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1. The Logic of Predictive Science: What is Predictive
Science?

The process of adjusting the parameters
of a model to improve the agreement of
model predictions with experimental
measurements

Mathematical constructions based on physical
principles or empirical relations-generally
based on inductive theories which attempt to
characterize abstractions of physical reality

The process of determining the
accuracy with which a model can
predict features of physical reality
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Predictive Science: the scientific discipline concerned with assessing the predictability of
mathematical and computational models of physical events. It embraces the processes of
model selection, calibration, validation, verification, and their use in forecasting features of
physical events with quantified uncertainty.

XXX
hhhh

The Quantities of Interest (QoIs): the goals of the simulation UQ: quantifying the uncertainty in predicted QoIs

Comprehensive Nuclear Test Ban: UN 1996
Space Shuttle Accident, 2003
Climate/Weather Prediction
Predictive Medicine

...

Predictability requires knowledge of the
physical laws that are proposed to
explain realities and requires recognizing
and quantifying uncertainties
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The Nature of Science

Science - The activity concerned with the systematic acquisition of
knowledge

The Pillars of Science - I. Theory - inductive hypotheses
II. Observation - experiments
III. Computational Science

The Scientific Method - Test statements that are logical consequences of
scientific hypotheses (theories) or related computer models and simulation
through repeatable experiments or observations
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Logic: The science dealing with the formal principles of reasoning
(or the study of reasoning)

Deductive Reasoning (or deductive logic)
The process of reasoning from one or more general statements
(axioms or premises) to reach logically certain conclusions

• “Top-down logic”: premises⇒ conclusions

• Established as a formal discipline by Aristotle
384-322 B.C.

Inductive Reasoning (or inductive logic)
The process of reasoning by generalizing or extrapolating from
initial information or hypotheses

• “Bottom-up logic”: an open system including domains of epistemic
uncertainty (allowing a conclusion to be false)
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The Imperfect Paths to Knowledge

of
THE UNIVERSE

REALITIES
PHYSICAL

Observational
Errors

OBSERVATIONS COMPUTATIONAL

MODELS

Discretization
Errors

KNOWLEDGE

DECISION

THEORY /
MATHEMATICAL

MODELS

Modeling
Errors

VALIDATION VERIFICATION

PREDICTION
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Cox’s Theorem

Every natural extension of Aristotelian logic with uncertainties is Bayesian

Precisely:

�
�
�

@A s.t. (A|X) and
(Ā|X) are true

There exists a continuous, strictly increasing, real-valued, non-negative
function p, the plausibility of a proposition conditioned on information X,
such that for every proposition A and B and consistent X

1 p(A|X) = 0 iff A is false given the information in X

2 p(A|X) = 1 iff A is true given the information in X

3 0 ≤ p(A|X) ≤ 1

4 p(A ∧B|X) = p(A|X)p(B|AX)

Bayes’ Rule

5 p(Ā|X) = 1− p(A|X) if X is consistent

Richard Trelked Cox, Am. J. Physics, 1946
Edwin T. Jaynes, Probability Theory: The Logic of Science, 2003
Kevin van Horn, J. Approx. Reasoning, 2003
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Post-Cox Developments
• Halpern, Joseph Y., Counterexample to Cox’s Theorem - then a

correction in an “Addendum to Cox’s Theorem” (1999), then refuted
by van Horn (2003)

• Amborg, Stephan and Sjodin, Gunnar (1999, 2000)
• Van Horn, Kevin S., “Constructing a Logic of Plausibility - A Guide to

Cox’s Theorem,” J. Approx. Reasoning (2003)
• Jaynes, Edwin T., Probability Theory: The Logic of Science (2003)
• Dupre, Maurice J. and Tipler, Frank J., “A Trivial Proof of Cox’s

Theorem” (2009)
• McGrayne, Sharon B., The Theory That Would Not Die (2012)
• Freedman, David (1999, 2006)
• Kleijn, B. J. K. and van der Vaart, A. W., The Bernstein-von-Mises

Theorem Under Misspecification (2012)
• Owhadi, Houman, Scoval, Clint and Sullivan, Tim, “Bayesian

Brittleness: Why no Bayesian Model is Good Enough” (2013)
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The Logic of Science: Bayesian Inference

Bayes’ Rule

P (A|B) =
P (B|A)P (A)

P (B)

Thomas Bayes (1763):
“An Essay Towards Solving a
Problem in the Doctrine of
Chances” PRS

∗ Logical Probability ⊃ frequency based theory
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Bayesian Model Calibration, Validation, and Prediction

likelihood prior

π(θ|y) =
π(y|θ)π(θ)

π(y)
�
�

QQ

�� 



posterior evidence

P(Θ) = a parametric model class
= {A(θ, S, u(θ, S)) = 0}

�
��

PPP

BB

JJ

��
mathematical model

HH
solution

Z
Z
Z

scenarioparameters

t Ωi = reality

Ωi + εi = yi

Ωi − di(u(θ, S)) = ηi

p(εi + “ηi”) = p(yi − di(θ)) = π(yi|θ)
= likelihood
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2. The Tyranny of Scales: Predictivity of Multiscale
Models

=⇒ =⇒

All-Atom
(AA)

Model

Coarse-Grained
(CG)

Model

Macro
(Continuum)

Model
The confluence of all challenges in Predictive Science: Exactly what is the
model? Is it “valid”? What is the level of uncertainty in the prediction?
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Nanomanufacturing

a) Semiconductor
Component

c) Manufacturing detail

b) Multiblock Component

National Medal of Technology, 2008
Japan Prize, 2013
C. Grant Willson, UT Austin
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Motivation for Coarse Graining

︸︷︷︸
30 nm = 600 atoms

⇒ 216,000,000 atoms in a cube
⇒ 216,000,000 x 3 degrees of freedom

= 20 coarse-grained particles
⇒ 8000 particles in a cube
⇒ 24,000 degrees of freedom

J.T. Oden Belytschko Lecture October 2014 14 / 93



Coarse Graining as a Reduced Order Method
• M.L. Huggins, Journal of Chemical Physics, 1941
• P.J. Flory, Journal of Computational Physics, 1942
• S. Izvekov, M. Parrienllo, C.J. Burnham, and G.A. Voth, Journal of Chemical

Physics, 2004
• S. Izvekov and G.A. Voth, Journal of Physical Chemistry B, 2005, Journal of

Chemical Physics, 2005, 2006
• W.G. Noid, J.-W. Chu, P. Liu, G.S. Ayton, V. Krishna, S. Izvekov, G.A. Voth,

A. Das, and H.C. Anderson, The Journal of Chemical Physics, 2008
• J.W. Mullinax and W.G. Noid, Journal of Chemical Physics, 2009
• S. Izvekov, P.W. Chung, B.M. Rice, Journal of Chemical Physics, 2010
• E. Brini, V. Marcon, and N.F.A. van der Vegt, Physical Chemistry Chemical

Physics, 2011
• A. Chaimovich and M.S. Shell, Journal of Chemical Physics, 2011
• E. Brini and N.F.A. van der Vegt, Journal of Chemical Physics, 2012
• S.P. Carmichael and M.S. Shell, Journal of Physical Chemistry B, 2012
• Y. Li, B.C. Abberton, M. Kroger, W.K.Liu, Polymers, 2013.
• W.G. Noid, Journal of Chemical Physics, 2013
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Various CG Methods

• Force-matching methods

• Multiscale coarse-graining

• Iterative Boltzmann inversion

• Reverse Monte Carlo

• Conditional Reverse Work

• Minimum Relative Entropy

...

While often advocated, few take into account uncertainties in data,
parameters, model inadequacy, . . .

J.T. Oden Belytschko Lecture October 2014 16 / 93



Parametric Model ClassesMk

G

M1

M2

Mk

···

G1

G2

Gk

M = {M1,M2, . . . ,Mk}
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CG Model
∂U(G(ω); θ)

∂Ri
− Fi = 0, i = 1, 2, . . . , n (+B.C.′s)

U(G(ω); θ) =

NcoX
i=1

ki

2
(R− R0i)

2 +

NθX
i=1

κi

2
(θi − θ0i)

2

µ +

NωX
i=1

κt
i

2
(1 + cos(iω − γ))2

µ +

NX
i=1

NX
j=i+1

(
4εij

"„
σij

Rij

«12

−
„
σij

Rij

«6
#

+
qiqj

4πε0Rij

)
θ = CG model parameters = {ki, κi, κ

t
i, εij , γ, σij}

Macroscale Model

Div
∂W (µ; w)

∂F
− f = 0, x ∈ Ω ⊂ R3 (+B.C.′s)

W (µ; w) = α(I1(C)− 3) + β(I2(C)− 3)− κ ln J(C)“
C = FT F; F = I + ∇w

”
µ = macromodel parameters = (α, β, κ)
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Parametric Model ClassesMk
Mk:

Non-bonded 
interaction 

Bond 

Angle 

Dihedral 

Pk1

Bond 

Angle 

Pk2

Non-bonded 
interaction 

Angle 

Dihedral 

Pk3

Non-bonded 
interaction 

Bond 

Pkm

Mi = {Pi1(θi1),Pi2(θi2), . . . ,Pim(θim)}, i = 1, 2, . . . , k

For simplicity in notation:

M = {P1(θ1),P2(θ2), . . . ,Pm(θm)}
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What are the Models?

v
O
�
�
�
�
��

v��*
r1

m1 p1

�
�
�
�
�>

v -
r2

m2
p2

...
XXXXz v���

rn mn

pn

AA Model

rn = {r1, r2, . . . , rn}

RN = {R1,R2, . . . ,RN}

“G(rn) = G(ω) = RN”

GAαrα = RA; GαARA = rα

v
O
�
�
�
�
��

v���
R1

M1
P1

�
�
�
�
�>

vPPqR2

M2

P2

...
XXXXz v��*

Rn Mn

Pn

CG Model

1 ≤ α ≤ n
1 ≤ A ≤ N

Observables

AA 〈q〉 =
∫

ΓAA

ρAA(rn)q(rn) drn = lim
τ→∞

τ−1

∫ τ

0
q(rn(t)) dt

CG Q(θ) =
∫

ΓCG

ρCG(RN ,θ)q(RN ) dRN = lim
τ→∞

τ−1

∫ τ

0
q(RN (t),θ) dt
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What are the Models?

AA
mαβ r̈βi +

∂

∂rαi
uAA(rn)− fαi = 0

1 ≤ α, β ≤ n
1 ≤ i ≤ 3

CG
MABR̈Bi +

∂

∂RAi
U(RN ,θ)− FAi = 0

1 ≤ A,B ≤ N
1 ≤ i ≤ 3

Adjoint

mαβ z̈βi +Hαiβj(rn)zβj − ∂

∂rαi
q(rn) = 0

Hαiβj(rn) =
∂2uAA(rn)
∂rαi∂rβj
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What are the Models?

Residual

R(RN (θ), zn) = lim
τ→∞

τ−1

∫ τ

0

(
zαiGαAMABR̈Bi + zαiGαB

∂

∂RBi
U(RN ,θ)

−zαiGαBFBi
)
dt

Theorem
(Under suitable smoothness conditions), the error in the observables due
to the CG approximation is, ∀θ ∈ Θ,

ε(θ) = 〈q〉 −Q(θ) = R(RN (θ), zn) + ∆ ≈ R(RN (θ), zn)

where ∆ is a remainder of higher order in “
∥∥rn − RN

∥∥”
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Information Entropy

Suppose
Q (rn) =

∫
Γ
ρ (rn) q (rn) drn

Q
(
RN (θ)

)
=

∫
Γ
ρ (rn) q (G (rn (θ))) drn

q (rn) = log ρ (rn)

Then

Q (rn)−Q (RN (θ)
)

= DKL (ρ (rn) ‖ρ (G (rn (θ))))

= R (RN (θ) , zn
)

=
∫
ρ(ω) log

ρ(ω)
ρ(G(ω))

dω
�
��

�
��

�
��
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3. Bayesian Model Calibration, Validation, and Prediction

“The essence of ‘honesty’ or ‘objectivity’ demands that we take into
account all of the evidence we have, not just some arbitrarily chosen
subset of it.”
−E.T. Jaynes, 2003
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Climbing the Prediction Pyramid
Sc

en
ar

io
s

O
bservations

QoI

0
0.2

0.4
0.6

0.8
1 0

0.5

1

0

0.1

0.2

0.3

0.4

0.5

*

:

Prior
π(θ)

Calibration (Sc, yc)

π(θ|yc) =
π(yc|θ)π(θ)

π(yc)

Validation (Sv, yv)

π(θ|yv, yc) =
π(yv|θ, yc)π(θ, yc)

π(yv|yc)
Prediction (Sp, QoI)

π(Q) = π(Q|θ, Sv, Sc)
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Basic Ideas:
• Use statistical inverse methods based on Bayes’ rule to calibrate

parameters

π(θ|yc) =
π(yc|θ)π(θ)

π(yc)

What is the likelihood function?
What are the priors? How does

one compute the posterior?

• Design validation experiments to challenge model assumptions and
inform model of QoIs

π(θ|yv, yc) =
π(yv|θ, yc)π(θ|yc)

π(yv|yc)

Is the validation experiment
well chosen? Has it resulted
in an information gain over

the calibration?

• Is model “valid” (not invalid) for the validation QoI (observable) given

the data and predictions π(Qvk|yvk), π(Q|yc)?

What is the criterion for
“validity” of a model?

• Solve forward problem for the QoI (not observable) using validation
parameters

π(Q) =
∫
π(Q|θ, yvk, yvk−1, . . . , yc) dθ

How do we solve the
forward problem?

• Compute quantity of uncertainty in π(Q)

How do we “quantify”
uncertainty?
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The Prior
We seek a logical measureH(p) of the amount
of uncertainty in a probability distribution p =
{p1, p2, . . . , pn}, pi = p(xi)

1 H(p) ∈ R
2 H ∈ C0(R)
3 “common sense:”
H( 1

n ,
1
n , . . .) � as n→∞

4 Consistency

Shannon’s Theorem
The only function satisfying four logical desiderata is the information entropy

H(p) = −
n∑

i=1

pi log pi (or −
∫
p log p/m dx)

Moreover, the actual probability p maximizes H(p) subject to constraints imposed
by available information

Relative Entropy
Given two pdfs p and q, the relative entropy is given by the Kullback-Leibler
divergence,

DKL(p‖q) =
∫
p(x) log

p(x)
q(x)

dx = −H(p) +H(p, q)
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The Prior
Maximize H(p) subject to prior information constraints:
• 〈x〉

L(p, λ) = H(p)− λ0

(
n∑
i=1

pi − 1

)
− λ1

(
n∑
i=1

pixi − 〈x〉
)

⇒ π(θ) =
1
〈x〉 exp {−x/ 〈x〉}

• 〈x〉 , σ2
x

L(p, λ) = H(p)− λ0

(
n∑
i=1

pi − 1

)
− λ1

(
n∑
i=1

pixi − 〈x〉
)

−λ2

(
n∑
i=1

pi (xi − 〈x〉)2 − σ2
x

)

⇒ π(θ) =
1√

2πσx
exp

{−(x− 〈x〉)2

2σ2
x

}
E. T. Jaynes (1988)
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Determining Calibration Priors: Bonds

Bond Equilibrium Distance: R0

〈R0〉 = 2.5219
σ2
R0

= 4.1097× 10−3

Spring Constant: kR0

〈kR〉 = kBT/2σ2
R0

= 72.5264

Equilibrium Angle: θ0,

〈θ0〉 = 105.5117
σ2
θ0

= 192.8262

Spring Constant: kθ
〈kθ〉 = kBT/2σ2

θ0
= 1.5458× 10−3
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The Likelihood Function
R.A. Fisher, 1922: The likelihood that any parameter should have any assigned
value is proportional to the probability that if this were true the totality of all
observations should be that observed.

Consider n i.i.d. random observables y1, y2, . . . , yn

For each sample,
π(yi|θ) = p(yi − di(θ))

For many samples,

π(y1, y2, . . . , yn|θ) =
n∏
i=1

π(yi|θ)

Then the log-likelihood is

Ln(θ) =
n∑
i=1

log π(yi|θ)
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The Model Evidence - Model Plausibilities: Which model
is “best”?
M = set of parametric model classes = {P1,P2, . . . ,Pm}
Each P has its own likelihood and parameters θj

Bayes’ rule in expanded form:

π(θj |y,Pj ,M) =
π(y|θj ,Pj ,M)π(θj |Pj ,M)

π(y|Pj ,M)
, 1 ≤ j ≤ m

model evidence =
∫
π(y|θj ,Pj ,M)π(θj |Pj ,M) dθj

Now apply Bayes’ rule to the evidence:

ρj = π(Pj |y,M) =
π(Pj |M)
π(y|M)

π(y|Pj ,M)

= the posterior model plausibility

m∑
j=1

ρj =
1

π(y|M)

m∑
j=1

π(y|Pj ,M)π(Pj |M) = 1
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4. The Prediction Process: Traveling up the Prediction
Pyramid
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SFIL Coarse Graining

Constituents of Etch Barrier
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SFIL Coarse Graining

Constituents of Etch Barrier

Monomer 1 Monomer 2 Crosslinker Initiator
alksjg

dlkafjs
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SFIL Coarse Graining

Constituents of Etch Barrier

Monomer 1 Monomer 2 Crosslinker Initiator
alksjg
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SFIL Calibration Scenarios: Sc

Sc1 Sc2 Sc3
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SFIL Coarse Graining

AA System
827 atoms
503 parameters

CG System
61 particles
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SFIL Validation Scenario: Sv

Series of scenarios increasing in size

Sv,1 Sv,2 Sv,3

For each scenario compute the QoI:

Q =
∫

ΓAA

ρ (rn)uAA (rn) drn; Qv,k (θ) =
∫

ΓCG,k

ρ
(
RN
)
UCG

(
RN ; θ

)
dRN

ρ (rn) ∝ exp {−βu (rn)}

J.T. Oden Belytschko Lecture October 2014 38 / 93



SFIL Validation Scenario: Sv

Series of scenarios increasing in size

Sv,1 Sv,2 Sv,3

Compare the computed QoI to AA data: if

DKL

(
π(uAA|Sv

)‖π(Qv)
)
< γtol

the model is considered validated
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SFIL Model Classes
Model Bonds Angles Dihedrals Non-Bonded # of Parameters
P1 X 12
P2 X 18
P3 X X 30
P4 X 32
P5 X X 44
P6 X X 50
P7 X X X 62
P8 X 96
P9 X X 108
P10 X X 114
P11 X X X 126
P12 X X 128
P13 X X X 140
P14 X X X 146
P15 X X X X 158
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Sensitivity Analysis
• PIRT (Phenomena Identification and Ranking Table)
• Importance Measures (Hora and Iman, 1995)
• Correlation Ratios (McKay, 1995)
• Sensitivity Analysis (Saltelli, Chan, Scott, 2000, Saltelli et. al. 2008)
• Variance-based

Si1,...,ik =
Vi1,...,ik(Y )
V (Y )• Entropy-based

KLi(p1‖p0) =
∫ ∞
−∞

p1(y(θ1, θ2, . . . , θ̄i, . . . , θm))

×
∣∣∣∣log

p0(y(θ1, θ2, . . . , θ̄i, . . . , θm))
p1(y(θ1, θ2, . . . , θi, . . . , θm))

∣∣∣∣ dy, θ̄i = 〈θi〉
= DKL

• Scatter Plots, etc
Saltelli, A., et.al. (2001)
Auder, B. and Iooss, B. (2009)
Chen, W et.al (2005)
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Sensitivity Analysis: Variance-Based Method
Y (θ) = model output (e.g. Y (θ) = 〈U(·; θ〉CG)
V (Y ) = output variance = E(Y 2)− E2(Y )

V (Y ) = Vθ∼i
[(EXi(Y |θ∼i))] + Eθ∼i

[(VXi(Y |θ∼i))]

STi = 1−Vθ∼i
[Eθi

(Y |θ∼i)]
V (Y )

(Total effect sensitivity index)

Example: Polyethylene chain with 24 beads

Saltelli, A., et.al. (2001)
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Sensitivity Analysis: Monte Carlo Scatterplots
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Sensitivity Analysis: Comparison
The sensitivity indices and scatterplots show that the dihedral parameters
are unimportant, but how important are they?
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Occam’s Razor

Principle of Occam’s Razor
Among competing theories that lead to the same prediction, the one
that relies on the fewest assumptions is the best.

When choosing among a set of models:
The simplest valid model is the best choice.

• simple⇒ number of parameters

• valid⇒ passes Bayesian validation test

How do we choose a model that adheres to this principle?
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5. Exploratory Example: Polyethylene

Consider as an example polyethylene

C24H50

J.T. Oden Belytschko Lecture October 2014 46 / 93



The Occam-Plausibility Algorithm

- -

?

?

?

�

-

no6

yes�

no6

yes�

-

START

Identify a set of

possible models,M

SENSITIVITY ANALYSIS

Eliminate models with

parameters to which the

model output is insensitive

M̄ = {P̄1, . . . , P̄m}

OCCAM STEP

Choose model(s) in the

lowest Occam Category

M∗ = {P∗1 , . . . ,P∗m}

ITERATIVE OCCAM STEP

Choose models in next

Occam category

CALIBRATION STEP

Calibrate all models inM∗

Identify a new set

of possible

models

Does P∗j have the

most parameters in M̄

PLAUSIBILITY STEP

Compute plausibilities and

identify most plausible model P∗j

Use validated

params to predict QoI
Is P∗j valid?

VALIDATION STEP

Submit P∗j to validation test

J.T. Oden Belytschko Lecture October 2014 47 / 93



Example: Occam-Plausibility Algorithm

Consider as an example polyethylene

Define the coarse-grained map: 2 carbons per bead
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Example: Occam-Plausibility Algorithm (cont)
Representation of the CG potential using OPLS form

Model Bonds Angles Dihedrals Non-Bonded Params
P1 X 2
P2 X 2
P3 X 2
P4 X X 4
P5 X X 4
P6 X X 4
P7 X X X 6
P8 X 4
P9 X X 6
P10 X X 6
P11 X X 6
P12 X X X 8
P13 X X X 8
P14 X X X 8
P15 X X X X 10
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Example: Occam-Plausibility Algorithm (cont)

Y = 〈U(·; θ)〉 = potential energy
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Example: Occam-Plausibility Algorithm (cont)

Model Bonds Angles Dihedrals Non-Bonded Params
P1 X 2
P2 X 2
P3 X 2
P4 X X 4
P5 X X 4
P6 X X 4
P7 X X X 6
P8 X 4
P9 X X 6
P10 X X 6
P11 X X 6
P12 X X X 8
P13 X X X 8
P14 X X X 8
P15 X X X X 10
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Example: Occam-Plausibility Algorithm (cont)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params
P̄1 X 2
P̄2 X 2
P̄3 X 2
P̄4 X 2
P̄5 X X 4
P̄6 X X 4
P̄7 X X 4
P̄8 X X 4
P̄9 X X 4
P̄10 X X X 6
P̄11 X X X 6
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Example: Occam-Plausibility Algorithm (cont)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Category
P̄1 X 2 1
P̄2 X 2
P̄3 X 2
P̄4 X 2
P̄5 X X 4 2
P̄6 X X 4
P̄7 X X 4
P̄8 X X 4
P̄9 X X 4
P̄10 X X X 6 3
P̄11 X X X 6
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Example: Occam-Plausibility Algorithm (cont)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Category
P̄1 X 2 1
P̄2 X 2
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P̄11 X X X 6
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Example: Occam-Plausibility Algorithm (cont)
Calibration

π(θ∗j |y,P∗j ,M∗) =
π(y|θ∗j ,P∗j ,M∗)π(θ∗j |P∗j ,M∗)

π(y|P∗j ,M∗)

Here, y = potential energy of C6H14

Plausibility

ρ∗j = π(P∗j |y,M∗) =
π(y|P∗j ,M∗)π(P∗j |M∗)

π(y|M∗)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Plausibility
P∗1 X 2 1
P∗2 X 2 0
P∗3 X 2 0
P∗4 X 2 0
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Example: Occam-Plausibility Algorithm (cont)

As a validation scenario, we consider C18H38 at T = 300K in a canonical
ensemble.

Validation

π(θ∗1|yv, yc) =
π(yv|θ∗1, yc)π(θ∗1|yc)

π(yv)

Here, yv is the potential energy

How well does this updated model reproduce the desired observable?

Let

• π(Q) = π(uAA) ⇒ π(Q|θ∗) = π(U(·; θ∗)), γtol,1 = 0.05σ2
AA

• Q = 〈uAA〉 ⇒ E [π(Q|θ∗)] = E [〈U(·; θ∗)〉] , γtol,2 = 0.2Q
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Example: Occam-Plausibility Algorithm (cont)

If we compare the distributions,

DKL(π(QAA)‖π(QCG)) = 0.2435σ2
AA > γ1,tol

where γtol,1 = 0.05σ2
AA

If we compare the ensemble average,∣∣∣QAA − Eπv
post

[π(Qv|θ)]
∣∣∣ = 0.67173Q > γ2,tol

where γtol,2 = 0.2QAA

Model is invalid
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params to predict QoI
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Example: Occam-Plausibility Algorithm (cont)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Category
P̄1 X 2 1
P̄2 X 2
P̄3 X 2
P̄4 X 2
P̄5 X X 4 2
P̄6 X X 4
P̄7 X X 4
P̄8 X X 4
P̄9 X X 4
P̄10 X X X 6 3
P̄11 X X X 6
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Example: Occam-Plausibility Algorithm (cont)
Calibration

π(θ∗j |y,P∗j ,M∗) =
π(y|θ∗j ,P∗j ,M∗)π(θ∗j |P∗j ,M∗)

π(y|P∗j ,M∗)

Here, y = potential energy of C6H14

Plausibility

ρ∗j = π(P∗j |y,M∗) =
π(y|P∗j ,M∗)π(P∗j |M∗)

π(y|M∗)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Plausibility
P∗1 X X 4 3.7891× 10−7

P∗2 X X 4 0.3420
P∗3 X X 4 0.6580
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Example: Occam-Plausibility Algorithm (cont)

As a validation scenario, we consider C18H38 at T = 300K in a canonical
ensemble.

Validation

π(θ∗3|yv, yc) =
π(yv|θ∗3, yc)π(θ∗3|yc)

π(yv)

Here, yv is the potential energy

How well does this updated model reproduce the desired observable?

Let

• π(Q) = π(uAA) ⇒ π(Q|θ∗) = π(U(·; θ∗)), γ1,tol = 0.05σ2
AA

• Q = 〈uAA〉 ⇒ E [π(Q|θ∗)] = E [〈U(·; θ∗)〉] , γ2,tol = 0.2Q
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Example: Occam-Plausibility Algorithm (cont)

If we compare the distributions,

DKL(π(QAA)‖π(QCG)) = 0.2084σ2
AA > γ1,tol

where γtol,1 = 0.05σ2
AA

If we compare the ensemble average,∣∣∣QAA − Eπv
post

[π(Qv|θ)]
∣∣∣ = 0.5731Q > γ2,tol

where γtol,2 = 0.2QAA

Model is invalid
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Example: Occam-Plausibility Algorithm (cont)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Category
P̄1 X 2 1
P̄2 X 2
P̄3 X 2
P̄4 X 2
P̄5 X X 4 2
P̄6 X X 4
P̄7 X X 4
P̄8 X X 4
P̄9 X X 4
P̄10 X X X 6 3
P̄11 X X X 6

J.T. Oden Belytschko Lecture October 2014 72 / 93



The Occam-Plausibility Algorithm

- -

?

?

?

�

-

no6

yes�

no6

yes�

-

START

Identify a set of

possible models,M

SENSITIVITY ANALYSIS

Eliminate models with

parameters to which the

model output is insensitive

M̄ = {P̄1, . . . , P̄m}

OCCAM STEP

Choose model(s) in the

lowest Occam Category

M∗ = {P∗1 , . . . ,P∗m}

ITERATIVE OCCAM STEP

Choose models in next

Occam category

CALIBRATION STEP

Calibrate all models inM∗

Identify a new set
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Example: Occam-Plausibility Algorithm (cont)

Calibration

π(θ∗j |y,P∗j ,M∗) =
π(y|θ∗j ,P∗j ,M∗)π(θ∗j |P∗j ,M∗)

π(y|P∗j ,M∗)

Here, y = potential energy of C6H14

Plausibility

ρ∗j = π(P∗j |y,M∗) =
π(y|P∗j ,M∗)π(P∗j |M∗)

π(y|M∗)

Model Bonds Angles Dihedrals LJ 12-6 LJ 9-6 Params Plausibility
P̄10 X X X 6 0.5
P̄11 X X X 6 0.5
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Example: Occam-Plausibility Algorithm (cont)

If we compare the distributions,

DKL(π(QAA)‖π(QCG)) = 0.0452σ2
AA < γ1,tol

where γtol,1 = 0.05σ2
AA

If we compare the ensemble average,∣∣∣QAA − Eπv
post

[π(Qv|θ)]
∣∣∣ = 0.1721Q < γ2,tol

where γtol,2 = 0.2QAA

Model is NOT invalid
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Example: Occam-Plausibility Algorithm (cont)

How do the observables change as we move through the Iterative Occam
Step?
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Work in Progress: PMMA
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One molecule has:
15 atoms
72 parameters
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CG Calibration Scenario

G−→
Model Bonds Angles LJ 9-6 LJ 12-6 A # of Parameters
P1 X X X 9
P2 rigid X X X 9
P3 X X X X 13
P4 X X X 9
P5 rigid X X X 9
P6 X X X X 13
P7 X X 5
P8 rigid X X 5
P9 X X X 9
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The polymerization process (KMC)

10x10x10 nm
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Continuum Models Calibration Scenario

−→

Model # of Parameters
P1: Saint Venant-Kirchhoff 2
P2: Neo-Hookean 2
P3: Mooney-Rivilin 3
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Continuum Models Calibration Scenario

Initial Configuration Equlibration Configuration
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Continuum Models Calibration Scenario

(PMMA Lattice under biaxial deformation)
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pmma_deform1.mov
Media File (video/quicktime)



Continuum Models Calibration Scenario

Hyperelastic Model
P2: Compressible Neo-Hookean model

W = C1(I1 − 3)− 2C1 ln
√
I3 + C2(

√
I3 − 1)2

macromodel parameters = θ2 = (C1, C2)

Biaxial deformation λ1 = λ2:
Strain-Energy→W = W (λ1,θ2)

Observational data supplied
by CG model to calibrate
the continuum models

1 1.1 1.2 1.3 1.4 1.50
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]
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6. Model Inadequacy - Misspecified Models
Suppose µ∗ /∈ P(Θ). Then the
density g(y) /∈ P(Θ) (model is
inadequate)

v�� v Y
P(Θ) P(θ0)

µ∗

Let there exist a θ0 such that

θ0 = argmin
θ∈Θ

DKL(g(y)‖π(·|θ)) ∀i

Then, under suitable smoothness conditions∥∥∥∥πn(y1, y2, . . . , yn|·)−N
(

θ̂n,
1
n
Vθ0

)∥∥∥∥
TV

→ 0 as n→∞

where θ̂n = the MLE and

(Vθ0)ij = −Eg
[

∂2

∂θi∂θj
Ly(θ0)

]

Kleijn and van der Vaart (2012), Freedman, D. (2006), Geyer (2003)
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Lemma: θ0 is the maximum likelihood estimate

Proof: θ0 = argmin
Θ

[∫
Y

(g(y) log g(y)− g(y)π(y‖θ)) dy
]

= argmin
Θ

[
−
∫
Y
g(y)π(y‖θ) dy

]
= argmax

Θ

[∫
Y
g(y)π(y‖θ) dy

]
= argmax

Θ
Eg [log π(y|θ)]
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Model Misspecification and Model Plausibility

Theorem 1: (Bayesian→ Frequentist)

If

π(y|Pi,M) =
∫

Θ
π(y|θ,Pi,M)δ(θ − θ0) dθ = π(y|θ0,Pi,M)

and
ρ1

ρ2
=
π(y|θ0,1,P1,M)
π(y|θ0,2,P2,M)

×O12

Then, if P1 is more plausible than P2 and O12 ≤ 1,

DKL(g‖π(y|θ0,1,P1,M)) < DKL(g‖π(y|θ0,2,P2,M))

(The converse: DKL(1) < DKL(2)⇒ ρ1 > ρ2, holds only under special
assumptions)
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Model Misspecification and Model Plausibility

Corollary
For given observational data y , let P1(θ1) be the only well specified model
in a setM of parametric models {P1(θ1),P2(θ2), . . . ,Pm(θm)} Then,
a) P1(θ1) is the most plausible model in the setM,

ρ1 > ρk, k = 2, 3, . . . ,m,

b) there exists θ∗ belonging to P1(Θ1) such that

θ∗ = argminDKL(g‖π(y|θ))
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Conclusions

• Bayes’ theorem provides a powerful framework for dealing with model
validation and uncertainty quantification

• The test of model validity can involve a sequence of statistical inverse
problems for model parameters, each reflecting the projected
influence of the QoI

Validation is the process of determining the level of confidence one has in
the ability of the model to predict quantities of interest based on the
accuracy with which the model predicts specific observables to within
preset tolerances

• The concept of model plausibility provides a powerful tool for

1 determining potentials for CG models of atomic systems

2 choosing models among a class of models that have parameter closest
“in DKL” to the true distribution
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Conclusions

• Model inadequacy can be attributed to model misspecification:
θ∗ /∈ P(Θ)

• The calculation of model sensitivities due to variations in parameters
can significantly reduce the number of relevant models for given
outputs.

• Hierarchical categories of models based on numbers of parameters
(the Occam categories) together with the evaluation of model
plausibilities provide a basis for an adaptive process for validation of
parametric classes of coarse-grained models
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Thank you!
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