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Petrov–Galerkin Method
with Optimal Test Functions

Abstract B3 Framework
(Repetitio Mater Studiorum Est)
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Abstract Variational Problem

{
u ∈ U
b(u, v) = l(v) ∀v ∈ V ⇔ Bu = l B : U → V ′

< Bu, v >= b(u, v) ∀v ∈ V
where

I U, V are Hilbert spaces,
I b(u, v) is a continuous bilinear form on U × V ,

|b(u, v)| ≤M‖u‖U ‖v‖V
that satisfies the inf-sup condition (⇔ B is bounded below),

inf
‖u‖U=1

sup
‖v‖V =1

|b(u, v)| =: γ > 0

I l ∈ V ′ represents the load and satisfies the compatibility
condition l(v) = 0, ∀v ∈ V0 where

V0 := {v ∈ V : b(u, v) = 0 ∀u ∈ U}
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Energy Norm

Banach Closed Range Theorem implies that there exists a unique
solution u that depends continuously upon the data, ‖u‖ ≤ 1

γ
‖l‖V ′ .

The supremum in the inf-sup condition defines an equivalent,
problem-dependent energy (residual) norm,

‖u‖E := sup
‖v‖=1

|b(u, v)| = ‖Bu‖V ′

For the energy norm, M = γ = 1. Recalling that the Riesz operator
is an isometry form V into V ′, we may characterize the energy norm
in an equivalent way as

‖u‖E = ‖vu‖V
where vu is the solution of the variational problem,{

vu ∈ V
(vu, δv)V = b(u, δv) ∀δv ∈ V
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Optimal Test Functions

Select your favorite trial basis functions: ej, j = 1, . . . , N . For each
function ej, introduce a corresponding optimal test (basis) function
ēj ∈ V that realizes the supremum,

|b(ej, ēj)| = sup
‖v‖V =1

|b(ej, v)|

i.e. it solves the variational problem,{
ēj ∈ V

(ēj, δv)V = b(ej, δv) ∀δv ∈ V
Define the discrete test space as
V̄hp := span{ēj, j = 1, . . . , N} ⊂ V . It follows from the construction
of the optimal test functions that the discrete inf-sup constant

inf
‖uhp‖E=1

sup
‖vhp‖=1

|b(uhp, vhp)| = 1
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The Best Approximation

Consequently, Babuška’s Theorem

‖u− uhp‖E ≤
M

γhp
inf

whp∈Uhp

‖u− whp‖E

implies that
‖u− uhp‖E ≤ inf

whp∈Uhp

‖u− whp‖E

i.e., the method delivers the best approximation error in the energy
norm.
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Stiffness Matrix Is Symmetric and Positive Definite

b(ei, ēj) = (ēi, ēj)V = (ēj, ēi)V = b(ej, ēi)
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Energy Norm of FE Error ehp = u− uhp

can be computed without knowing the exact solution.{
vehp ∈ V
(vehp , δv)V = b(u− uhp, δv) = l(δv)− b(uhp, δv) ∀δv ∈ V

We have then
‖ehp‖E = ‖vehp‖V

We shall call vehp the error representation function

Note: No need for an a-posteriori error estimation.
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Relation with Least Squares

Rewrite the variational problem in the operator form:

Bu = l, B : U → V ′, < Bu, v >= b(u, v)

Feb 26, 2011 DPG Method 11 / 38



Relation with Least Squares

Rewrite the variational problem in the operator form:

Bu = l, B : U → V ′, < Bu, v >= b(u, v)

Precondition with inverse of the Riesz operator RV ,

R−1
V Bu = R−1

V l, R−1
V B : U → V

Feb 26, 2011 DPG Method 11 / 38



Relation with Least Squares

Rewrite the variational problem in the operator form:

Bu = l, B : U → V ′, < Bu, v >= b(u, v)

Precondition with inverse of the Riesz operator RV ,

R−1
V Bu = R−1

V l, R−1
V B : U → V

Apply the least squares method

‖R−1
V Buhp −R−1

V l‖V → min

Feb 26, 2011 DPG Method 11 / 38



Relation with Least Squares

Rewrite the variational problem in the operator form:

Bu = l, B : U → V ′, < Bu, v >= b(u, v)

Precondition with inverse of the Riesz operator RV ,

R−1
V Bu = R−1

V l, R−1
V B : U → V

Apply the least squares method

‖R−1
V Buhp −R−1

V l‖V → min

This is exactly our DPG method
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Optimal Test Norm

Q: Can we select the norm in the test space in such a way that
the corresponding energy norm coincides with the original norm (of
choice) in U ?
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Optimal test norm

A: Yes! Choose:

‖v‖V = sup
u∈U

|b(u, v)|
‖u‖U

(under assumption that

V0 = {v ∈ V : b(u, v) = 0 ∀u ∈ U}

is trivial)
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Convergence Analysis in Multidimensions
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Poisson Problem

{
u = u0 on ∂Ω

−∇ · (α∇u) + β ·∇u = f in Ω

For a moment β = 0.
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Poisson Problem

First order system:
α−1σ −∇u = 0 in Ω

∇ · σ = f in Ω

u = u0 on ∂Ω
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DPG Method

Elements:K
Edges:e
Skeleton:Γh =

⋃
K ∂K

Internal skeleton:Γ0
h = Γh − ∂Ω
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DPG Method

Take an element K. Multiply the equations with test functions
τ ∈H(div, K), v ∈ H1(K):{

(α−1σ) · τ − (∇u) · τ = 0

(∇ · σ)v = fv
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DPG Method

Integrate over the element K:{ ∫
K

(α−1σ) · τ −
∫
K

(∇u) · τ = 0∫
K

(∇ · σ)v =
∫
K
fv
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DPG Method

Integrate by parts (relax) both equations:{ ∫
K

(α−1σ) · τ +
∫
K
u divτ −

∫
∂K
u τn = 0

−
∫
K
σ ·∇v +

∫
∂K
q sgn(n)v =

∫
K
fv

where q = σne and

sgn(n) =

{
1 if n = ne

−1 if n = −ne
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DPG Method

Declare fluxes to be independent unknowns:{ ∫
K

(α−1σ) · τ +
∫
K
u divτ −

∫
∂K
û τn = 0

−
∫
K
σ ·∇v +

∫
∂K
q̂ sgn(n)v =

∫
K
fv

where q = σne and

sgn(n) =

{
1 if n = ne

−1 if n = −ne
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DPG Method

Use BCs to eliminate known fluxes{ ∫
K

(α−1σ) · τ +
∫
K
u divτ −

∫
∂K−∂Ω

û τn = +
∫
∂K∩∂Ω

u0 τn

−
∫
K
σ ·∇v +

∫
∂K
q̂ sgn(n)v =

∫
K
fv
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Trace and Flux Spaces

Γh :=
⋃
K ∂K (skeleton)

Γ0
h := Γh − ∂Ω (internal skeleton)

H̃1/2(Γ0
h) := {V |Γ0

h
: V ∈ H1

0 (Ω)

with the minimum extension norm:

‖v‖H̃1/2(Γ0
h) := inf{‖V ‖H1 : V |Γ0

h
= v}

H−1/2(Γh) := {σn|Γh
: σ ∈H(div,Ω)

with the minimum extension norm:

‖σn‖H−1/2(Γh) := inf{‖σ‖H(div,Ω) : σn|Γh
= σn}
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Functional Setting

Group variables:
Solution U = (u,σ, û, q̂):

u, σ1, σ2 ∈ L2(Ωh)

û ∈ H̃1/2(Γ0
h)

q̂ ∈ H−1/2(Γh)

Test function V = (τ , v):

τ ∈H(div,Ωh)
v ∈ H1(Ωh)

Variational problem:

b(U ,V ) = l(V ), ∀V
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Simple facts

I Form b is continuous

I b(U, V ) = 0,∀V implies U = 0.

In operator terms,

b(U, V ) =< BU, V >=< U,B∗V >

B is injective, B,B∗ are well-defined and continuous.
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Well-Posedness

Theorem 1
The DPG variational formulation is well-posed with a
mesh-independent inf-sup constant.

Theorem 2
There exists a mesh-independent C > 0 :

‖u− uhp‖L2(Ω) + ‖σ − σhp‖L2(Ω)

+‖û− ûhp‖H̃1/2(Γ0
h) + ‖q̂ − q̂hp‖H−1/2(Γh)

≤ C infσhp,uhp,q̂hp,ûhp[...]

where uhp,σhp, ûhp, q̂hp is the DPG FE solution.
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Optimal Test Norm

Define:

‖V ‖o=‖B∗V ‖ = sup
U

|b(U ,V )|
‖U‖U

= sup
u,σ,û,q̂

(u,−divτ )Ω + (σ,α−1τ −∇v)Ω+ < û, τn >Γ0
h

+ < v, q̂ >Γh

(‖u‖2 + ‖σ‖2 + ‖û‖2 + ‖q̂‖2)1/2

=
(
‖divτ‖2 + ‖α−1τ −∇v‖2 + ‖[v]‖2

Γ0
h

+ ‖[τn]‖2
Γh

)1/2

where

‖[v]‖Γ0
h

= sup
w∈H(div,Ω)

< v,wn >Γh

‖w‖H(div,Ω)

‖[τn]‖Γh
= sup
w∈H1

0 (Ω)

< w, τn >Γ0
h

‖w‖H1(Ω)
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Equivalence of Norms

We will show that the standard and optimal norms are equivalent, i.e.

‖V ‖ ≤ C‖V ‖o and ‖V ‖o ≤ C‖V ‖

The second inequality is straightforward, we will focus on the first one.
Conclusions:

I B∗ is injective,

I b satisfies the inf-sup condition (B is bounded below).

Consequently, Nečas - Babuška (Generalized Lax-Milgram, Lions, Banach

Closed Range) Theorem implies that the variational problem is well-posed.

Theorem 2 follows.
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Proof

Take τ ∈H(div,Ωh), v ∈ H1(Ωh). Denote

α−1τ −∇v =: f
divτ =: g

Need to show the bounds:

‖τ‖H(div,Ωh), ‖v‖H1(Ωh) ≤ C(‖f‖L2(Ω) + ‖g‖L2(Ω) + ‖[v]‖Γ0
h

+ ‖[τn]‖Γh
)

Step 1: f = 0, g = 0.
Consider the weighted Helmholtz decomposition:

τ = α∇ψ + ∇× z, ψ ∈ H1
0 (Ω), z ∈H(curl,Ω)

Potentials ψ, τ are unique, orthogonal in the weighted (α−1·, ·)
L2-product, and depend continuously upon τ .
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Step 1: f , g = 0

‖τ‖2
α−1 = (α−1τ , τ ) = (α−1τ ,α∇ψ + ∇× z)Ωh
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Step 1: f , g = 0

‖τ‖2
α−1 = (α−1τ , τ ) = (α−1τ ,α∇ψ + ∇× z)Ωh

= (τ ,∇ψ)Ωh
+ (∇v,∇× z)Ωh
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Step 1: f , g = 0

‖τ‖2
α−1 = (α−1τ , τ ) = (α−1τ ,α∇ψ + ∇× z)Ωh
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< v, (∇× z) · n >Γ0
h

‖∇× z‖H(div,Ω)
‖∇× z‖L2(Ω)

≤ sup
w∈H1

0 (Ω)

< w, τn >Γh

‖w‖H1(Ω)
‖ψ‖H1(Ω) + sup

w∈H(div,Ω)

< v,wn >Γ0
h

‖w‖H(div,Ω)
‖∇× z‖L2(Ω)
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≤ sup
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0 (Ω)

< w, τn >Γh

‖w‖H1(Ω)
‖ψ‖H1(Ω) + sup

w∈H(div,Ω)

< v,wn >Γ0
h

‖w‖H(div,Ω)
‖∇× z‖L2(Ω)

≤C
(
‖[v]‖Γ0

h
+ ‖[τn]‖Γh

)
‖τ‖α−1
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Step 1: f , g = 0

Consequently,

‖∇v‖L2(Ωh) ≤ C
(
‖[v]‖Γ0

h
+ ‖[τn]‖Γh

)
as well.
Discrete Poincaré Inequality:

‖v‖Ωh
≤ C

(
‖∇v‖Ωh

+ ‖[v]‖Γ0
h

)
gives

‖v‖H1(Ωh) ≤ C
(
‖[v]‖Γ0

h
+ ‖[τn]‖Γh

)
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Step 2: f , g 6= 0

Let τ 1 ∈H(div,Ω), v1 ∈ H1
0 (Ω) such that{
α−1τ 1 −∇v1 = f

divτ 1 = g

Brezzi’s Theory implies

‖τ 1‖H(div,Ω), |v1‖H1(Ω) ≤ C(‖f‖+ ‖g‖)

Final step: replace τ , v with τ − τ 1, v − v1 and use Step 1 result. Note

that jump terms for τ − τ 1, v − v1 are controlled by the original jump

terms and norms of τ 1, v1.
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Generalization to Convection-Dominated Diffusion

In Step 1, use the decomposition:

τ = (α∇ψ + βψ) + ∇× z, ψ ∈ H1
0 (Ω), z ∈H(curl,Ω)
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Numerical Experiments

Test problems:

I Square domain with u(x, y) = sin(πx) sin(πy),

I L-shape domain with u(r, θ) = r2/3 sin
(

2
3
(θ + π

2
)
)
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Uniform h-convergence rates
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Figure: h-convergence rates for the two examples
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Uniform p-convergence rates
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Figure: p-convergence rates for the two examples
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Adaptivity
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Adaptivity - cont.
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Some Color to Finish

Figure: Left: The hp mesh found by the hp-adaptive algorithm after 15
refinements. (Color scale represents polynomial degrees.) Right: The
corresponding solution u. (Color scale represent solution values.)
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Thank You !
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