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Lectures
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» Ultraweak variational formulation and the DPG method for
convection-dominated diffusion.

> 1D analysis. Adaptivity.

» Wave propagation as an example of a complex-valued problem.

» Systematic choice of test norms. Robustness.

» Convergence proofs.
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PETROV GALERKIN METHOD WITH OPTIMAL
TEST FUNCTIONS

0
LEAST SQUARES (WITH A TWIST)
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Least squares and optimal test functions

uelU - Bu=1l B:U—=V
b(u,v) =1l(v) veV < Bu,v >= b(u,v)
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Least squares and optimal test functions

uelU - Bu=1l B:U—=V
b(u,v) =1l(v) veV < Bu,v >= b(u,v)

» Least squares: U, C U,

1 2 H
iHBUh — l”V/ — u}:nel{]]h

» Riesz operator:

Ry :V = V', < Ryv, v >= (v,6v)y

is an isometry, ||Ryv|lv: = |[v|v.
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Least squares and optimal test functions

uelU - Bu=1l B:U—=V
b(u,v) =1l(v) veV < Bu,v >= b(u,v)

» Least squares: U, C U,

1 2 H
iHBUh — l”V/ — u}:nel{]]h

» Riesz operator:

Ry :V = V', < Ryv, v >= (v,6v)y

Ryvlv: = [jvlv.
» Least squares reformulated:

is an isometry, |

1 2 1 -1 2 .
S1Bun — 11} = SIRG Bu, ~ DI, — min
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Least squares and optimal test functions

Taking Gateaux derivative,

(Ry'(Bup, — 1), Ry," Bouy)y =0 Sup, € Uy,
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Least squares and optimal test functions

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry," Béuy)y =0 Sup, € Uy,

or
< Buy, — l, R;' Bouy, >=0 Sup, € Uy,
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Least squares and optimal test functions

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Bouy)y =0 Sup, € Uy,

or
< Bup —l,vp, >=0 v, = R;-chSuh
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Least squares and optimal test functions

Taking Gateaux derivative,
(Ry'(Bup, — 1), Ry* Bouy)y =0 Sup, € Uy,

or
< Bup,vp >=<lvp > v = R‘_/IB(SU}L
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Least squares and optimal test functions

Taking Gateaux derivative,
(RN (Bup, — 1), Ry' Béuy)y =0 duy, € Uy,
or
b(uh, ’Uh) = Z(Uh)

where

vp €V
(vp,0v)y = b(dup,dv) dv eV
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Least squares and optimal test functions

> Stiffness matrix is always hermitian and positive-definite (it is a least squares
method...).
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Least squares and optimal test functions

> Stiffness matrix is always hermitian and positive-definite (it is a least squares

method...).
> The method delivers the best approximation error (BAE) in the “energy
norm": o)
U,
llullg == ||Bully: = sup ————=
vev vllv

> The energy norm of the FE error u — u;, equals the residual and can be
computed,

lu—unlle = | Bu — Bunllv: = |l = Buglly: = [|RGH (I = Bun) v = [[[lv
where the error representation function b comes from

eV
(1, dv)y =<l — Buyp, dv >=1(év) — b(up,dv), oveV

(no need for a-posteriori error estimation, note the connection with implicit
a-posteriori error estimation techniques...)
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Least squares and optimal test functions

> A lot depends upon the choice of the test norm || - ||y; for different test
norms, we get get different methods.
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Least squares and optimal test functions

> A lot depends upon the choice of the test norm || - ||y; for different test
norms, we get get different methods.

» Banach Closed Range Theorem —
If B : V — V' is injective, and we choose

b(u,v
uelU ||u||U

then
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Least squares and optimal test functions

> A lot depends upon the choice of the test norm || - ||y; for different test
norms, we get get different methods.

» Banach Closed Range Theorem —
If B : V — V' is injective, and we choose

b(u,v
uelU ||u||U

then
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Least squares and optimal test functions

> A lot depends upon the choice of the test norm || - ||y/; for different test
norms, we get get different methods.

» Banach Closed Range Theorem —
If B : V — V' is injective, and we choose

b(u, v
Jolly = sup 1202
uwelU ||u||U

then
> the energy norm coincides with the original norm in U.

lullg = [Jullv
Indeed,
b b
R I 205 I L A
WP Tl el — PP Tl el — o Jelly
implies
ullg
sup L2 _ 3 e <
P al
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Least squares and optimal test functions

> A lot depends upon the choice of the test norm || - ||y/; for different test
norms, we get get different methods.

» Banach Closed Range Theorem —
If B : V — V' is injective, and we choose

b(u, v
ol = sup |b(u, v)|
uwelU ||u||U

then
> the energy norm coincides with the original norm in U.

ulle = [Jullv
Also,
b b
inf sup 7| (u, v)) = infsup b V)] = inf lvllv =1
w oy fulllvlly e T ol e lollv
implies
e e ) < s
ulull
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Petrov—Galerkin Method
with Optimal Test Functions
Abstract B® Framework
(Repetitio Mater Studiorum Est)
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Abstract Variational Problem

uelU - Bu=l B:U—=V
b(u,v) =1l(v) YweV < Bu,v >=b(u,v) Vo € V

where
» U,V are Hilbert spaces,

> b(u,v) is a continuous bilinear form on U x V,
[b(u, v)| < Mlullor [v]lv
that satisfies the inf-sup condition (< B is bounded below),

inf  sup |b(u,v)] =:v>0

lullo=1 |||y =1

» [ € V' represents the load and satisfies the compatibility condition
I(v) =0,Vv € V where

Voi={veV :bu,v)=0 VueU}
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Banach Closed Range and Babuska Theorems

Let b(u,v),u € U,v € V be a continuous bilinear form, |b(u,v)| < M|ul|lv|v|v,
[ € V'. Consider the variational problem,

u€tp+U
b(u,v) =1(v), YveV
The inf-sup condition
p(u.)]
sup = lullu
veV ||U||V

implies stability
lullo <~ lEllv
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Banach Closed Range and Babuska Theorems

Let b(u,v),u € U,v € V be a continuous bilinear form, |b(u,v)| < M|ullv||v|v,
1 € V'. Consider the variational problem,

Upp € up + Uhp
b(upp,v) =1(v), Yv e Vi,

The discrete inf-sup condition

sup |b(uhpav)|

72'}% Uhp||U
vGVhp ||,U||V PH p”

implies discrete stability
lunpllo < iy v,
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Banach Closed Range and Babuska Theorems

Let b(u,v),u € U,v € V be a continuous bilinear form, |b(u,v)| < M|ul|lu|v|v,
[ € V'. Consider the variational problem,

Upp € up + Uhp
b(upp,v) =1(v), Yv eV,

The discrete inf-sup condition

p [ 0)

> Ynp|unpllv
veVi, VIV PR

implies discrete stability
—1
lunpllo < v, lvy,
and convergence

M
U —U < — inf uU—w
o —ngllo < 2 nf g
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Coercive Problems

If U =V, and the bilinear (sesquilinear) form is coercive,
2
b(uau’) > a”uHU
Then both continuous and discrete stability constants are bounded below by «,

1

Y> Yhp e -
’th

<

Q|r

Thus, for coercive problems, stability is guaranteed automatically.
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Ritz and Bubnov-Galerkin Methods

FE classics:
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Ritz and Bubnov-Galerkin Methods

FE classics:

> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,
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Ritz and Bubnov-Galerkin Methods

FE classics:

> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,
» then

{ ueV N { ueV
J(u) :== 3b(u,u) — I(u) — min b(u,v) =1l(v),veV
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Ritz and Bubnov-Galerkin Methods

FE classics:
> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,
» then

{ ueV N { ueV
J(u) :== 3b(u,u) — I(u) — min b(u,v) =1l(v),veV

» and, Bubnov-Galerkin method delivers the best approximation error in the
energy norm,

up, €V, CV up € Vi,
b(uh,vh) = l(vh), vp € Vi ||u — uh||E — min

where [[v]|%, = b(v,v).
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Ritz and Bubnov-Galerkin Methods

FE classics:
> If the bilinear form is symmetric (hermitian) and positive-definite,

b(u,v) =b(v,u), blv,v)>0

u,v € a Hilbert space V,
» then

{ ueV N { ueV
J(u) :== 3b(u,u) — I(u) — min b(u,v) =1l(v),veV

» and, Bubnov-Galerkin method delivers the best approximation error in the
energy norm,

up, €V, CV up € Vi,
b(uh,vh) = l(vh), vp € Vi ||u — uh||E — min

where [[v]|%, = b(v,v).

» You cannot do better ! (in energy norm...)
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History of Discrete Stability by Demkowicz

1910 — (Bubnov) Galerkin method

1954 — numerical flux of P. Lax

1959 —— Petrov—Galerkin method

1964 — Cea’s lemma

1969 — Mikhlin’s asymptotic stability

1971 — Babuska’s theorem

1974 — Brezzi’s theory

1930 — Barett and Morton use Petrov—Galerkin to symmetrize
1981 — SUPG method of Brooks and Hughes, stabilized methods

1985 — D and Oden use PG to change the norm of convergence

1986 — Franca and Russo — bubble methods
1989 — DPG method of Cockbum and Shu

2009 — D and Gopalakrishnan — DPG method with optinal test functions
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Energy Norm

The supremum in the inf-sup condition defines an equivalent, problem-dependent
energy (residual) norm,

lullz == sup_|b(u,v) = [[Bullv:
loll=1

For the energy norm, M = ~ = 1. Recalling that the Riesz operator is an isometry
form V into V', we may characterize the energy norm in an equivalent way as

lulle = llvullv

where v,, is the solution of the variational problem,

vy €V
(vy, 6V)y = b(u, dv) Vov eV
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Optimal Test Functions

Select your favorite trial basis functions: e;, j =1,..., N. For each function e;,
introduce a corresponding optimal test (basis) function €; € V that realizes the
supremum,

[b(e;, &)l = sup [b(ej, v)|

llvllv=1

i.e. it solves the variational problem,

€ € v
(éj, 6’0)\/ = b(ej, (S’U) Yév eV

Define the discrete test space as Vhp :=span{e;, j=1,...,N} C V. It follows
from the construction of the optimal test functions that the discrete inf-sup
constant

inf sup  [b(upp, vpp)| =1
lunpll 5=1 o, [I=1
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The Best Approximation

Consequently, Babuska's Theorem

M
u—u < — inf u—w
[ npllE < r—. l hpll B

implies that
lu—unplle < inf flu—wp|s
P

i.e., the method delivers the best approximation error in the energy norm.
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Stiffness Matrix Is Symmetric and Positive Definite

bei, ;) = (€i,€5)v = (&5, &:)v = blej, &)
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Energy Norm of FE Error e, = u — up,

can be computed without knowing the exact solution.

Vep, €V
(Vep,» 0V)y = b(u — upp, V) = 1(0V) — b(upp, dv) Vév €V

We have then
lenplle = llve,, v

We shall call v, , the error representation function

Note: No need for an a-posteriori error estimation.
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Relation with Least Squares

Rewrite the variational problem in the operator form:

Bu=1, B:U—=V' < Buwv>=blu,v)
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Relation with Least Squares

Rewrite the variational problem in the operator form:
Bu=1, B:U—=V' < Buwv>=blu,v)
Precondition with inverse of the Riesz operator Ry,

R)'Bu=R,'l, R,/'B:U—=V
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Relation with Least Squares

Rewrite the variational problem in the operator form:
Bu=1, B:U—=V' < Buwv>=blu,v)
Precondition with inverse of the Riesz operator Ry,
R/'Bu=R,'l, R/'B:U—=V
Apply the least squares method

| Ry} Bupy — Ry M|y — min
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Relation with Least Squares

Rewrite the variational problem in the operator form:
Bu=1l, B:U-—=V' < Buwv>=0b(u,v)
Precondition with inverse of the Riesz operator Ry,
Ry'Bu=R;!, R,'B:U—=V
Apply the least squares method
| Ry Bupy, — Ry ||y — min

This is exactly our DPG method
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Lectures

» Petrov-Galerkin Method with Optimal Test Functions.

» Ultraweak variational formulation and the DPG method for
convection-dominated diffusion.

> 1D analysis. Adaptivity.

» Wave propagation as an example of a complex-valued problem.

» Systematic choice of test norms. Robustness.

» Convergence proofs.
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1D Convection—Dominated Diffusion

A reminder:
How does the usual Bubnov—Galerkin method perform for 1D Confusion ?
—euw’ +u' =0 in (0,1)
{ w(0)=1, u(l)=0
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Bubnov-Galerkin Method

- — |

e=10""1

DPG Method
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Bubnov-Galerkin Method

DPG Method
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Bubnov-Galerkin Method

DPG Method
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Ultraweak Variational Formulation and

DPG Method for 2D Confusion Problem
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2D Convection-Dominated Diffusion

%0' —Vu =0 in Q
—divic —Bu) =f inQ

u =1wug on Jf
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DPG Method

Elements: K

Edges:e

Skeleton:l', = J OK

Internal skeleton:[9 =T}, — 9Q
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DPG Method

Take an element K. Multiply the equations with test functions
T € H(div,K),v € HY(K):

lo T —Vu-Tr =0
{ —div(e — Bu)v = fou
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DPG Method

Integrate over the element K:

JiloT—Vu-T =0
{ — [ div(e — Bu)v = fv
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DPG Method

Integrate by parts (relax) both equations:
xio-T+ [Ludivr— [ uT, =0
{ Ji(o —=Bu) - Vv— [ qsgn(n)v = [ fv
where ¢ = (o0 — Bu) - n. and

1 ifn=mn,
sgn(n) =

-1 ifn=-n,
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DPG Method

Declare traces and fluxes to be independent unknowns:

{ Jxto-T+ [udivr — [ a7, =0
— [x(o—=Bu)-Vo+ [, Gsgn(n)v = [ fv
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DPG Method

Use BC to eliminate known traces

{ fK %" T+ fK udivr — faK—aQ T, = fafman Up Tn

—fK(a—ﬁu)-Vv—i—faK(’jsgn(n)v :fov
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Trace and Flux Spaces

M, =Ug 0K (skeleton)
M =T, —0Q (internal skeleton)
HY2(19) = (V] : V € HY(Q)
with the minimum extension norm:
Wl gusaqeay = inf{IV e Vg = v}
H-Y2(r,) :={onlr, : o€ H(div,Q)
with the minimum extension norm:

lonllz-r2,) =inf{llolla@ve) : onlr, = on}
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DPG Method, a summary

{ fK %U ST+ fK udivr — faKfaQ Ty = faKmaQ Up Tn

—[xo Vo4t [y dsgn(n)v = [ fo
Main points:
» Both equations have been integrated by parts (relaxed).

> Traces @ ~ u and fluxes § ~ (o0 — Bu) - n. are independent unknowns (DPG
is a hybrid method).

» Boundary conditions have been built in.

> Test functions are discontinuous (come from “broken” Sobolev spaces). This
is critical to enable the idea of using optimal test functions.
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Functional Setting

Group variables:
Solution U = (u, o, 1, §):
u,01,02 € L2(Qh)
€ 1?11/2(r<,1)
qe H*1/2(Fh)
Test function V' = (7,v):
T € H(div, Q)
(IS Hl(Qh)

Variational problem:
U, vV)=1V), VvV

Minneapolis, Jul 24, 2011 DPG Method



DPG Method, abstract notation

{ Lo, 7)a + (u,divr)g, — < 0,7, >ro =< U0, Tn >0

7(‘77 VU)th < q,'U >rh = (fav)ﬂ

b((u’ o, 1, E]\)v (Tv ’U)) = (ua divr + ﬂ : VU)Qh, (0- T Vv)Qh

— < U,Ty >r% — <d,v >r,
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DPG Method with Optimal Test Functions

Minneapolis, Jul 24, 2011 DPG Method



Punchlines

Minneapolis, Jul DPG Method



Punchlines

» If the test norm is localizable, i.e.

(v,00v)y = Z(v, ) vy

where (v, 6v)y, defines an inner product for test functions over element K,
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Punchlines

» If the test norm is localizable, i.e.

(v,00v)y = Z(v, ) vy

where (v, 6v)y, defines an inner product for test functions over element K,

> then the determination of the optimal test functions is done locally. Given
trial functions e;, we compute on the fly corresponding optimal test functions
é; by solving element variational problems,

{ (&i,00)y = b(e;, ov), Yov € V(K)
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Punchlines

» If the test norm is localizable, i.e.

(v,00v)y = Z(v, ) vy

where (v, 6v)y, defines an inner product for test functions over element K,

> then the determination of the optimal test functions is done locally. Given
trial functions e;, we compute on the fly corresponding optimal test functions
é; by solving element variational problems,

{ (&i,00)y = b(e;, ov), Yov € V(K)

> Solution of the local problem above can still be only approximated using an
“enriched space” and standard Bubnov-Galerkin method.
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Challenges

» |f the optimal test functions are not well approximated, some nice properties
are lost.

*Crucial for h-refinements
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Challenges

» |f the optimal test functions are not well approximated, some nice properties
are lost.

» How do we prove that the continuous (hybrid) problem is well-posed ? +/

*Crucial for h-refinements
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Challenges

» |f the optimal test functions are not well approximated, some nice properties
are lost.

» How do we prove that the continuous (hybrid) problem is well-posed ? +/

» How do we prove that the stability of the continuous problem is mesh
independent* ? /

*Crucial for h-refinements
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Challenges

» |f the optimal test functions are not well approximated, some nice properties
are lost.

» How do we prove that the continuous (hybrid) problem is well-posed ? +/

» How do we prove that the stability of the continuous problem is mesh
independent* ? /

» How do we choose the test norm so the method delivers results (is robust) in
a norm we want? 4/

*Crucial for h-refinements
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Relevant progress

Nov 09
Dec 09

Jan 10

Mar 10

Jul 10
Aug 10

Jun 11

Proved: mesh independence for any 1D problem
Proved: robustness for 1D confusion with special weighted test
norm

Developed: 1D and 2D hp-adaptive codes for the confusion
problem and broke solvability records; e = 1071 for 1D, and
€ = 1077 for 2D problems.

Discovered: concept of optimal and (practical) quasi-optimal test
norm.

Solved: 1D Burgers and N-S eqns with € = 107! and ¢ = 10710,
Proved: mesh independence and well-posedness (but not
robustness) for nD confusion.

Developed a strategy for constructing robust DPG methods, and
proved robustness for nD confusion.
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Sample test norm(s)

Mathematician’s test norm:
(v, D)E = ol + V0|2 + |72 + [|divr |2
Weighted norm:
(v, 73 = Mol + 1V ol + 7115, + lidivr,
Quasi-optimal test norm:
(v, )5 = [loll* + II%T + V|2 + [|divr — 8- Vu|?
Weighted norm revisited:

(v, P)IIZ = ellvll? + 18- Vull3, + e Voll* + |7 + [[divr |7,

Minneapolis, Jul 24, 2011 DPG Method



Error Representation Function

Residual equals energy norm of the error:

lu = unl = [1Bun = U5 = | Ry (Bun = D) 5 = D ol
_,_/ K
=

where the element error representation function vk is determined by solving,

{ Vi € Vi
(Y, 6v)vye = b(u — up, 6v) = I(dv) — b(up, 6v), dv € Vi
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Lectures

» Petrov-Galerkin Method with Optimal Test Functions.

» Ultraweak variational formulation and the DPG method for
convection-dominated diffusion.

» 1D analysis. Adaptivity.

» Wave propagation as an example of a complex-valued problem.

» Systematic choice of test norms. Robustness.

» Convergence proofs.
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1D Confusion Problem:
Ultraweak variational formulation and the DPG method
1D analysis and adaptivity
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1D Confusion

1D model problem:

—o' + :f

Minneapolis, Jul 24, 2011

DPG Method



DPG Method for 1D Confusion

Pick an element:

Multiply the equations with test functions:
lor—u/'t =0

—dv+uv = fo
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DPG Method for 1D Confusion

Pick an element:

Integrate over the element:

Tk Tk
l — U//T =
€ Jrp_1 Tk—1
Tk / Tk / Tk
- agv uv = v
Tr—1 + Tr—1 Tr—1 f
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DPG Method for 1D Confusion

Pick an element:

Integrate by parts:

% ;l:il oT + ;:4 ur’ — [UT]@’;_I =0
f;kil ov' —[ov]|ZF | — f:ﬁl w' + [uwo] |2 = f;k’il fu
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DPG Method for 1D Confusion

Pick an element:

Declare fluxes to be independent unknowns:

% ;l:il oT + ;:4 ’U,T/ - [QT”?E—l =0
F e [ Sl T o 0 | A
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DPG Method for 1D Confusion

Pick an element:
0

X1 Xx 1

For elements adjacent to the boundary use the BC's to move known fluxes to the
RHS:

1 a1 Ty A _
¢ Joy o+ [ ut’ = d(21)T(21) = —uoT(0)
T / A _ T
a0 oV = [GV][5 f w' + (z)o(z1) = [ fo+ uov(zo)
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DPG Method for 1D Confusion

Pick an element:

Sum up over elements:

N xj x N—-1 A A~
L £ < S e o) = )
I‘? ov' — [6v]|Zo f w' +a(z1)o(r) = [J° fotug
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DPG Variational Formulation

A
Gk (o) (jk
k 1
unknowns: N +
Uy U Uy
| 1 I | | |
I T 1 ] | |
Xp = 0 Kl Kk—l Kk Kk+‘l KN -1
. T T
test functions: k ket
Vi Viet1
For each k=1,..., N,
1 Tk z5 , . o B
cJop_, OKT +fzk71 wpr' —(Gr)%_, =0
xT A - . .
0 R R L0 S e

for every optimal test function 7,v. For k =1, 4(0) = uo is known and is moved to the
right-hand side. Similarly, @(1) = 0 in the last equation for k = N.
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Optimal Test Functions

(Th,67) =12 e OROT + [TF uRdT — (A0T) |3y, vér
(vg,0v)Kk = fk’il orv’ — (66v)|ak | — f;k’il upv’ + (4ov)|ok_,  Vov
where (-, ) is an inner product for k-th element.
©(x) v(x)

—(1+x, %)
Optimal test function corresponding to flux @(x;) =1 and

(u,v)g = fk’il w'v' dz 4+ u(zg)v(zk)
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Approximate Optimal Test Functions

Practical approach:
Solve for the optimal test functions in an enriched space:

PrAY(K)

with a globally defined Ap.

Warning:

This should not be confused with using PP*AP(K) for the test space. The
optimal test functions constitute only a proper subspace of PP+AP(K)
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Globally and Locally Optimal Test Functions in 1D
(Issue: mesh independence)
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Global Test Functions

Formulation with continuous test functions:

o,u € L?(0,1), 5(0),6(1) €R
%fol oT + fol urt’ =upr(0) V7€ HY0,1)
fol ov' + [60][} — fol uv’ =uov(0) Vv e H(0,1)
requires no interelement fluxes but leads to a global problem for the optimal test
functions:
7,0 € HY(0,1)
fol 67 + 7T =1 fol 00T + fol udt’ Vo7t € H*(0,1)
[ 060+ vév = [ 080 + [860]|5 — [3 udv’ Vév € HY(0,1)

The resulting stiffness matrix is full but the resulting energy norm is mesh
independent!

Minneapolis, Jul 24, 2011 DPG Method



Q: A relation between the globally and locally
optimal test functions ?
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Globally Optimal Test Functions

e

7"+ 7 Lo —/ in D'(0,1)
" 4+v =(-oc—u) inD'(0,1)
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Globally Optimal Test Functions

Equivalently,
—m"+7 =l in (zg—1,2x), k=1,...,N
[7'—u] =0 atxy, k=1,...,N -1
—v"+v =(—oc—u) in(zg-1,2), k=1,....,N
[V —oc+u] =0 atx, k=1,...,N -1
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Globally Optimal Test Functions

With boundary conditions,

—m"+7 =l in (zg—1,2x), k=1,...,N
[*"—u] =0 atxg, k=1,...,N -1
7 —u =0 at zg, TN
—v"+v =(—oc—u) in(zr-1,2), k=1,....,N
[V —oc+u] =0 atx, k=1,...,N—1
v—oc+u =6 at g, xN
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Globally Optimal Test Functions

Multiply with discontinuous test functions d7, dv and integrate over individual

ele | entS,
‘fmkl( " )é ‘[Ik (EC ul)é

f;:l (—v" +v)dv = f;:l (—o +u)dv
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Globally Optimal Test Functions

Integrate by parts,

ka o' + 767 = [1F o6t +udt + (71— w)dT|ZE_

l‘ke

T 5v 4 vév —fzk (0 —u)dv' + (v — o + u)dv|Z*

Tk—1
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Globally Optimal Test Functions

Sum up over elements using interface and boundary conditions

Eszl f;:l T'6T" + 76T Zk 1 fzk Y07 + uor’
+ 30 (7 = w)[r) (k)

Sy f;:l VoY by =N Ik (0 — u)dv’
+ Y (v = o+ w)[8v](ax) + (860)[5
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Globally Optimal Test Functions

Conclusion:

The globally optimal test function corresponding to an hp trial shape function
(o,u,5(0),5(1)) is a linear combination of the corresponding locally optimal test
function corresponding to the same trial function and locally optimal test functions
corresponding to fluxes (7' — u), (v — o + ) at interelement boundaries xy.

Remark: The result is true for any 1D problem but it does not generalize to
multidimensions where the globally optimal test functions can only be
approximated with the locally optimal ones.
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Mesh Independence

Theorem

Test space corresponding to formulation with globally conforming test functions is
contained in the DPG test space. Consequently, the FE solutions corresponding to
both formulations are identical. Part of the energy norm corresponding to the
DPG formulation and unknowns (o, u, 5(0), (1)) coincides with the energy norm

corresponding to the globally optimal test functions and, therefore, is mesh
independent
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Continuity of Error Representation Function

A related result:

Theorem

The error representation function corresponding to the DPG formulation is
globally conforming (continuous).

(A great check for the control of round off error...)
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Continuity of Error Representation Function

Notation:

U= (o,u,6,4) exact solution
Upp  approximate solution
(zr—1,2k), (Tr,Zr+1) neighboring elements
(Ta,,va,) optimal test function corresponding to flux i

Orthogonality condition for the error function Enp :=U — Unp:

b(U — Unp, (Tay, , vay))
= be(U — Unp, (Tay, vay,)) + besr(U — Unp, (Tay,, va,)) =0

where by, denotes k-th element contribution to the global bilinear form.
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Continuity of Error Representation Function

Let (¢x,?r) be the error representation function for the k-th element,

(P, ¥r), (09, 69))k = bi(Enp, (39, 69)), V(¢ 0¢)

The error orthogonality condition implies then

((5; ), (Tar, va Dk + (P41, Yira), (T, vay, ) e
= b(u — Z/{hpa (Tﬁk)a Uﬂk) =0

On the other side, it follows from the definition of optimal test functions that
((Tﬁk,’Uak), (6¢7 éw))k = 6¢(mk)v V(égﬁ, 5¢)

and

((Tﬁk s Uty )7 (6¢7 5w))k+1 = —577/1(9%)7 V(&l&: 57»/))
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Continuity of Error Representation Function

Selecting (d¢, 0v) = (¢r, ¥x) and (¢dr+1, Yr+1) above, and summing up the two
equations, we get

Yr(zr) — Yra(zr) =0
In the same way we prove continuity of ¢.
Important consequence: solution of the global problem

{ (¢,%) € H(0,1)
((#,9), (60, 6%)) = b(Enp, (50, 6¢))  V(5¢,6¢) € H'(0,1)

where (¢, 9) = ij:lw, 1)k, leads to the same error representation function.
Conclusion: If (¢,1)) is mesh independent then so is the energy norm of the FE error.
Consequently, both h and p-refinements must lead to the decrease of the energy error.
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Consider the spectral (one element) case and two norms for test functions

vl = foi [v'[Pw(@) da + (1)
[vll3 = fo (1 + v]*)w(z) dz

where w(z) is a weight function. Under appropriate conditions on w(z), the two norms
are equivalent with order 1 equivalence constants. The energy norm corresponding to the
first norm can be computed analytically

(2 5(0), 6(1), w5 =
1 1 ~ ~ ~
12 o+ully +1Ef o+ o —u—b0)F;  +16(0) - (1)

The second test norm is localizable.
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Theorem
Let
w(z) = max{x, e}

Then there exists an order one constant C such that:
oLz, ull2 < Cll(e,8(0),6(1), u)lle

By the equivalence of the two test norms, the result holds also for the energy norm
corresponding to the localizable test norm.
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Convergence Analysis

o —onpllze, [lu—unpllre S1[(0 = onpsu = unp, & = Gnp, & = np)|| &

= inf (o = Onpyt = Unp, & = Gy, Gl — Anp) || &
(ThpsUhp Fhplnp)

estimate needed
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A “Greedy Poor Man” hp Algorithm

Set a = 0.5
Do while oo < 0.1
Solve the problem on the current mesh
For each element K in the mesh
Compute element error contribution ex
end of loop through elements
For each element K in the mesh
if ex > a® maxx ex then
if new h < ¢ then
h-refine the element
elseif new p < pmaz then
p-refine the element
endif
endif
end of loop through elements
if (new Ngos = old Ngof) reset € = ¢/2
end of loop through mesh refinements
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Convergence History for e =1

Ap=4, Pmax =4

0.87H-@#ror
0.121-02 SCALES: log(nrdof), log(error)
0.171-03
024804
033105
0.461}-06
0.654-07
0.911}-08
0.131-08
0.18-09

0.258-10
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Resolution of boundary layer for ¢ = 103

Ap=4, Pmax =4
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Error representation function ¢ for e = 103

Ap=4, Pmax =4
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Convergence History for €

Ap=4, Pmax =4

0.45§
0.28H
0.17
0.11F
0.65H
0.40F
0.25F
0.15H
0.958
0.59E
0.36F

-fror

02 SCALES: log(mrdof}, log{error)

-03 — eps=E-6
-06
-07
-08
-09
-11

-12
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Resolution of boundary layer for e = 107°

Ap=4, Pmax =4
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Error representation function ¢ for e = 107°

Ap=4, Pmax =4
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For ¢ = 10~ the method falls apart...
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Use a rescaled inner product:

ok
(v,6v) = / (hgv'0v" + vév)w(z) dz

k—1

With the rescaled inner product, convergence is no longer guaranteed to be
monotone (theory, in practice is...).
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Convergence History for ¢ = 107° and Rescaled Inner

Product

0.175+&fvor

032501
0.601}-02
0.111-02
022503
042004
075105
0.158-05
0.291-06
055107

0.11-07
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Rescaled Inner Product and € = 10°°

Increment in order to solve local problems Ap = 4, par = 4

[ [T T . p=
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¢ for e = 107 and Rescaled Inner Product

Increment in order to solve local problems Ap = 4, par = 4
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» With the rescaled inner product, we can solve the problem for ¢ = 1071

> It is possible to work with 2,1 < 6 < 2 in the rescaled norm but not with
0 = 2 (produces wrong refinements).
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2D Confusion Problem
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2D Convection-Dominated Diffusion

%a‘ —Vu =0 in Q
—dive +div(Bu) =f inQ

u =wug on Jf
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2D Convection-Dominated Diffusion

Problem definition.
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DPG Formulation

%fKUT

+ [ udivr

—faKﬁTn

=0
VT

Jx Vv —faK6nv —JxuB- Vo +faKﬁﬁnU =[x fv

Energy setting:
T € H,(div,K), v € H.(K),
o€ Li,(K) ue L3, (K),

o HY(r),6, € H-Y2(},)

Vv
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Flux (Trace) Spaces

I =g 0K (skeleton)
Mo =T —0Q (internal skeleton)
HY2(Ty) ={V], : V€ H}Q)
with the minimum extension norm:
[Vl 12y = inf{[Vlar = Vi, = v}
H=Y2() :={on|r : o € H(div,Q)
with the minimum extension norm:

lonllg-12y = inf{llol|ln@iv.e) : onlr=on}
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Stability Result

Let w =1 (no weight).

Theorem [D,Gopalakrishan, Sep 2010]

The DPG variational formulation for 2D or 3D confusion problems is well-posed
with the inf-sup constant independent of mesh.

Colorollary 1:
There exists C' > 0 :

lo = onpllza@) + [lu — unpllL2()
HGn = Gnnpll r-172(ry + 118 — npl| grrr2(ry)

<C Infah,pyuhpa&n,hp,ah,p []

Robustness requires use of weighted norms and appropriate norms for fluxes (in
progress...)
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triangles:
oi,u € PP(K), &n,0 € PPe(e)

quadrilaterals:

oi,u € QPI(K) 1= PP(K) @ PUK), 6,0 € PPe(e)
Max rule for determining approximation for fluxes:
triangles: p. = max{p1,p2(,p3)} + 1+ Ap.
quadrilaterals: p. = max{q1, ¢2(, ¢3)} + Ape (accounting for directionality)
(piecewise polynomials used for 2-1 edges)

Convergence result indicates that we should use

Ap. =1
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Convergence Result

Assume w = 1 and uniform h-refinements.
Theorem

For elements of order p and fluxes of order p + 1,

o = onpllze@) + [lu — unpllL2()
160 = Gnnpll r-172(r) + 18 — @np |l 12 (rg)

< Ch?
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Norm for Test Functions

I ol = Sy {182 + 2P +InP +|nP

812

HZL P+ 125 + [0 } w(z) do

Definition of weight function
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Computation of Anisotropy Factor

Computation of error function

(r,v) € Vg
{ ((m,0), (07, 6v))k = b (Upp, (07, 6v)) — Lk ((d7, 6v))
V(éT,0v) € Vi

Ov v
_ 2 2 _ 2 2
o= [ (nP+ =P de = [ (nf+ |55 o) o

10 If C1 Z 1062

Refinement flag = 01 if e >10¢
11  otherwise

DPG Method
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03, Triangles

0.208
0.508
0318
o128
0.49%
0.19%
0.778
0.308
0128
0478

0.19H

-@tror

-02

-02

-02

-03

-03

-04

-04

04

-05

-05

SCALES: log(nrdof), log(error)

408

nrdof
924 T 2096 T 4751 T 10769 [ 24411 T 55332 [ 125420 [ 284286

Convergence history
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€ = 1073, Triangles

N

Final mesh after 21 refinements
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1072 x zoom on upper boundary
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e = 1073, Triangles

K

10~2x zoom on north-east corner
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€ = 1073, Triangles

Solution u
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e = 1073, Triangles

M

102 x zoom on upper boundary. Solution u with the mesh
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e = 1073, Triangles

M

102 x zoom on upper boundary. Solution u without the mesh
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e = 1073, Triangles

M

102x zoom on north-east corner. Solution u with the mesh
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e = 1073, Triangles

M

10%2x zoom on north-east corner. Solution u without the mesh
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Limit for Triangles

€ =107%, almost 1M d.o.f.
(4 years old IBM Think Pad, 1Gb memory, frontal solver for a symmetric problem,
no pivoting )

Minneapolis, Jul 24, 2011 DPG Method



0.2

0.21F
0.388
0.658
0.12E
0.228
0.408
0728
0.138
0.23

0.42H

-tror
-02
-03
-04
04
-05
-06
07
07
-08

-09

SCALES: log(nrdof), log(error)

— ops=E-4

468

nrdof
7975 T 2032 T 4235 T 8827 [ 18395 [ 38336 [ 79893 [ 16649

Convergence history
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Limit for Quads with Standard Inner Product

e =103, almost 0.5M d.o.f.

with the following limitations:
» L2 contribution scaled with factor 10
> aspect ratio hy/hy < 100

> Dmaz = 4
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Remedy: Redefined Norm for Test Functions

Il = i {IVAga + ViR P +nf + Inf?
+h1|6z1|2 —|—h2|6z2|2 + |v]? }w(x) dx
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0.538

0.125-

0.4

0,178
0,631

0.238-

0.868
032
0128
0.448

0.16H

01

-04

04

-05

-05

SCALES: log(nrdof), log(error)

468

nrdof
[T 1173 T 2942 T 7379 T 18505 [ 46405 [ 116366 | 291804 [ 731738

Convergence history for the redefined norm
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h e

Optimal hp mesh after 45 mesh refinements.
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h e

Optimal hp mesh after 45 mesh refinements. Zoom x10 on the north-east corner.
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N

Optimal hp mesh after 45 mesh refinements. Zoom x100 on the north-east
corner.
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N

Optimal hp mesh after 45 mesh refinements. Zoom x1000 on the north-east
corner.
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N

Optimal hp mesh after 45 mesh refinements. Zoom x 10000 on the north-east
corner.
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Optimal hp mesh after 45 mesh refinements. Zoom x10° on the north-east corner.
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h e

Velocity u.
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h e

Velocity u. Zoom x10% on the north-east corner.

Minneapolis, Jul 24, 2011 DPG Method



h e

Velocity u. Zoom %108 on the north-east corner with the mesh.
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o

Velocity u. Zoom x10° on the north-east corner w/o the mesh.
OK, is not ideal yet...

Minneapolis, Jul 24, 2011 DPG Method

105 / 185



> aspect ratio hy/hp < 10000

> Dmaz = 4
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Lectures

» Petrov-Galerkin Method with Optimal Test Functions.

» Ultraweak variational formulation and the DPG method for
convection-dominated diffusion.

> 1D analysis. Adaptivity.

» Wave propagation as an example of a complex-valued problem.

» Systematic choice of test norms. Robustness.

» Convergence proofs.
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Ultraweak Variational Formulation
and DPG Method for Linear Acoustics
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DPG method

Linear acoustics in frequency domain:
wu+Vp =0
iwp+divu =0

with, e.g. hard boundary condition:

Un =g
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DPG method

Elements: K

Edges:e

Skeleton:l', = J OK

Internal skeleton:[9 =T}, — 9Q
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DPG Method

Take an element K. Multiply the equations with test functions
v € H(div, K),q € HY(K):

{ iwu-v+Vp-v =0

iwpq+divug =0
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DPG Method

Integrate over the element K:

{ iw[u-v+ [ Vp-v =0

w [, pq+ [divug =0
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DPG Method

Integrate by parts (relax) both equations:
{ iw [u-v— [ op-divo+ [ pv, =0
iw [ pq— [ew-Va+ [oungsgn(n) =0

where u,, = u - n. and

-1 ifn=-n,

1 ifn=n,
sgn(n) =
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DPG Method

Declare traces and fluxes to be independent unknowns:

{ iw [pu-v— [p-divo+ [ pv, =0

Ww [ pq— [euw-Vq+ [op 0, gsgn(n) =0
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DPG Method

Use BCs to eliminate known fluxes
{ iw [pu-v— [p-divo+ [ pv, =0

iw [ pq = [ Va+ [y lngsgn(n) = [yxr94
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DPG Method

Sum up over all elements and replace v, ¢ with T, § to comply with the
sesquilinear forms setting,

{ iw(u,v)q — (u,divo)g,+ < p,v, >r, =0

iw(p,q)a — (v, V@)a,+ < fn, ¢ >0 =<g,q>r

Minneapolis, Jul 24, 2011 DPG Method 111 / 185



Trace and Flux Spaces

M =g 0K (skeleton)
M =T, —09Q (internal skeleton)

HY2(y) ={dqlr, : ¢ € H(Q)}

with the minimum extension norm:

gz, = inf{llQlm : Qlr, =4q}
A2 = {v,|r, : v € Ho(div,Q)}
with the minimum extension norm:

loallzvagey = EIV I gy V-l = ou)
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Functional Setting

Group variables:
Solution U = (u,p, {in, P):

Ui, U2,~p & Lz(Qh)
t, € H=Y2(19)
pe HY2(y,)

Test function V = (v, q):

vE H(diV,Qh)
qc Hl(Qh)
Sesquilinear form
bU,V) =—(u,iwv+ Vq)a, — (p,iwg + divo)q,

+ < tn,q >ro + < D,vn >r,
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Punchlines

Local invertibility of Riesz operator

Due to the use of "broken” Sobolev spaces (discontinuous test functions), the
Riesz operator is inverted elementwise! Given any (linear) problem, and any trial
shape functions, we compute the corresponding optimal test functions on the fly.

Approximate optimal test functions

The locally determined optimal test functions still need to be approximated. This
is done using standard Bubnov-Galerkin method and an enriched space. If
polynomials of order p are used to approximate the unknown velocity and pressure,
the approximate optimal test functions are determined using polynomials of order:

p+ Ap
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Quasi-optimal test norm

Trial norm:
(2w, py i, D) = lluallZ2 + lIplIZ2 + 1217 + 115113

Optimal test norm (unfortunately, non-local ):
1, )120 = lliwv + Vg3, + [liwg + divoll3,

|<On,g>+<P,vn>|

SUp, -~ ~ ~
T SUPa, 5 ([l [P TA2)/2

Quasi-optimal test norm (local):

I(v. a)lI2pe = lliwo + Valig, + lliwg + divolg, + o] + q]®
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Robust stability result

Theorem: (Gopalakrishnan, Muga, D, Zitelli, 2011)
Assume: € contractable, impedance BC
Use: the quasi-optimal norm to define the minimum energy extension norms for

fluxes 4, and traces p.
Then

||(vvq)|‘§pt ~ ||(v7q)||3opt (uniformly in k and mGSh)

Consequently, we get the robust stability in the desired norm:

1

(e = wnll? + llp = pall? + llan — i pll + 1D — Bnll?) 2
S ||(Iu’7pa ﬁnaﬁ) - (uhaphaﬁ'n,haﬁh)”E
= BAE of (u, p, @i, p) in energy norm

< BAE of (u, p, @i, p) in desired norm
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No pollution in 1D case

In 1D, traces and fluxes and just numbers. Thus, the BAE of fluxes and traces is
zero. We get,

1
(Ilw = wnll® + Ip = pall? + 120 — @l + 115 — Pr]1?)2

1
Sinfuy, i, ([u—wnll? +[lp — ral?) 2

The BAE of u, p in L?-error is pollution free.
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NUMERICAL EXPERIMENTS
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Ansatz in time e™?,

Exact solution: u = p = e~*** (going to the right)
BCs:

hard boundary at z = 0: u(0) =1

impedance BC at = = 1: u(1) = p(1)

enriched space: Ap =6
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DPG vs. Standard FEs, 6 wavelenghts

n=6.0,p=1, test p =7, energy error = 0.0568935128026, Z = 1.0

— J (exact)
— mp (L, projection), |[p—p||,, = 0.0402331827305
—1.5] e pgy ('), [lp=py, Iz, = 1.19609127505

© Puensca (H', blended), [Ip

1, = 0.133789956382
2367970062

== ppre (DPG), [Ip~pproll, =

0.70 0.75 0.80 0.85 0.90 0.95 1.00

The standard H' conforming solution py,, quickly exhibits excessive phase error; it
is reduced but still present in ppjended
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Four linear elements per wavelength

Four linear elements per wavelength
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Adhering to a fixed number of elements per wavelength is sufficient to control
error
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One quartic element per wavelength

One p=4 element per wavelength
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Adhering to a fixed number of elements per wavelength is sufficient to control
error
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2D experiments

Discretization:
> field variables are discretized using isoparametric L?-conforming quads of
order p,
u1, ug,p € PP @ PP,
> traces are discretized using H'-conforming elements of order p + 1,
> fluxes are discretized using L?-conforming elements of order p + 1

» optimal test functions are approximated with polynomials of order

p+1+Ap, ie ve (PPHAPHL @ Priar) i (PrHap g prtaptl)
q € PPHAPTL @ priiptl
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2D experiment A

Exact solution: horizontal plane wave

Enriched space: Ap = 2.

impedance BC

impedance BC

impedance BC

impedance BC
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2D experiment A

DE/BAE with four bilinear elements per wave (0=0)

—— Standard FEM
+ - Blended Quadrature
—&— DPG method
+
10} : 1
e
@
=] ¥
5 L -
+
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4o
1F © = = < =2 = = =2 o -
10' 10° 10°

Wavenumberw (on log scale)
Ratio of L? discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.

Minneapolis, Jul 24, 2011 DPG Method



2D experiment B

Exact solution: plane wave along diagonal

Enriched space: Ap = 2.

impedance BC

impedance BC

impedance BC

impedance BC
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2D experiment B

DE/BAE with four bilinear elements per wave (}=n/4)

—— Standard FEM
+ - Blended Quadrature
—&— DPG method
10 . -
¢
a]
w
=)
sk + ]
¥
+ + + +
1t © = = < =2 = = < o -
10' 10° 10°

Wavenumberw (on log scale)
Ratio of L? discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.
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2D experiment C

Exact solution: plane wave along diagonal

Enriched space: Ap = 2.

hard boundary

impedance BC

hard boundary

impedance BC
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2D experiment C

DE/BAE with four bilinear elements per wave (}=n/4)

15 T T T
—— Standard FEM
+ - Blended Quadrature
—&— DPG method
10} -
+
¢
@
w
o
5 * -
4
4 + +
1t G = = =2 = € 4
10' 10° 10°

Wavenumberw (on log scale)

Ratio of L? discretization error vs BAE as a function of wave number. DPG vs
standard FEs and Ainsworth-Wajid underintegration scheme.
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2D experiment D

Exact solution: outgoing cylindrical wave (Hankel functions...)
Enriched space: Ap = 2.

impedance BC

hard boundary

pedance BC impec

impedance BC

Boundary conditions, real part of pressure, initial mesh for & = 4x.
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2D experiment D
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Discretization error as a function of wave number.
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Pekeris problem, & = 50 (8 wavelengths)

Visualization Toolkit - OpenGL

[ jzitelli@waffles: ~ & ema

m Visualization ToolKit - ...

Exact solution (real part of pressure).
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Pekeris problem, & = 50 (8 wavelengths)

[emacs23@wa... [ jaitelli@waffles. [*Unsaved Doc... |jamiViSUBliZationiie [dpg pekeris - F. (dpg.png] [Terminal]

Classical FEs, four biquadratic elements per wavelength.
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Pekeris problem, & = 50 (8 wavelengths)

Visualization Toolkit - OpenGL

[ jzitelli@waffles: ~ & ema

m Visualization ToolKit - ...

Exact solution (real part of pressure).
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Pekeris problem, & = 50 (8 wavelengths)

-0.300 -0.100 0.100 0.300

-.. & emacs23@waffles [ jzitelli@wafles: ~res... |miVisualization TooIKIt 1 2 NI

Ainsworth-Wajid quadrature, four biquadratic elements per wavelength.
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Pekeris problem, & = 50 (8 wavelengths)

Visualization Toolkit - OpenGL

[ jzitelli@waffles: ~ & ema

m Visualization ToolKit - ...

Exact solution (real part of pressure).
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Pekeris problem, 8 wavelengths)

Visualization Toolkit - OpenGL

jzitelli@waffles [ jzitelli@waffles: ~ & emacs23@wafles m Visualization Toolkit - ..

DPG method, four bilinear elements per wavelength.
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Pekeris problem, 8 wavelengths)

Visualization Toolkit - OpenGL

g e m Visualization Toolkit - ...

Error for the DPG method.
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Pekeris problem, k£ = 100 (16 wavelenghts)

Visualization Toolkit - OpenGL

‘Contact List m Visualization Toolkit - ..

Exact solution (real part of pressure).
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Pekeris problem, k£ = 100 (16 wavelenghts)

Visualization Toolkit - OpenGL

-0.300 -0.100 0.100 0.300

Alnsworth Wajid quadrature, four blquadratlc eIements per wavelength.
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Pekeris problem, k£ = 100 (16 wavelenghts)

Visualization Toolkit - OpenGL

‘Contact List m Visualization Toolkit - ..

Exact solution (real part of pressure).
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Pekeris problem, 0 (16 wavelenghts)

Iy
e
—“’.
590
=306
O
Ty te
A0
—_ -
— -
15,0 -5.00 5.00 15.0
N @ |

m Visualization Toolkit - ..

DPG method, four bilinear elements per wavelength.
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Pekeris problem, 0 (16 wavelenghts)

Visualization Toolkit - OpenGL

m Visualization Toolkit - .

Error for the DPG method.
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Pekeris problem, & = 200 (32 wavelenghts)

- Visualization Toolkit - OpenGL =)
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Pekeris problem, 0 (32 wavelenghts)

Visualization Toolkit - OpenGL

-0.300 -0.100 0.100 0.300

W dpg pekeris - File B... |[miVisUalizationooikiny] = B2l sl
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Pekeris problem, & = 200 (32 wavelenghts)

- Visualization Toolkit - OpenGL =)
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Pekeris problem, & = 200 (32 wavelenghts)

- Visualization Toolkit - OpenGL =)

@ emacs23@waffles

DPG method, fo
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Pekeris problem, 200 (32 wavelenghts)

Visualization Toolkit - OpenGL

nt 1... [l VisUalization Toolkit=

Error for the DPG method
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2D elastodynamics

Pressurized cylindrical cavity problem with PML layer. Radial component of
velocity.
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2D elastodynamics

Pressurized cylindrical cavity problem
60 T T T : :

—&—Standard H1
—DPG 1
+ L2 projection

o
o
T

=
[=
T

Relative error
w
o
T

20r

Wavenumber

Pressurized cylindrical cavity problem with PML layer. Comparison of relative L?
error for standard FEs and DPG with the BAE for increasing wave numbers.
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2D acoustics (electromagnetics) cloaking problem

|
|
|

Exact solution (pressure or magnetic field)

K
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2D acoustics (electromagnetics) cloaking problem

T e
SRR T
B my o= i |
‘> i
i
e
-l
NN Y
HH L=

An hp mesh (4 bilinear elements per wavelength)
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Numerical solution (pressure or magnetic field)
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Lectures

» Petrov-Galerkin Method with Optimal Test Functions.

» Ultraweak variational formulation and the DPG method for
convection-dominated diffusion.

> 1D analysis. Adaptivity.

» Wave propagation as an example of a complex-valued problem.

» Systematic choice of test norms. Robustness.

» Convergence proofs.
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A Recipe:
How to Construct a Robust DPG Method
for the Confusion Problem

(and Any Other Linear Problem as Well )
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Step 1: Decide what you want

We want the L2 robustness in u:
ull < [(w, o, ,4)|E

(a < b means that there exists a constant C, independent of € such that
a < Cb). This implies

lu—un| < (u—uno—0opa—"1tnd—an)le

= inf  |(u—wun, 0 —0ontd—"10,,4—q4n)le
(uh,O hyTn,qn)

Best Approximation Error (BAE)

< C(e)h?
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Step 2: Select a special test function...

b((u,0,4,q), (v, 7)) = (0,11 4+ Vv)q, + (u,divt — B Vo),
— <0, > — < v >,
Choose a test function (v, T) such that

v € H}(Q), T € H(div,Q)
%T—I—VU =0
divr—3-Vv =u

Then
lul2 = b((u, 0,0, ), (v, 7)) = 2eFBALTN (), 7))y,
< sup(, ) MTLBCTD |, 1|y = |[(u, 0,8, 9) | | (v, 7) v
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and request stability of the adjoint problem

Consequently, we need to select the test norm in such a way that
I, Pl S el
This gives,
[l S (w0, Q)| & lu]

Dividing by ||ul||, we get what we wanted.
The point: Construction of a robust DPG reduces to the classical stability
analysis for the adjoint equation!
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Step 3: Study the stability of the adjoint equation

Theorem (Generalization of Erickson-Johnson Theorem) (Heuer,D., 2011)

o]

18- Vel VOl 5
[divT[lwtes €18 - 7llw, 2 lI7l

where w = O(1) is a weight vanishing on the inflow boundary that satisfies some
“mild" assumptions.

The terms on the left-hand side are our “Lego” blocks with which we can build
different test norms.
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Step 4: Construct test norm(s)

Quasi-optimal test norm:
1 .
(o, 7T = ol + | =7 + Vol + [dive — 8- Vol|?
Weighted norm:
(v, )13 = ellol* + 18 - Volf, + el Vol + 74 + Idivr

Remark: Both choices imply also L2-robustness in o, as well as in traces and
fluxes measured in special energy norms.
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Estimates for o, 1, §

Same methodology can be used to design a test norm that will imply,
loll < (e, u. 4,9)lle

In fact both quasioptimal and weighted norms imply the robust estimate for o.
They also imply a robust estimate for traces and fluxes measured in a minimum
extension norm implied by the problem,

A 1 .
() @)= ==~ VU|? + || —divE+B- VU|?
where ¥, U are extensions of i, § from mesh skeleton to the whole domain,
U=donl, (Z-BU)-n.=gonl,

that minimize the right hand side of (x).
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Pros and cons for both test norms

» The quasi-optimal test norm produces strong boundary layers that need to be
resolved, also in 1D,

Left: 7 and v components of the optimal test function corresponding to trial
function u = 1 and element size h = 0.25, along with the optimal hp subelement
mesh. Right: 10 X zoom on the left end of the element.
Determining optimal test functions is expensive.

» The weighted test norm produces no boundary layers. Solving for the optimal
test functions is inexpensive.

» Quasi-optimal test norm yields better estimates for the best approximation

error measured in the corresponding energy norm.
146 / 185

DPG Method
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085K i6itor
SCALES: log(nedef), log(erroe) 0dsBiOl Tl SCALES: logurde), log(erroc)
— B2
e epeli3
- cpeEd
0.508-01
275 01
e ol 0.1 01 nrddof
PL R £ TOT T T T A T B T W T ®m 7w T %

Left: convergence in energy error. Right: convergence in relative L?-error for the
field variables (in percent of their L2-norm).
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1D: Quasi-Optimal Test Norm, e = 1072,1073, 10~*

0.128+01

0.11B+01 SCALES: log(nrdof), y*1.00

OMOBFOR-..

0.505+00

0.808+00 _ e

0.705+00 e eps=E-3

0.60E:+00 - epsbd

0.508+00

0.408+00

0.30E+00

0.208+00 o
T T 16 T ©® T 20 T 2 T 20 T 3 T 39 T 4

Ratio of L? and energy norms.
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1D: Weighted Test Norm, e = 1072,1073,10*

SCALES: log(nrdaf), log y SCALES: log(udof), log y

dol
6

Left: convergence in energy error. Right: convergence in relative L?

-error for the
field variables (in percent of their L2-norm).
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1D: Weighted

0.151
0.145
0.131
0.128
0.115
0.108
0.908
0.808
0.705
0.601

0.50E

Test Norm, e = 1072,1073, 104

+01

+00

+00

00

+00




2D: Model problem of Erickson and Johnson

B ) B _ | sinmy onx=0
Q=(0,1)%, B=(1,0),f=0, Uo = { 0 otherwise

The problem can be solved analytically using separation of variables.

Velocity u and "“stresses” o, 0, (using scale for o,) for e = 0.01.

. I W .
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2D: Weighted norm, ¢ = 1072

Weight: w = z.

130_ Ratio
17 /
104 /

os1_|
o N/
065 |
052
039 |
026 |
013 |

000

177 19976

0371401

Nrdof 046105
19776 29575 139375 1 49175

e SCALES: Tog(urdof), log(error)

— encrgy e
e L2

e def
77T T 7221 160 | 2950 | 5961 1 12044 | 24337 T d917d

Ratio of energy and L? errors (left), energy vs L? error (right) for 29 hp-adaptive
meshes. Relative L2-error range 12.6 - 0.00068 % .
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2D: Weighted norm, ¢ = 10~*

100 Ratio
090 |
050
070 | ™ T\

060 | .

050 | .

030 |
020 |

o0 |

77 I 15% 3001 wis 15832

Ratio of energy and L? errors (left), energy vs L? error (right) for 23 hp-adaptive

Nrdof
1 7216

72T 13

SCALES: log(nrdaf), logerroe)

— encrgy e

I 1801

N adof
2864 | 4555 | 726

meshes. Relative L2-error range 13.5 - 0.24 % .
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2D: Weighted

norm, e = 107°

100 Ratio
090 |
050
N
070 |
060 |

050 |

030 |
020 |

o0 |

77 119t

5500

— epsES

7S

Nrdof 015802
1 %050

T SCALES: log(nrdaf), logerroe)

— encrgy e
e L2

. ndof
a3 T 7B T 165 | 2069 | 384 | 5530 1 9050

Ratio of energy and L? errors (left), energy vs L? error (right) for 27 hp-adaptive
meshes. Relative L2-error range 13.5 - 0.21 % .
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2D: Weighted norm, ¢ = 1072

— I T .

L

Optimal hp mesh corresponding to 0.006 % L? error and the corresponding u
component of the solution.
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2D: Weighted norm, € = 1072

o, and o, components of the solution.

%)
)
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2D: Quasi-optimal norm, ¢ = 10~}

100 Ratio
030 |
050

070_|
060_|

050 |

030 |
020 |
010 |

000
a3

— epsEL

— Nrdof

I 5165 | 6788 177

SCALES: Tog(urdof), log(error)

T — eergy e
e - L2
e et
] M0 T et 1 10% | 179 1 2727 | a2 1 67ss

Ratio of energy and L? errors (left), energy vs L? error (right) for 5 h-adaptive

meshes. Relative L2-error range 4.3 - 0.0267 % .
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2D: Quasi-optimal norm, € = 10~*

— epEd

.
aedof

000 Nedof T
G T A T WS T 07 T 1772 T 2809 T st T 7080

7 ) 2930 a7 TS6RT 1 7061

Ratio of energy and L? errors (left), energy vs L? error (right) for 6 h-adaptive
meshes.
Relative L2-error range 1.3 - 0.6 % . Optimal test functions obtained with
Shishkin meshes and Ap = 2. The non-monotone behavior of the energy error
indicates a significant error in the resolution of optimal test functions.
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2D: Eye-ball norm comparison for ¢ = 10~*

[
Velocity u on the initial mesh of four quadratic elements for quasi-optimal (left)
and weighted (right) norms.
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Lectures

» Petrov-Galerkin Method with Optimal Test Functions.

» Ultraweak variational formulation and the DPG method for
convection-dominated diffusion.

> 1D analysis. Adaptivity.

» Wave propagation as an example of a complex-valued problem.

» Systematic choice of test norms. Robustness.

» Convergence proofs.
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Convergence Analysis in Multidimensions
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Poisson Problem

u =mug on IdN

{ -V -(aVu)+B8-Vu =f inQ

For a moment 3 = 0.
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Poisson Problem

First order system:
alc—Vu =0 inQ

V.o =f inQ

u =ug on Jf2
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DPG Method

Elements: K

Edges:e

Skeleton:l', = J OK

Internal skeleton:[9 =T}, — 9Q
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DPG Method

Take an element K. Multiply the equations with test functions
T € H(div,K),v € H(K):

{ (a7lo)-7—(Vu)-T =0
(V-o)v = fo
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DPG Method

Integrate over the element K:

{fK(a_lo')-T—fK(Vu)~T =0
(Vo) = [, fo
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DPG Method

Integrate by parts (relax) both equations:
{ Jxla™te) 7+ [udivr — [jum, =0
— o -Vo+ [y asgn(n)v = [ fv

where ¢ = on. and

1 ifn=mn,
sgn(n) = L
-1 ifn=-n,
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DPG Method

Declare fluxes to be independent unknowns:
{ Jxla™to) 7+ [udivr — [, 07 =0
— [0 -Vo+ [y qsgn(n)v = [ fv

where ¢ = on, and

1 fn=mn,
sgn(n) =

-1 ifn=-n,
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DPG Method

Use BCs to eliminate known fluxes
{ Jl@™o) 7+ [udive — [ 500 =+ [0 U0 Ta

— [0 Vot [y dsgn(n)v = [ fv
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Trace and Flux Spaces

M, =Ug 0K (skeleton)
M =T, —0Q (internal skeleton)
HY2(19) = (V] : V € HY(Q)
with the minimum extension norm:
Wl gusaqeay = inf{IV e Vg = v}
H-Y2(r,) :={onlr, : o€ H(div,Q)
with the minimum extension norm:

lonllz-r2,) =inf{llolla@ve) : onlr, = on}
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Functional Setting

Group variables:
Solution U = (u, o, 1, §):
u,01,02 € L2(Qh)
€ 1?11/2(r<,1)
qe H*1/2(Fh)
Test function V' = (7,v):
T € H(div, Q)
(IS Hl(Qh)

Variational problem:
U, vV)=1V), VvV

Minneapolis, Jul 24, 2011 DPG Method 167 / 185



Simple facts

» Form b is continuous
> (U, V) =0,VV implies U = 0.

In operator terms,
b(U,V) =< BU,V >=<U,B*V >

B is injective, B, B* are well-defined and continuous.
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Well-Posedness

Theorem 1

The DPG variational formulation is well-posed with a mesh-independent inf-sup
constant.

Theorem 2
There exists a mesh-independent C' > 0 :

[l = unpllL2(@) + lo = ThpllL2()
+||a — ﬁthgl/z(r%) +11§d - "Z\hp”H—l/z(rh)

<C Info-hp7“hp7(ihp>ﬁhp []

where Uy, Ohp, Unp, Ghp is the DPG FE solution.
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Optimal Test Norm

Define:
Vil =118V = sup ALVl
u Ulv
(u, —divr)a + (o, ™1 — V)o+ < @, T >ro + <, q>r,
= sup _ _
w0, (lull? + llo] + lall? + llglI*)*/2

. _ 1/2
= (Ildivr| + o™ = Fol” + ]Iy + 1717, )

h
where <V, Wn >r,
||[v]|||—(}>7 = sup e
' we H (div,Q) ”wHH(dw,Q)
< W, Tn >|—c})L
Il7]llr, = sup W
weni@ [wllm@
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Equivalence of Norms

We will show that the standard and optimal norms are equivalent, i.e.
VI <Vl and [V, <C[V]]
The second inequality is straightforward, we will focus on the first one.
Conclusions:
» B* is injective,
> b satisfies the inf-sup condition (B is bounded below).

Consequently, Netas - Babuska (Generalized Lax-Milgram, Lions, Banach Closed Range)
Theorem implies that the variational problem is well-posed. Theorem 2 follows.

Minneapolis, Jul 24, 2011 DPG Method 171 / 185



Take T € H(div,Q1),v € H'(Q). Denote

a v — Vv = f
divr = ¢

Need to show the bounds:
7l z@iv.n)s 10l e,y < CUIFIL2@) + lgllza@) + [Tlllre + [1m]llr,)

Step 1: f=0,9g=0.
Consider the weighted Helmholtz decomposition:

T=aVy+Vxz e H)(Q),z< H(curl, Q)

Potentials ¢, T are unique, orthogonal in the weighted (a™*-,-) L*-product, and depend
continuously upon 7.
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752 = (7', 7) = (a7'1,aVy + V x 2)q,
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Step1l: f,g=0

2= (a7 'r,7) = (o '1,aVY + V x 2)q,

= (T, V’L/))Qh + (V’U7 V x Z)Qh

Minneapolis, Jul 24, 2011 DPG Method



Step1l: f,g=0

721 = (o 'r,7) = (o '1,aVY + V x 2)g,
= (7, V¥)a, + (Vv,V X 2)q,

= —(divr, ¥)a, + < ¥, 70 >r, + <v,(V x 2) 0 >p
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Step1l: f,g=0

721 = (e "1, 7) = (@ '1,aVY + V x 2)q,
= (7, V¥)a, + (Vv,V x 2)a,
= —(divr, ¥)a, + < ¥, 70 >r, + <v,(V x 2) n>p
_M <v,(V><z)-n>r?L
- lme

191l o) + IV x 2|12

IV X 2| v,
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||7'||i—1 =(a™'r,7)=(a"'T,aVy + V x Z)q,

=(7,V¥)a, +(Vv,V x 2)q,

= —(divr,¥)q,+ <Y, >r, + <0v,(VXx2z)'n >ro

<, Tn >, <v,(Vxz)-n>p
== 1Yl me) + [V x 2|2
191l 1) @ IV x z| 5,0 L@
< W, Tn >T <V, Wpn >y0
< osup Y]l g+ osup |V X 2| 12(q)
wenl@ Wl wendv,9) ||| Hdv,0)
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TP = (o', 7) = (a1, @V + V X 2)q,

= (‘I’7 V’lﬁ)nh + (VU, V x Z)Qh

= —(divr,¢¥)a,+ < ¢, >r, +<v,(Vx2)n >ro

<1, ST, <v,(Vxz) n>p
=————"|[Yllm@ + IV X z|| 2o
11 a1 () @) IV x 2| #aiv,0) @
< W, Tn >r, < UV, Wn >p0
< sup #Hlﬁ”m(m + sup ———— ||V x z||L2(Q)
weH(Q) HwHHl(Q) we H(div,Q) Hw”H(div,Q)

<C (Illirg + 11l ) 17l
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Step1l: f,g=0

Consequently,
190l 20,y < C (ellleg, + N1l )

as well.
Discrete Poincaré Inequality:

lollay, < € (I190llay + Il )

gives
o,y < € (Iollleg, + ]l )
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Let 71 € H(div,Q),v1 € H(Q) such that

{ a71T1 — Vv, = f

divri =g
Brezzi's Theory implies
71l z@v.) [vill @) < CULFI+ llgll)

Final step: replace 7,v with 7 — 71,v — v1 and use Step 1 result. Note that jump terms
for 7 — 71,v — v1 are controlled by the original jump terms and norms of 71, v;.
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Generalization to Convection-Dominated Diffusion

In Step 1, use the decomposition:

T=(aVy+BY)+V xz e H}Q),z¢e H(curl,Q)
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Numerical Experiments

Test problems:
» Square domain with u(z,y) = sin(7z) sin(7y),
> L-shape domain with u(r,0) = r*/3sin (3(6 + %))
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Uniform h-convergence rates

Square: Convergence under uniform h-refinement

—o—

Discretization error norms

——

a-

L norm of error (& pF:1)
Energy norm of error (& pF=1)
L2 norm of error (8 pe=0)

Energy norm of error (& pF=0)

Minneapoli:

3 4 5

10 10
# Degrees of Freedom (N)

(a) The square case

Discretization error norms
3,

L-shape: Convergence under uniform h-refinement

rate: O(N"2%%)

o L* norm of error (5 p.=1)
_1.7| | —se— Energy norm of error (5 DF=1)

2 _
_— L7 norm of error (5 p.=0)

Energy norm of error (5 pF=0)

? 10° 10°
# Degrees of Freedom (N)

(b) The case of the L-shaped domain

Figure: h-convergence rates for the two examples
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Uniform p-convergence

o Square: C under uniform p-refi it N L-shape: Convergence under uniform p-refinement
10 10
o 0 \
@ @
E E
g 107" 2 107
8 8
[ ® .
5 10 5 10
T T
8 N
B 10 8 10
5 S
23 2}
o a

10° o L norm of error (& Pe=1)

Energy norm of error (& pF:1) Energy norm of error (5 pF:1)

‘0—5| o— L* norm of error (5 p.=1)

107 10°
1100 2100 1100 2100
# Degrees of Freedom # Degrees of Freedom
(a) Results from the square domain (b) Results from the L-shaped domain

Figure: p-convergence rates for the two examples
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Adaptivity

» L-shape: Adaptive convergence L-shape: Energy error estimator vs. L2 error in hp adaptivity
(O pg=1,0p=2)

(dpe=1, 8 p=2)

Relative L? norm of error
Discretization error

10* 10
# Degrees of Freedom # Degrees of freedom

(a) Comparison of convergence of adaptive (b) Energy error estimator vs. L?-error
schemes

Figure: Convergence curves from adaptive schemes
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L-shape: Varying enrichment degree ( p) in h-adaptivity L-shape: Varying numerical trace & flux degree @ pF) in h-adaptivity

10 107
—o— bp =2 (default)
—*—dp=3
—8—op=4
10° 107
. s
1 H
< 5
] 5
&
107 10°
- -
‘0102 10° 10" 10° 10102 10° 10° 10°
# Degrees of freedom # Degrees of freedom
(a) Effect of varying dp (b) Effect of varying dpp

Figure: Convergence curves from adaptive schemes
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Some Color to Finish

|
H

Figure: Left: The hp mesh found by the hp-adaptive algorithm after 15 refinements.
(Color scale represents polynomial degrees.) Right: The corresponding solution u. (Color
scale represent solution values.)
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Thank You !
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DPG Code




A General Variational Problem

ur, ... uy € L2(Q),  fi,...,fu € HY2(T}), g1,...,gm € HY2(T})
fK j= 1a1]uj)d|VqZ+f3Kfz Qm"'_fK(ZJ 1 Z]uj) q;
:fKAid'VQi+faKFiqin+fKBi’qZ'
inH(div,K),izl,...,L
(> = lc”uJ)VvZ—i—fang vi + [ (2 dwu])vl
:chlvvl+faKszz+dezvz
vi€H1(K),i:1,...,M

Number of (field) unknowns equals number of (scalar) equations,

N=2L+M
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General Test Norm

||(q17~-.7qL; ’Ula"'v’UM)H2

N L . L M M
= ijl fK | Zi:l Qi d'VQi + Zi:l bij - q; + Zi:1 Cij ° Vov; + Zi:1 dijvi|2

L M
+Zl=1 fK el|ql|2 =+ Zm:l fK fm‘vm|2
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