf{y}, \mathcal{M}^{*}\right)=\frac{\pi\left(\mathbf{y} \mid \mathcal{P}_{j}^{*}, \mathcal{M}^{*}\right) \pi\left(\mathcal{P}_{j}^{*} \mid \mathcal{M}^{*}\right)}{\pi\left(\mathbf{y} \mid \mathcal{M}^{*}\right)}
$$

Model	Bonds	Angles	Dihedrals	LJ 12-6	LJ 9-6	Params	Plausibility
$\overline{\mathcal{P}}_{10}$	\checkmark	\checkmark		\checkmark		6	0.5
$\overline{\mathcal{P}}_{11}$	\checkmark			\checkmark	\checkmark	6	0.5

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

VALIDATION STEP

 Submit \mathcal{P}_{j}^{*} to validation test
Example: Occam-Plausibility Algorithm (cont)

If we compare the distributions,

$$
\begin{aligned}
& D_{K L}\left(\pi\left(Q_{A A}\right) \| \pi\left(Q_{C G}\right)\right)=0.0452 \sigma_{A A}^{2}<\gamma_{1, t o l} \\
& \text { where } \gamma_{t o l, 1}=0.05 \sigma_{A A}^{2}
\end{aligned}
$$

If we compare the ensemble average,
$\left|Q_{A A}-\mathbb{E}_{\pi_{\text {post }}^{v}}\left[\pi\left(Q_{v} \mid \boldsymbol{\theta}\right)\right]\right|=0.1721 Q<\gamma_{2, \text { tol }}$
where $\gamma_{t o l, 2}=0.2 Q_{A A}$

Model is NOT invalid

Example: Occam-Plausibility Algorithm (cont)

How do the observables change as we move through the Iterative Occam Step?

The Occam-Plausibility Algorithm

SENSITIVITY ANALYSIS

START

Identify a set of possible models, \mathcal{M}

Eliminate models with

Identify a new set of possible models
parameters to which the model output is insensitive

Occam category

$$
\overline{\mathcal{M}}=\left\{\overline{\mathcal{P}}_{1}, \ldots, \overline{\mathcal{P}}_{m}\right\}
$$

ITERATIVE OCCAM STEP

Choose models in next

OCCAM STEP

Choose model(s) in the lowest Occam Category $\mathcal{M}^{*}=\left\{\mathcal{P}_{1}^{*}, \ldots, \mathcal{P}_{m}^{*}\right\}$

CALIBRATION STEP

Calibrate all models in \mathcal{M}^{*}

PLAUSIBILITY STEP

Compute plausibilities and identify most plausible model \mathcal{P}_{j}^{*}

Work in Progress: PMMA

One molecule has: 15 atoms 72 parameters

Work in Progress: PMMA

CG Calibration Scenario

(1)

Model	Bonds	Angles	LJ 9-6	LJ 12-6	A	\# of Parameters
\mathcal{P}_{1}	\checkmark			\checkmark	\checkmark	9
\mathcal{P}_{2}	rigid	\checkmark		\checkmark	\checkmark	9
\mathcal{P}_{3}	\checkmark	\checkmark		\checkmark	\checkmark	13
\mathcal{P}_{4}	\checkmark		\checkmark		\checkmark	9
\mathcal{P}_{5}	rigid	\checkmark	\checkmark		\checkmark	9
\mathcal{P}_{6}	\checkmark	\checkmark	\checkmark		\checkmark	13
\mathcal{P}_{7}	\checkmark				\checkmark	5
\mathcal{P}_{8}	rigid	\checkmark			\checkmark	5
\mathcal{P}_{9}	\checkmark	\checkmark			\checkmark	9

The polymerization process (KMC)

$10 \times 10 \times 10 \mathrm{~nm}$

Continuum Models Calibration Scenario

Model	\# of Parameters
$\mathcal{P}_{1}:$ Saint Venant-Kirchhoff	2
$\mathcal{P}_{2}:$ Neo-Hookean	2
$\mathcal{P}_{3}:$ Mooney-Rivilin	3

Continuum Models Calibration Scenario

Initial Configuration

Equlibration Configuration

Continuum Models Calibration Scenario

Continuum Models Calibration Scenario

Hyperelastic Model
\mathcal{P}_{2} : Compressible Neo-Hookean model
$W=C_{1}\left(I_{1}-3\right)-2 C_{1} \ln \sqrt{I_{3}}+C_{2}\left(\sqrt{I_{3}}-1\right)^{2}$
macromodel parameters $=\boldsymbol{\theta}_{2}=\left(C_{1}, C_{2}\right)$
Biaxial deformation $\lambda_{1}=\lambda_{2}$: Strain-Energy $\rightarrow W=W\left(\lambda_{1}, \boldsymbol{\theta}_{2}\right)$

Observational data supplied by CG model to calibrate the continuum models

6. Model Inadequacy - Misspecified Models

Suppose $\mu^{*} \notin \mathcal{P}(\Theta)$. Then the density $g(\mathbf{y}) \notin \mathcal{P}(\Theta)$ (model is inadequate)

Let there exist a $\boldsymbol{\theta}_{0}$ such that

$$
\boldsymbol{\theta}_{0}=\underset{\boldsymbol{\theta} \in \Theta}{\operatorname{argmin}} D_{K L}(g(\mathbf{y}) \| \pi(\cdot \mid \boldsymbol{\theta})) \quad \forall i
$$

Then, under suitable smoothness conditions

$$
\left\|\pi^{n}\left(y_{1}, y_{2}, \ldots, y_{n} \mid \cdot\right)-\mathcal{N}\left(\hat{\boldsymbol{\theta}}_{n}, \frac{1}{n} V_{\boldsymbol{\theta}_{0}}\right)\right\|_{T V} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

where $\hat{\boldsymbol{\theta}}_{n}=$ the MLE and

$$
\left(V_{\boldsymbol{\theta}_{0}}\right)_{i j}=-\mathbb{E}_{g}\left[\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} L_{\mathbf{y}}\left(\boldsymbol{\theta}_{0}\right)\right]
$$

Kleijn and van der Vaart (2012), Freedman, D. (2006), Geyer (2003)

Lemma: θ_{0} is the maximum likelihood estimate

Proof:

$$
\begin{aligned}
\boldsymbol{\theta}_{0} & =\underset{\Theta}{\operatorname{argmin}}\left[\int_{\mathcal{Y}}(g(\mathbf{y}) \log g(\mathbf{y})-g(\mathbf{y}) \pi(\mathbf{y} \| \boldsymbol{\theta})) d \mathbf{y}\right] \\
& =\underset{\Theta}{\operatorname{argmin}}\left[-\int_{\mathcal{Y}} g(\mathbf{y}) \pi(\mathbf{y} \| \boldsymbol{\theta}) d \mathbf{y}\right] \\
& =\underset{\Theta}{\operatorname{argmax}}\left[\int_{\mathcal{Y}} g(\mathbf{y}) \pi(\mathbf{y} \| \boldsymbol{\theta}) d \mathbf{y}\right] \\
& =\underset{\Theta}{\operatorname{argmax}} \mathbb{E}_{g}[\log \pi(\mathbf{y} \mid \boldsymbol{\theta})]
\end{aligned}
$$

Model Misspecification and Model Plausibility

Theorem 1: (Bayesian \rightarrow Frequentist)
If

$$
\pi\left(\mathbf{y} \mid \mathcal{P}_{i}, \mathcal{M}\right)=\int_{\Theta} \pi\left(\mathbf{y} \mid \boldsymbol{\theta}, \mathcal{P}_{i}, \mathcal{M}\right) \delta\left(\boldsymbol{\theta}-\boldsymbol{\theta}_{0}\right) d \boldsymbol{\theta}=\pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{0}, \mathcal{P}_{i}, \mathcal{M}\right)
$$

and

$$
\frac{\rho_{1}}{\rho_{2}}=\frac{\pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{0,1}, \mathcal{P}_{1}, \mathcal{M}\right)}{\pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{0,2}, \mathcal{P}_{2}, \mathcal{M}\right)} \times O_{12}
$$

Then, if \mathcal{P}_{1} is more plausible than \mathcal{P}_{2} and $O_{12} \leq 1$,

$$
D_{K L}\left(g \| \pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{0,1}, \mathcal{P}_{1}, \mathcal{M}\right)\right)<D_{K L}\left(g \| \pi\left(\mathbf{y} \mid \boldsymbol{\theta}_{0,2}, \mathcal{P}_{2}, \mathcal{M}\right)\right)
$$

(The converse: $D_{K L}(1)<D_{K L}(2) \Rightarrow \rho_{1}>\rho_{2}$, holds only under special assumptions)

Model Misspecification and Model Plausibility

Corollary

For given observational data \mathbf{y}, let $\mathcal{P}_{1}\left(\boldsymbol{\theta}_{1}\right)$ be the only well specified model in a set \mathcal{M} of parametric models $\left\{\mathcal{P}_{1}\left(\boldsymbol{\theta}_{1}\right), \mathcal{P}_{2}\left(\boldsymbol{\theta}_{2}\right), \ldots, \mathcal{P}_{m}\left(\boldsymbol{\theta}_{m}\right)\right\}$ Then, a) $\mathcal{P}_{1}\left(\boldsymbol{\theta}_{1}\right)$ is the most plausible model in the set \mathcal{M},

$$
\rho_{1}>\rho_{k}, \quad k=2,3, \ldots, m
$$

b) there exists $\boldsymbol{\theta}^{*}$ belonging to $\mathcal{P}_{1}\left(\Theta_{1}\right)$ such that

$$
\boldsymbol{\theta}^{*}=\operatorname{argmin} D_{K L}(g \| \pi(\mathbf{y} \mid \boldsymbol{\theta}))
$$

Conclusions

- Bayes' theorem provides a powerful framework for dealing with model validation and uncertainty quantification
- The test of model validity can involve a sequence of statistical inverse problems for model parameters, each reflecting the projected influence of the Qol

Validation is the process of determining the level of confidence one has in the ability of the model to predict quantities of interest based on the accuracy with which the model predicts specific observables to within preset tolerances

- The concept of model plausibility provides a powerful tool for

1 determining potentials for CG models of atomic systems
2 choosing models among a class of models that have parameter closest "in $D_{K L}$ " to the true distribution

Conclusions

- Model inadequacy can be attributed to model misspecification: $\boldsymbol{\theta}^{*} \notin \mathcal{P}(\Theta)$
- The calculation of model sensitivities due to variations in parameters can significantly reduce the number of relevant models for given outputs.
- Hierarchical categories of models based on numbers of parameters (the Occam categories) together with the evaluation of model plausibilities provide a basis for an adaptive process for validation of parametric classes of coarse-grained models

Thank you!

