
SIAM J. MATH. ANAL. c© 1990 Society for Industrial and Applied Mathematics

Vol. 21, No. 4, pp. 823–836, July 1990 001

DERIVATION OF THE DOUBLE POROSITY MODEL

OF SINGLE PHASE FLOW VIA HOMOGENIZATION THEORY*

TODD ARBOGAST†, JIM DOUGLAS, JR.†, and ULRICH HORNUNG‡

Abstract. A general form of the double porosity model of single phase flow in a naturally
fractured reservoir is derived from homogenization theory. The microscopic model consists of the usual
equations describing Darcy flow in a reservoir, except that the porosity and permeability coefficients

are highly discontinuous. Over the matrix domain, the coefficients are scaled by a parameter ε

representing the size of the matrix blocks. This scaling preserves the physics of the flow in the matrix
as ε tends to zero. An effective macroscopic limit model is obtained that includes the usual Darcy
equations in the matrix blocks and a similar equation for the fracture system that contains a term
representing a source of fluid from the matrix. The convergence is shown by extracting weak limits
in appropriate Hilbert spaces. A dilation operator is utilized to see the otherwise vanishing physics
in the matrix blocks as ε tends to zero.
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1. Introduction. It has long been known that the porous rock that composes
a petroleum reservoir may contain many cracks or fractures. A naturally fractured
reservoir is one that has throughout its extent many interconnected fracture planes.
For over 30 years it has been known that flow in such reservoirs is not like that in
unfractured reservoirs [16]. Instead, the flow acts as if the reservoir possessed two
porous structures, one associated to the system of fractures, and the other associated
to the porous rock (the matrix ). This double porosity/permeability concept has been
used to model the flow of a single component in a single phase within a naturally
fractured reservoir since around 1960 [5], [14], [18], [21].

More recently, a general form of the double porosity/permeability model has
been described [3], [10]. The earlier models can be considered as approximations
to this more general model [3]. It was derived on physical grounds under the main
assumption that the fluid pressure (or, equivalently, density) is uniform at the surface
of each matrix block. Herein we will derive this general model from the point of view
of homogenization theory [6], [17]. It will be seen that the model is in some sense the
limit of a family of microscopic models in which the sizes of the matrix blocks tend to
zero (hence, the fluid indeed becomes uniform at the surfaces of the blocks).

A straightforward homogenization of the entire reservoir would yield a single
porosity model with some average permeability [1], [7]. This would be quite inade-
quate since two very distinct porous structures are present in the reservoir and their
interaction has a strong influence on the flow characteristics. This interaction is a fine
structure process whose effect only must be homogenized; the process itself must be
retained on a microscopic level.
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We will use a variant of the homogenization technique that was used by Hornung
and Jäger to describe catalytic reactions in a porous medium [12]. There, the driving
mechanism was the chemical process of catalytic reactions that takes place on a micro-
scopic scale. The overall (or homogenized) behavior of the system could be obtained
only when a careful modeling of these microscopic reactions was maintained as the
medium was homogenized. See also [11] for a similar situation involving displacement
in mobile and immobile water and [20] for an example from chromatography. This
technique is also discussed in a formal sense in a related paper where Arbogast, Dou-
glas, and Hornung consider two-component flows in naturally fractured reservoirs [4];
see also [9]. An independent study of diffusion problems in fractured porous media
obtained by homogenization is given by Hornung and Showalter [13].

The remainder of the paper is as follows. In the next section, we will write
down the equations that describe the microscopic nature of the flow in a naturally
fractured reservoir. We will scale the equations by a parameter ε, where ε is the size
of the matrix blocks. This places the model in a series of problems from which, as ε
tends to zero, we obtain our homogenized macroscopic model, presented in §3. In the
final section, we prove that the solutions of the microscopic model converge weakly
to those of the macroscopic model in appropriate Hilbert spaces and describe some of
the mathematical properties of the limit model.

2. The microscopic model. We consider the reservoir Ω ⊂ IR3 to be a
bounded, two-connected domain with a periodic structure. More precisely, Ω is a
union of disjoint parallelepiped cell domains congruent to a standard one Q:

Ω =
⋃

c∈A

(Q+ c), (Q+ c1) ∩ (Q+ c2) = ∅ whenever c1 6= c2 ∈ A,

where A is an appropriate finite lattice of translations containing the origin and the
overline denotes closure (see Fig. 1). The cell Q can be decomposed into three pieces,
a compactly contained, two-connected domain Qm representing the matrix block part,
the surrounding connected fracture domain Qf , and a smooth internal boundary piece
∂Qm (see Fig. 2).

 

                  

 

  

 

         

 

 

 

                

 

  

 

             

 

 

 

                    

 

  

 

                 

 

 

 

                     

 

 

 

                   

 

 

 

                   

 

 

 

                   

 

 

 

                   

 

 

  

 

 

                 

 

 

  

 

 

               

 

 

  

 

 

 

 

 

 

           

 

 

  

 

 

         

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Ω
Fig. 1. The reservoir W , depicting its periodic structure.
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Qm ←− Qf

Q
Fig. 2. The standard cell Q.

To homogenize the reservoir, we will let tend to zero the (linear) size ε of the cells
(ε = 1 in the microscopic model). Extend A to an infinite lattice A′. For ε > 0, let
the fracture and matrix domains be denoted, respectively, by

Ωε
f = Ω ∩

⋃

c∈A′

ε(Qf + c) and Ωε
m = Ω ∩

⋃

c∈A′

ε(Qm + c).

To avoid unimportant technicalities relating to the boundary of Ω, assume that the
ε’s form a sequence for which ∂Ω ⊂ ∂Ωε

f .
Let us define some notation and make some physical assumptions before setting

up the microscopic model. Denote by ρε(x, t) and σε(x, t) the density of the fluid in
Ωε

f and Ωε
m, respectively. Assume that the fluid is a liquid of viscosity µ and constant

compressibility c; that is, the pressure p and the density satisfy the equations of state:

dρ = cρ dp and dσ = cσ dp.

Of course we will assume that the fluid flows according to Darcy’s law in the
matrix Ωε

m, where we will let kε(x) = k(x/ε) and φε(x) = φ(x/ε) denote the porosity
and (possibly tensor) permeability, respectively. These quantities should be periodic
of period Q (reflecting the periodicity of the matrix blocks over Ω—more generally we
could assume that the fixed properties of the matrix are of the form ψε(x) = ψ(x, x/ε),
varying over the reservoir in the first argument and periodic in the second).

We will also assume Darcy’s law is valid in the fractures Ωε
f . Clearly this is not

strictly correct; however, this has been done in the petroleum engineering literature
[14], [18], evidently by considering the fractures to be partially filled with rock debris.
In any case, Darcy’s law should hold as ε tends to zero [3], [5], [16], [19], [21]; our main
interest lies in determining the correct form of the interaction between the matrix
and fracture systems. So, let Φ∗(x) (≈ 1) and K∗(x) (very large) denote the porosity
and scalar permeability of the fracture domain, extended over all of Ω. These four
quantities are uniformly positive (k being symmetric, uniformly positive-definite), and
each is assumed smooth and bounded.

Finally, choose some smooth and bounded reference density functions ρref(x) and
σε

ref(x) = σref(x/ε), where σref(x) is periodic as above. To linearize the equations, we
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will approximate the effects of gravity as follows:

(ρε)2 ≈ ρref(2ρ
ε − ρref), (σε)2 ≈ σε

ref(2σ
ε − σε

ref).

The flow in the two domains is then described by conservation of mass combined
with Darcy’s law. Using our assumptions, in the fracture domain we have

Φ∗ρε
t −∇ ·

{
K∗

µc

[
∇ρε + cgρref(2ρ

ε − ρref)
]}

= f for x ∈ Ωε
f , t > 0,(2.1)

{
K∗

µc

[
∇ρε + cgρref(2ρ

ε − ρref)
]}
· ν(2.2)

= ε

{
kε

µc

[
ε∇σε + cgσε

ref(2σ
ε − σε

ref)
]}
· ν for x ∈ ∂Ωε

m, t > 0,

ρε = ρinit for x ∈ Ωε
f , t = 0;(2.3)

here, the subscript t denotes partial differentiation in time, g is the gravitational
constant vector, f(x, t) represents external sources/sinks, ν(x) is the outer unit normal
(to ∂Ωε

m, in this case), and ρinit(x) is the specified initial density.
Similarly in the matrix domain,

φεσε
t − ε∇ ·

{
kε

µc

[
ε∇σε + cgσε

ref(2σ
ε − σε

ref)
]}

= f for x ∈ Ωε
m, t > 0,(2.4)

σε = ρε for x ∈ ∂Ωε
m, t > 0,(2.5)

σε = ρinit for x ∈ Ωε
m, t = 0.(2.6)

The two boundary conditions (2.2) and (2.5) represent conservation of mass flux and
continuity of pressure, respectively, between the two domains. We should also assume
a no-flow Neumann condition on the fracture density on ∂Ω ⊂ ∂Ωε

f :

(2.7)

{
K∗

µc

[
∇ρε + cgρref(2ρ

ε − ρref)
]}
· ν = 0 for x ∈ ∂Ω, t > 0.

We should make some remarks on the ε scaling factors. They can be viewed as
coming from a dimensional analysis of the equations for an individual matrix block;
they provide the correct scaling for the flow as the block size shrinks. That is, the
form of the matrix equations is preserved on the standard cell independently of the
value of ε, thereby giving a double porosity model in the limit. This will be seen
explicitly in §4. Alternatively, we may say that the flow between the matrix and
fractures is conserved in some sense, as it is prevented from degenerating or blowing
up as ε → 0 [4]. Essentially, the matrix permeability has been scaled by ε2, whereas
the gravitational term has been compensated by ε−1. We might instead decide not to
compensate gravity, in which case the macroscopic model would have no gravitational
terms in the matrix equations.

3. The macroscopic model. We will show in the next section that, as the
scaling parameter ε tends to zero, the microscopic model converges in some sense to
the model described below.

We must first define some symbols. Define the macroscopic fracture porosity as

(3.1) Φ(x) =
|Qf |

|Q|
Φ∗(x),
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where | · | denotes the volume of the set. Let us define the auxiliary functions ωj(y),
j = 1, 2, 3, periodic of period Q, as the solutions modulo constants of

∆ωj = 0 for y ∈ Qf ,(3.2)

∇ωj · ν = −ej · ν = −νj for y ∈ ∂Qm,(3.3)

where ej is the unit vector in the jth direction. Now we can define the effective
macroscopic fracture system permeability tensor K componentwise as

(3.4) Kij(x) =
1

|Q|
K∗(x)

{
|Qf |δij +

∫

Qf

∂iωj dy

}
,

where δij is the Kronecker symbol and ∂i = ∂/∂yi.
With fm being defined in (3.11) below, the macroscopic fracture density ρ(x, t)

satisfies

Φρt −∇ ·

{
K

µc

[
∇ρ+ cgρref(2ρ− ρref)

]}
= f + fm for x ∈ Ω, t > 0,(3.5)

{
K

µc

[
∇ρ+ cgρref(2ρ− ρref)

]}
· ν = 0 for x ∈ ∂Ω, t > 0,(3.6)

ρ = ρinit for x ∈ Ω, t = 0.(3.7)

As ε tends to zero, we obtain an infinite number of matrix blocks, one for each x.
Hence, for each x ∈ Ω, we have a matrix density function σ(x, y, t), which is deter-
mined from

φ(y)σt −∇y ·

{
k(y)

µc

[
∇yσ + cgσref(y)(2σ − σref(y))

]}
= f(x, t)(3.8)

for y ∈ Qm, t > 0,

σ = ρ(x, t) for y ∈ ∂Qm, t > 0,(3.9)

σ = ρinit(x) for y ∈ Qm, t = 0,(3.10)

where ∇y is the gradient with respect to the y variable. Finally, the matrix source
term fm is defined by

(3.11) fm(x, t) = −
1

|Q|

∫

Qm

φ(y)σt(x, y, t) dy.

Except for some minor differences, this is exactly the general model originally
described in [3] and [10]. Two obvious but unimportant differences are that in the
original formulation of the model, the matrix equations do not contain either gravity
or external sources; these terms could easily be included. In any case, they are of little
mathematical consequence. The interesting differences are associated to the homog-
enization process itself. The original formulation (and, in fact, the actual problem)
had a finite number of finite sized blocks; whereas in the homogenized version of the
model, there is a continuum of blocks having no size, since ε tended to zero. This
gives rise to subtle differences in the form of the matrix boundary and initial condi-
tions (3.9) and (3.10) as well as a difference in the definition of the matrix source term
(3.11). However, there is no difference of any real substance. The boundary and initial
conditions of the matrix problems of both formulations are constant with respect to
the space variables of the block. Of course in its original form, some representative
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value of the fracture density over the finite-sized block needed to be used. The matrix
source terms of both formulations represent the total average flow out of the matrix
blocks; this flow needed to be placed explicitly over the entire extent of the finite-sized
block in the original version. In practice, the two formulations of the model would
be discretized in essentially the same way, since we would need to restrict to a finite
number of matrix block problems.

4. The convergence of the homogenization process. We begin by defining
some notation. Denote the Sobolev space of functions with derivatives of order m in
Lp by Wm,p, and set Hm = Wm,2. Let H1

0 denote the closure in H1 of C∞
0 , the

infinitely differentiable functions with compact support. Denote by Wm,p(Wn,q) the
space of Wn,q-valued functions in Wm,p. Let J = (0, T ], T > 0, be the time interval
of interest. We will make use of several bilinear integration forms. Denote integration
in space over the domain ∗ by ( · , · )∗, where ∗ is some subset of Ω, Q, or Ω ×Q, and
where ∗ determines which of the variables to integrate over. Also, denote integration
in space over ∗ and in time over J by 〈 · , · 〉∗. Let us simplify the notation a bit by
setting

Λ(x) =
K∗(x)

µc
, λε(x) =

kε(x)

µc
, λ(y) =

k(y)

µc
,

Γ (x) = cgρref(x), γε(x) = cgσε
ref(x), γ(y) = cgσref(y).

Finally, let χε
f denote the characteristic function of Ωε

f .

Assume throughout that f ∈ L2(J ;L2(Ω)), ρinit ∈ H1(Ω), ρref ∈ W 1,∞(Ω), and
σref ∈W 1,∞(Qm). The latter two conditions can be relaxed somewhat (see [3]).

Theorem 1. For each ε, there exists a unique solution to the microscopic model,
and ρε ∈ H1(J ;L2(Ωε

f ))∩L∞(J ;H1(Ωε
f )) and σε ∈ H1(J ;L2(Ωε

m))∩L∞(J ;H1(Ωε
m)).

Proof. Recall that ν is the outer unit normal. Then for ϕ ∈ H1(Ω),

−

∫

∂Ωε
f

Λ(x)[∇ρε(x, t) + Γ (x)(2ρε(x, t)− ρref(x))] · ν ϕ(x) ds(x)

=

∫

∂Ωε
m

ελε(x)[ε∇σε(x, t) + γε(x)(2σε(x, t)− σε
ref(x))] · ν ϕ(x) ds(x)

(4.1)

=
(
ελε[ε∇σε + γε(2σε − σε

ref)],∇ϕ
)
Ωε

m

+
(
ε∇ · λε[ε∇σε + γε(2σε − σε

ref)], ϕ
)
Ωε

m

=
(
ελε[ε∇σε + γε(2σε − σε

ref)],∇ϕ
)
Ωε

m

+ (φεσε
t , ϕ)Ωε

m
− (f, ϕ)Ωε

m
.

Hence, in weak form the microscopic model is

(Φ∗ρε
t, ϕ)Ωε

f
+

(
Λ[∇ρε + Γ (2ρε − ρref)],∇ϕ

)
Ωε

f

+ (φεσε
t , ϕ)Ωε

m
(4.2)

+
(
ελε[ε∇σε + γε(2σε − σε

ref)],∇ϕ
)

Ωε
m

= (f, ϕ)Ω , ϕ ∈ H1(Ω),

(φεσε
t , ψ)Ωε

m
+

(
ελε[ε∇σε + γε(2σε − σε

ref)],∇ψ
)

Ωε
m

= (f, ψ)Ωε
m
, ψ ∈ H1

0 (Ωε
m),(4.3)

σε = ρε for x ∈ ∂Ωε
m, t > 0.(4.4)
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Note that if we let

θε =

{
ρε for x ∈ Ωε

f ,

σε for x ∈ Ωε
m,

then (4.2) is a weak form of

αεθε
t −∇ · κ

ε[∇θε + βε(2θε − θε
ref)] = f for x ∈ Ω, t > 0,

κε[∇θε + βε(2θε − θε
ref)] · ν = 0 for x ∈ ∂Ω, t > 0,

θε = ρinit for x ∈ Ω, t = 0,

where

αε = χε
fΦ

∗ + (1− χε
f )φε, κε = χε

fΛ+ (1 − χε
f )ε2λε,

βε = χε
fΓ + (1 − χε

f )ε−1γε, θε
ref = χε

fρref + (1− χε
f )σε

ref.

This is a single well-posed parabolic problem (with discontinuous coefficients). It is
known (and easily shown from the a priori estimates of Lemma 1 below) that there
exists a unique solution in H1(J ;L2(Ω)) ∩ L∞(J ;H1(Ω)). By restriction, we obtain
ρε and σε as required.

For each ε, we will define a dilation operator “∼” taking measurable functions on
Ωε

r, r = f,m, or blank, to measurable functions on Ω × Qr. First let cε(x) denote
the lattice translation point of the ε-cell domain containing x; that is, cε : Ω → εA′ is
such that x ∈ εQ+ cε(x). Since the cells are disjoint and fill up space (after dividing
up the boundaries of the cells in some nonoverlapping way), cε is well defined. Then
we can define

ψ̃(x, y) = ψ
(
εy + cε(x)

)
,

where the ε (and the r) is implicit. We can now state our main result.
Theorem 2. The solution (ρε, σε) of the microscopic model converges as ε → 0

to the unique solution (ρ, σ) of the macroscopic model in the following sense:

χε
fΦ

∗ρε −⇀ Φρ in H1(J ;L2(Ω)) weakly,

χε
fΛ[∇ρε + Γ (2ρε − ρref)] −⇀

K

µc
[∇ρ+ Γ (2ρ− ρref)] in L2(J ;L2(Ω)) weakly,

σ̃ε −⇀ σ in L2(Ω;H1(Qm×J)) weakly.

The proof will be accomplished in several stages. Throughout, C will denote
a generic positive constant, not necessarily the same at each occurrence, which is
independent of ε.

Lemma 1.

‖ρε‖L∞(J;H1(Ωε
f
)) + ‖ρε

t‖L2(J;L2(Ωε
f
)) ≤ C,

‖σε‖L∞(J;L2(Ωε
m)) + ‖σε

t‖L2(J;L2(Ωε
m)) ≤ C,

‖∇σε‖L∞(J;L2(Ωε
m)) ≤ Cε

−1.

Proof. These are the standard parabolic energy estimates for (4.2); that is, the
estimates given by first taking ϕ = θε and then taking ϕ = θε

t (which must of course
be done on a smooth dense subspace so that the computations can be performed).
Note that the domain Ω is fixed, so that C is indeed independent of ε.
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The main properties of the dilation operator that we will need are given by
Lemma 2.

Lemma 2. If ψ ∈ L2(Ω) and ϕ ∈ L2(Ω) (and r is m, f , or blank), then

(ψ̃, ϕ̃)Ω×Qr
= |Q|(ψ, ϕ)Ωε

r
,

∇yψ̃ = ε∇̃ψ,

‖ψ̃‖L2(Ω×Qr) = |Q|1/2‖ψ‖L2(Ωε
r),

‖∇yψ̃‖L2(Ω×Qr) = ε|Q|1/2‖∇ψ‖L2(Ωε
r),

(ψ̃, ϕ)Ω×Q = (ψ, ϕ̃)Ω×Q.

Moreover, if ψ is considered to be an element of L2(Ω × Qr) that is constant in y,

then ψ̃ → ψ as ε→ 0 in L2(Ω ×Qr) strongly.
Proof. The first two results are simple computations:

(ψ̃, ϕ̃)Ω×Qr
=

∫

Ω

∫

Qr

ψ
(
εy + cε(x)

)
ϕ
(
εy + cε(x)

)
dy dx

=

∫

Ω

∫

εQr+cε(x)

ψ(z)ϕ(z)ε−3 dz dx = |Q|(ψ, ϕ)Ωε
r
;

∇yψ̃(x, y) = ε∇ψ
(
εy + cε(x)

)
= ε∇̃ψ(x, y) .

The next two results follow from the first two. The fifth result is another computation:

(ψ̃, ϕ)Ω×Q =

∫

Ω

∫

Q

ψ
(
εy + cε(x)

)
ϕ(x) dy dx

=

∫

Ω

ε−3

∫

εQ+cε(x)

ψ(z)ϕ(x) dz dx

=

∫

Ω

ψ(z)

[
ε−3

∫

εQ+cε(z)

ϕ(x) dx

]
dz

=

∫

Ω

ψ(z)

∫

Q

ϕ
(
εy + cε(z)

)
dy dz = (ψ, ϕ̃)Ω×Q.

The strong convergence result is clear from the Dominated Convergence Theorem
whenever ψ ∈ C∞

0 (Ω), as then ψ is continuous and bounded on Ω and limε→0

(
εy +

cε(x)
)

= x. Since these functions are dense in L2(Ω), the result follows from the
equivalence of norms.

Remark 1. A change of variables shows that the last statement of the lemma is
an integral form of Lebesgue’s theorem on the differentiation of the integral.

Corollary 1.

‖σ̃ε‖L2(Ω;H1(Qm×J)) ≤ C,

‖ρ̃ε‖L2(Ω;H1(J;L2(Qf ))) ≤ C,

‖∇yρ̃
ε‖L2(Ω;L2(J;L2(Qf ))) ≤ Cε.

Now by Lemma 1 and Corollary 1, we can extract the following weak limits (for
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a subsequence of the ε’s):

χε
fΦ

∗ρε −⇀ Φρ in H1(J ;L2(Ω)) weakly,

χε
fΛ[∇ρε + Γ (2ρε − ρref)] −⇀ ξ in L2(J ;L2(Ω)) weakly,

σ̃ε −⇀ σ in L2(Ω;H1(Qm × J)) weakly,

ρ̃ε −⇀ τ in L2(Ω;H1(Qf × J)) weakly,

where τ = τ(x, t) only, since Qf is connected. In fact, we claim that τ = ρ. Any
ϕ ∈ C∞

0 (Ω × J) is also in L2(Ω;L2(J ;L2(Qf ))), so

〈ρ̃ε, ϕ〉Ω×Qf
−→ 〈τ, ϕ〉Ω×Qf

= |Qf |〈τ, ϕ〉Ω .

Now Lemma 2 shows that the left-hand side is

〈ρ̃ε, ϕ〉Ω×Qf
= 〈χ̃ε

fρ
ε, ϕ〉Ω×Q = 〈χε

fρ
ε, ϕ̃〉Ω×Q;

furthermore,

〈ρ̃ε, ϕ〉Ω×Qf
= 〈χε

fρ
ε, ϕ̃〉Ω×Q −→ |Q|〈(Φ

∗)−1Φρ, ϕ〉Ω = |Qf |〈ρ, ϕ〉Ω ,

so that τ = ρ.
We will now find an equation satisfied by σ. This can be done easily using

Lemma 2. Take any ψ ∈ L2(Ω;L2(J ;H1
0 (Qm))). Let

ψ̂(x, z, t) =




ψ

(
x,
z − cε(x)

ε
, t

)
for z ∈ εQm + cε(x),

0 for z /∈ εQm + cε(x).

Now for almost every fixed x ∈ Ω, replace the test function in (4.3) by ψ̂(x, · , t) to
see that

∫

εQm+cε(x)

{
φε(z)σε

t (z, t)ψ̂(x, z, t)

+ ελε(z)
[
ε∇σε(z, t) + γε(z)

(
2σε(z, t)− σε

ref(z)
)]
· ∇zψ̂(x, z, t)

}
dz

=

∫

εQm+cε(x)

f(z, t)ψ̂(x, z, t) dz.

Upon dilation (i.e., z 7→ εy + cε(x)) and integration in x and t, we obtain

〈φσ̃ε
t , ψ〉Ω×Qm

+ 〈λ[∇y σ̃
ε + γ(2σ̃ε − σref)],∇yψ〉Ω×Qm

= 〈f̃ , ψ〉Ω×Qm
,

where φ, λ, γ, and σref are integrated over Qm by their periodicity. As ε→ 0, we see
that

〈φσt, ψ〉Ω×Qm
+ 〈λ[∇yσ + γ(2σ − σref)],∇yψ〉Ω×Qm

= 〈f, ψ〉Ω×Qm
.

This is a weak form of (3.8).
An equation for ρ and ξ can also be derived easily. In (4.2) choose a test function

ϕ ∈ L2(J ;H1(Ω)) and then integrate in time. The result is that

〈Φ∗ρε
t, ϕ〉Ωε

f
+ 〈Λ[∇ρε + Γ (2ρε − ρref)],∇ϕ〉Ωε

f

+ 〈φεσε
t , ϕ〉Ωε

m
+ 〈ελε[ε∇σε + γε(2σε − σε

ref)],∇ϕ〉Ωε
m

= 〈f, ϕ〉Ω .
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The first two terms on the left-hand side above tend to 〈Φρt, ϕ〉Ω + 〈ξ,∇ϕ〉Ω , whereas
the fourth term tends to zero by Lemma 1 since it has an extra power of ε. The third
term can be dilated to see its convergence by Lemma 2:

〈φεσε
t , ϕ〉Ωε

m
= |Q|−1〈φσ̃ε

t , ϕ̃〉Ω×Qm
−→ |Q|−1〈φσt, ϕ〉Ω×Qm

= −〈fm, ϕ〉Ω .

Hence, we have shown that

(4.5) 〈Φρt, ϕ〉Ω + 〈ξ,∇ϕ〉Ω = 〈f, ϕ〉Ω + 〈fm, ϕ〉Ω, ϕ ∈ L2(J ;H1(Ω)).

Next we will relate ξ to ρ. To this end, let us define ωε
j ∈ H

1(Ω) by

ωε
j(x) = εEωj

(
x− cε(x)

ε

)
,

where E : H1(Qf ) → H1(Q) is some bounded extension operator (for example, the

one of Calderón [8]). Note that ω̃ε
j(x, y) = εEωj(y) and ∇̃ωε

j(x, y) = ∇Eωj(y). Also
let

wij =
1

|Q|

∫

Qf

∂iωj(y) dy.

Lemma 3.

ωε
j −→ 0 in L2(Ω) strongly,

ε∇ωε
j −→ 0 in L2(Ω) strongly,

χε
f∂iω

ε
j −⇀ wij in L2(Ω) weakly.

Proof. For the first limit, note that

‖ωε
j‖L2(Ω) = |Q|−1/2‖ω̃ε

j‖L2(Ω×Q) = |Q|−1/2|Ω| ε ‖Eωj‖L2(Q) ≤ Cε‖ωj‖L2(Qf ) −→ 0.

The second limit is similar, noting that

‖∇ωε
j‖L2(Ω) = |Q|−1/2‖∇̃ωε

j‖L2(Ω×Q) = |Q|−1/2|Ω| ‖∇Eωj‖L2(Q) ≤ C‖∇ωj‖L2(Qf ).

The above expression bounds the L2(Ω)-norm of χε
f∂iω

ε
j , so this expression has some

weak limit. To see what this limit is, solve the elliptic problem modulo constants

−∆ψ = χ
Qf
∂iωj − wij for y ∈ Q,

∇ψ · ν = 0 for y ∈ ∂Q,

where χ
Qf

is the characteristic function of Qf . We can do this since the average of

χ
Qf
∂iωj − wij is zero. Note that ψ ∈ H1(Q). Now for ϕ ∈ C∞

0 ,

(χε
f∂iω

ε
j − wij , ϕ)Ω = |Q|−1(χ̃ε

f ∂̃iωε
j − wij , ϕ̃)Ω×Q = |Q|−1(χ

Qf
∂iωj − wij , ϕ̃)Ω×Q

= |Q|−1(−∆ψ, ϕ̃)Ω×Q = |Q|−1(∇ψ, ε∇̃ϕ)Ω×Q ≤ Cε −→ 0.

From the definition (3.2)–(3.3) of ωj we can see that

(4.6) 0 = −
(
∇ · (∇ωε

j + ej), ψ
)
Ωε

f

= (∇ωε
j + ej ,∇ψ)Ωε

f
, ψ ∈ H1

0 (Ω).
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For any ϕ ∈ C∞
0 , take ψ = ρεΛϕ above. After adding and subtracting the same term

twice and after integrating in time, we have that

(4.7) 〈∇ωε
j , ρ

ε∇(Λϕ) − ϕΛΓ (2ρε − ρref)〉Ωε
f

+ 〈ej , ρ
ε∇(Λϕ)− ϕΛΓ (2ρε − ρref)〉Ωε

f

+ 〈∇ωε
j , ϕΛ[∇ρε + Γ (2ρε − ρref)]〉Ωε

f
+ 〈ej , ϕΛ[∇ρε + Γ (2ρε − ρref)]〉Ωε

f
= 0.

The first term converges by dilation:

〈∇ωε
j , ρ

ε∇(Λϕ)− ϕΛΓ (2ρε − ρref)〉Ωε
f

= |Q|−1〈∇ωj , ρ̃
ε∇̃(Λϕ)− ϕ̃ΛΓ (2ρ̃ε − ρ̃ref)〉Ω×Qf

−→ |Q|−1〈∇ωj , ρ∇(Λϕ)− ϕΛΓ (2ρ− ρref)〉Ω×Qf

=

3∑

i=1

〈wij , ρ∂i(Λϕ)− ϕΛΓi(2ρ− ρref)〉Ω .

The second term converges trivially to

|Qf |

|Q|
〈ej , ρ∇(Λϕ)− ϕΛΓ (2ρ− ρref)〉Ω

since χε
f ⇀ |Qf |/|Q| in L2(Ω) weakly is easily shown from Lemma 2. The convergence

of the third term is found from (4.2) by taking the test function ωε
jϕ. Integration in

time shows that

〈Φ∗ρε
t, ω

ε
jϕ〉Ωε

f
+ 〈Λ[∇ρε + Γ (2ρε − ρref)], ω

ε
j∇ϕ+ ϕ∇ωε

j〉Ωε
f

+ 〈φεσε
t , ω

ε
jϕ〉Ωε

m
+ 〈ελε[ε∇σε + γε(2σε − σε

ref)], ω
ε
j∇ϕ+ ϕ∇ωε

j〉Ωε
m

= 〈f, ωε
jϕ〉Ω.

Lemmas 1 and 3 now show that

lim
ε→0
〈∇ωε

j , ϕΛ[∇ρε + Γ (2ρε − ρref)]〉Ωε
f

= 0.

Hence we conclude that the fourth term of (4.7) converges to

〈ξj , ϕ〉Ω

=

3∑

i=1

{
−

〈[
|Qf |

|Q|
δij + wij

]
ρ, ∂i(Λϕ)

〉

Ω

+

〈[
|Qf |

|Q|
δij + wij

]
ΛΓi(2ρ− ρref), ϕ

〉

Ω

}
,

which is the distributional form of

ξ =
K

µc
[∇ρ+ Γ (2ρ− ρref)].

Hence (4.5) is a weak form of (3.5)–(3.6), (3.11).
The following trivial proposition enables us to derive the boundary and initial

conditions satisfied by our limit functions.
Proposition. If T : X → Y is a continuous linear operator between Banach

spaces X and Y , and if ψε ⇀ ψ in X weakly, then T ψε ⇀ T ψ in Y weakly.
If T0 is the linear operator giving the trace for time zero, then [15] T0 : H1(Ω ×

J)→ H1/2(Ω) is bounded. Hence

T0(χ
ε
fΦ

∗ρε) −⇀ T0(Φρ) = ΦT0ρ.
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But

T0(χ
ε
fΦ

∗ρε) = χε
fΦ

∗ρinit −⇀ Φρinit ;

consequently, we have (3.7). For almost every x, we also have (3.10) since, for the
appropriate trace operator,

T0σ̃
ε(x, y) −⇀ T0σ(x, y)

and

T0σ̃
ε(x, y) = ρ̃init(x, y) −⇀ ρinit(x).

If now Tb : H1(Qr × J) → H1/2(∂Qr × J), r = m or f , is the boundary trace
operator, then for almost every x

Tbσ̃
ε(x, y, t) −⇀ Tbσ(x, y, t)

and

Tbσ̃
ε(x, y, t) = Tbρ̃

ε(x, y, t) −⇀ Tbρ(x, t) = ρ(x, t).

This shows (3.9).
We now have a solution to the macroscopic model. To see that this solution is

unique, assume that ρ and σ are the differences of two solutions. These then satisfy
the macroscopic model’s equations with f ≡ ρinit ≡ 0 and the gravitational pseudo-
source terms ∇ ·

(
(K/µ)gρ2

ref

)
and ∇ ·

(
(k/µ)gσ2

ref

)
set to zero. Multiply (3.5) by ρ

and integrate in x to see that

(4.8) (Φρt, ρ)Ω +

(
K

µc

[
∇ρ+ 2cgρρref

]
,∇ρ

)

Ω

= (fm, ρ)Ω.

Now multiply (3.8) by σ − ρ and integrate in both x and y to obtain

(4.9) (φσt, σ)Ω×Qm
− (φσt, ρ)Ω×Qm

+

(
k

µc

[
∇yσ + 2cgσσref

]
,∇yσ

)

Ω×Qm

= 0,

since ∇yρ = 0. Note that fm = −|Q|−1(φσt, 1)Qm
cancels when |Q| times the first

equation is added to the second. Hence standard energy estimates of this combined
equation show the uniqueness. Finally, since the solution is unique, the entire sequence
of solutions to the microscopic model converges as required, and the proof of Theorem 2
is complete.

Of course, our macroscopic coefficients should have the appropriate properties.
Obviously Φ is uniformly positive. As for K, we have Theorem 3.

Theorem 3. The macroscopic fracture permeability tensor K(x) is symmetric
and positivedefinite.

Proof. From (3.2)–(3.3), we see that

0 = −
(
∇ · (∇ωj + ej), ωi

)
Qf

= (∇ωj + ej,∇ωi)Qf

by the periodicity of the ωk. Hence

(∂jωi, 1)Qf
= −(∇ωj,∇ωi)Qf

,
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which shows that K is symmetric. In fact, we can use this to rewrite Kij :

|Q| (K∗)−1Kij = |Qf |δij + (∂iωj , 1)Qf

= (∇yj ,∇yi)Qf
+ (∂iωj, 1)Qf

+ (∂jωi, 1)Qf
− (∂jωi, 1)Qf

= (∇yj ,∇yi)Qf
+ (∇ωj ,∇yi)Qf

+ (∇ωi,∇yj)Qf
+ (∇ωj ,∇ωi)Qf

=
(
∇(yj + ωj),∇(yi + ωi)

)
Qf
.

This shows thatK is positive semidefinite. Definiteness follows from the connectedness
of Qf and the periodicity of the ωj. Let ξ be any constant vector. Then, with ω being
the vector whose components are the ωj ,

0 =
∑

i,j

ξj
(
∇(yj + ωj),∇(yi + ωi)

)
Qf
ξi =

∑

k

(
∂k[ξ · (y + ω)], ∂k[ξ · (y + ω)]

)
Qf
.

Since Qf is connected, ω(y) · ξ = α− y · ξ for some constant α. This being periodic in
y forces ξ to be zero.

Remark 2. The tensor K may not be strictly positive definite for some degenerate
(disconnected) geometries. For example, in one space dimension Qf consists of two
disjoint intervals, so K ≡ 0.

We close by noting that the macroscopic model is well posed.
Theorem 4. If ∂Ω is smooth, then ρ ∈ H1(J ;L2(Ω)) ∩ L2(J ;H2(Ω)) and

σ ∈ L2(Ω;H1(J ;L2(Qm))) ∩ L2(Ω;L2(J ;H2(Qm))). Moreover, the solution varies
continuously with the data f ∈ L2(J ;L2(Ω)), ρinit ∈ H1(Ω), ρref ∈ W 1,∞(Ω), and
σref ∈W 1,∞(Qm).

Proof. The theorem was proven by Arbogast for the original formulation of the
model using the method of continuity [3]. He also proved it for a generalization of the
model that included gravity in the matrix (and had a more complicated definition of
the matrix source term in that the fracture density was assumed to vary linearly in
space over each block) [2]. This latter proof is the most convenient for the present
situation. It treats the matrix source term in much the same way as we did in proving
uniqueness of the solution; that is, it drops out of the equations after properly com-
bining (3.5) and (3.8). The external source in the matrix equations can be dealt with
by combining it with the gravitational pseudo-source term. By properly taking into
account the subtle differences between the homogenized and original formulations of
the model mentioned at the end of §3 (and by noting that the fracture flow is simply
constant in space over each block), the proof goes through easily.
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