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Petrov—Galerkin Method
with Optimal Test Functions
Abstract B> Framework
(Repetitio Mater Studiorum Est)
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Abstract Variational Problem

uelU N Bu=1l B :U—=V
b(u,v) =1l(v) YveV < Bu,v >=b(u,v) Vv € V
where

» U,V are Hilbert spaces,
» b(u,v) is a continuous bilinear form on U x V/,

[b(u, v)| < Mjully [lvllv
that satisfies the inf-sup condition (< B is bounded below),
inf  sup |b(u,v)]=:7>0

lullv=1 |jv||y=1

» | € V' represents the load and satisfies the compatibility
condition [(v) = 0, Vv € Vj where

Voi={veV :buv)=0 YueU}
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Energy Norm

Banach Closed Range Theorem implies that there exists a unique
solution u that depends continuously upon the data, ||u|| < %WHV’-
The supremum in the inf-sup condition defines an equivalent,
problem-dependent energy (residual) norm,

[ulle = sup [b(u, v)| = |[Bullv-

l[oll=1

For the energy norm, M = v = 1. Recalling that the Riesz operator
is an isometry form V' into V', we may characterize the energy norm
in an equivalent way as

lullz = llvallv

where v, is the solution of the variational problem,

Uy €V
(vy, 00)y = b(u, dv) VYov eV

Feb 26, 2011 DPG Method 6 /38



Optimal Test Functions

Select your favorite trial basis functions: e;, j =1,..., N. For each
function e, introduce a corresponding optimal test (basis) function
e; € V that realizes the supremum,

b(ej, ;)] = sup |b(ej,v)|

llvllv=1

i.e. it solves the variational problem,

e, eV
(€j,0v)y = b(ej,0v) Yov eV
Define the discrete test space as

Vip :=span{é;, j=1,...,N} C V. It follows from the construction
of the optimal test functions that the discrete inf-sup constant

inf  sup |b(upp, vpy)| =1
l[tnpll E=1 vy, || =1
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The Best Approximation

Consequently, Babugka's Theorem

H H < i fU H ||
u u n u w

hpl|E = Vhp Whp€Unp hpl||E
implies that

_ < _
Ju = wnglle < inf =y

i.e., the method delivers the best approximation error in the energy
norm.
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Stiffness Matrix Is Symmetric and Positive Definite

bes, €5) = (€i,€5)v = (€5, &)v = bej, &)
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Energy Norm of FE Error e, = u — up,

can be computed without knowing the exact solution.

Ve, €V
(Vepy» O0)v = b(u — upy, 6v) = 1(60) — b(upy, 6v) Vov €V

We have then
lenpllz = [[vey, lv

We shall call v, , the error representation function

Note: No need for an a-posteriori error estimation.
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Relation with Least Squares

Rewrite the variational problem in the operator form:

Bu=1, B :U—=V' < Buuv>=0bu,v)
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Optimal Test Norm

Q: Can we select the norm in the test space in such a way that
the corresponding energy norm coincides with the original norm (of
choice) in U 7
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Optimal test norm

A + Yes! Choose:

b(u,v
ol = sup 120
wet  |[ullo

(under assumption that
Vo={veV :buv)=0 YueU}

is trivial)
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Convergence Analysis in Multidimensions
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Poisson Problem

uw =1ug on 0N

{ -V - (aVu)+3-Vu =f inQ

For a moment 3 = 0.
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Poisson Problem

First order system:
alc—-Vu =0 inQ
V.o =f inQ

uw =1ug on 0N
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DPG Method

Elements: K

Edges:e

Skeleton:, = U 0K

Internal skeleton:I) =T}, — 9Q
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DPG Method

Take an element K. Multiply the equations with test functions
T € H(div, K),v € HY(K):

{ (alo) -7—(Vu)-7 =0
(V.o = fou
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DPG Method

Integrate over the element K:

{fK(a_la)-T—fK(Vu T =0
(Vo) = [ fo
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DPG Method

Integrate by parts (relax) both equations:
{ [xla o) -7+ [Ludivr — [, uT, =
— o - Vo+ [, qsgn(n)v = [ fo

where ¢ = on. and

1 ifn=n.
sgn(n) = L
-1 ifn=-n,
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DPG Method

Declare fluxes to be independent unknowns:
{ [xla™to) -7+ [udivr — [ a7, =
— o - Vo+ [y dsgn(n)v = [ fo

where ¢ = on, and

1 ifn=n,
sgn(n) =

-1 ifn=-n,
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DPG Method

Use BCs to eliminate known fluxes

{ Jxla™a) 7+ [ udivr — faK—aQ Um0 =+ [oxnoq U0 T

_fKU Vv—l—faKQSgn fov
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Trace and Flux Spaces

[ :=Uxg OK (skeleton)
M =T, —002 (internal skeleton)
A1) = {V]rs : V € HY(Q)
with the minimum extension norm:
lollgagay = nFIV I : Virg = v}
H=Y2(1,) = {o.r, : o€ H(div,Q)
with the minimum extension norm:

lonllg-12w,y = inf{lloln@v.e @ onlr, =0on}
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Functional Setting

Group variables:
Solution U = (u, o, 4, §):

u,01,02 € Lz(Qh)

o e HY2(I9)

qe H*1/2(Fh)
Test function V' = (7, v):

T € I‘I(CIIV7 Qh)
v E Hl(Qh)

Variational problem:

b(U,V)=1V), YV
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Simple facts

» Form b is continuous
» (U, V) =0,¥V implies U = 0.

In operator terms,
b(U,V)=< BU,V >=< U,B*V >

B is injective, B, B* are well-defined and continuous.
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Well-Posedness

Theorem 1
The DPG variational formulation is well-posed with a
mesh-independent inf-sup constant.

Theorem 2
There exists a mesh-independent C' > 0 :

lu — unpllz2(0) + [l — Thpll 220
1t = tnpll /ooy + 10 = Gpll 5r-1r2r)
S O infa-hp:uhpzq\hpfahp []

where upy, o1y, Unp, Grp is the DPG FE solution.
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Optimal Test Norm

Define:
bUu,v
IVllo=lB*V] = sup XLVl
U Ul
(u, —divr)q + (o, a 17 — Vo)o+ < 4, >ro + < v,§ >,
= Ssup = =
00,0, ([[ull2 + llo||2 + [|a)12 + [|4]]2)2/2

. _ 1/2
= (lldivr]? + llar = Vol + []IZ + I3, )

where < vw >
Illle = sup Tk
g weH(div,Q) W[ H(div.Q)

< W, Tp >r0
[[mlllr, = sup ——r—H
weri@) wlme)
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Equivalence of Norms

We will show that the standard and optimal norms are equivalent, i.e.

VII<ClVi, and [[V], <C|V]]

The second inequality is straightforward, we will focus on the first one.
Conclusions:

> B* is injective,
» b satisfies the inf-sup condition (B is bounded below).

Consequently, Necas - Babuska (Generalized Lax-Milgram, Lions, Banach

Closed Range) Theorem implies that the variational problem is well-posed.
Theorem 2 follows.
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Take 7 € H(div,Qy),v € HY(Q4). Denote

alr—Vu= f
divr=: ¢

Need to show the bounds:

17z @v.an): 10l @u) < CUFllz2@) + l9llz2@) + 1Tollire + l7alllr,)

Step1l: f=0,9=0.
Consider the weighted Helmholtz decomposition:

T=aViy+V xz ocHiQ),zc H(curlQ)

Potentials 1, T are unique, orthogonal in the weighted (a1, ")
L?-product, and depend continuously upon 7.
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Step 1: f,g=0

HTHi—l = (04717', T) = (Ofl‘r, aViy +V x Z)Qh

Feb 26, 2011 DPG Method 26 / 38



Step 1: f,g=0

172y = (a7tr, 1) = (a7l7,aVY + V x 2)q,

=(1,V¥¢)q, +(Vv,V x 2)q,
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Step 1: f,g=0

1721 = (a7lr,7) = (a7 '7,aVY + V x 2)q,
=(7,V¥)q, + (Vv,V x 2)q,

= —(divr,¥)q,+ < ¢, 7 >r, + <v,(Vx2)n >ro
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Step 1: f,g=0

||7'||§—1 = (01_17'7 T) = (a_l‘r, aVi+V x z)q,
= (7,V¢)q, + (Vuv,V x 2)q,
= —(divr,¢)q,+ <, >r, + <0v,(VXx2)-n >ro

<P, Th >t <v,(V X 2) n>p
_#WHHI(Q) + IV 2l e LV x 2] 2

[l
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Step 1: f,g=0

7|21 = (@, 7) = (a1, @V + V x 2)g,
- (Tv VQ/})Qh + (VU, V x Z)Qh
= —(divr,¢)q,+ < ¥, >r, + <0v,(Vx2)-n >ro

<'¢,Tn>rh <U,(V><z).n>r0
= ey + T
Wl O T X ey )

< UV, Wy, >r0

< w, T, >
SO I ey + U |V x 2|
werl@) wla e weH(div,Q) 1wl Hdiv.0)

< sup
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Step 1: f,g=0

712 = (a7 tr,7) = (a7, aVY + V x 2)q,

= (7, Vi)q, +(Vv,V x 2)q,

_(diVva)Qh‘F < ¢;7-n >, + <, (V X Z) ‘n >r(’)1

<17Z)77—n >rh U,(VXZ) n>r
7H¢HH1 )+ “IV X 2 220
1]l 1( IV X 2| i(div,0) @
< W, Tn >T V, Wy, >0
< sup ——— Yl +  sup ||V x z]|
weri(@) [l weH(div,Q) 1w H(div.0)

<C (I11lrg + Nl ) 17locs
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Step 1: f,g=0

Consequently,

IWellzz,) < € (Ielleg + i, )

as well.
Discrete Poincaré Inequality:

lelle, < € (190l + Il )

gives
ol < € (Ielllg + il
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Step2: f,g#0

Let 71 € H(div,Q),v1 € H}(Q) such that

a_lTl — Vvl = f
divr; =g

Brezzi's Theory implies
171l mr(aiv.)s vl @) < CULFN+ llgll)

Final step: replace 7,v with 7 — 71, v — v1 and use Step 1 result. Note
that jump terms for 7 — 71, v — w1 are controlled by the original jump
terms and norms of 71, v;.
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Generalization to Convection-Dominated Diffusion

In Step 1, use the decomposition:

T=(aVyY+BY)+V xz, e H}Q),z € H(curl, Q)
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Numerical Experiments

Test problems:
» Square domain with u(z,y) = sin(7x) sin(my),

> L-shape domain with u(r,6) = r?3sin (3(6 + 7))
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Uniform h-convergence rates

) Square: Convergence under uniform h-refinement L-shape: Convergence under uniform h-refinement
10°
107
@ 107 ?
€ E
2 g 10
5 10° 5
S 5]
< c
2 - S 1070 rate: O(N0%9)
S 10 o g -
3 L norm of error (5 p.=1) o1 ON15%) 5 L norm of error (5 p=1) X
° rate: 3 -
g —— Energy norm of error (5 p.=1) g o Energy norm of error (5 p,=1)
10°H L% norm of error (5 p,=0) ., ? norm of error (5 p.=0)
Energy norm of error (5 p.=0) Energy norm of error (5 p.=0)
5 1)
10 10
10° 10° 10° 10° 10° 10° ° ! 10°
# Degrees of Freedom (N) +# Degrees of Freedom (N)

(a) The square case (b) The case of the L-shaped domain

Figure: h-convergence rates for the two examples
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Uniform p-convergence rates

Square: Convergence under uniform p-refinement L-shape: Convergence under uniform p-refinement

10 10
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. ) \8
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é 10 é 10
8 g
2 10 g 10
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10 o L norm of error (& pF=1) 107 o L norm of error (& pF=1)

Energy norm of error (& pF=1) Energy norm of error (& pF=1)
10° 10°
1100 2100 1100 2100
# Degrees of Freedom # Degrees of Freedom

(a) Results from the square domain (b) Results from the L-shaped domain

Figure: p-convergence rates for the two examples
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Adaptivity

L-shape: Adaptive convergence L-shape: Energy error estimator vs. L2 error in hp adaptivity

10 !
©p=1,0p=2) 10
(®pe=1,5p=2)
5 \G\S\
3 102 _— 5 10
3 0 £
E c
s S
= T
o g
o °
2, 2 50
510 g 10
<
—&— Uniform h-refinement
—6— 2 error
—x— Energy error
107 107
10° 10° 10 10° 10° 10° 10° 10°
# Degrees of Freedom # Degrees of freedom

(a) Comparison of convergence of (b) Energy error estimator vs. L2-error
adaptive schemes

Figure: Convergence curves from adaptive schemes
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Adaptivity - con

\ L-shape: Varying enrichment degree ( p) in h-adaptivity L-shape: Varying numerical trace & flux degree § ) in h-adaptivity
10~ !
10
—6— b p =2 (default)
—#—dp=3
—8—5p=4
107 10°
5 5
5 5
&
10 10°
10 107
10° 10° 10 10° 10° 10° * 10°
# Degrees of freedom # Degrees of freedom

(a) Effect of varying dp (b) Effect of varying dpp

Figure: Convergence curves from adaptive schemes
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Some Color to Finish

=

Figure: Left: The hp mesh found by the hp-adaptive algorithm after 15
refinements. (Color scale represents polynomial degrees.) Right: The
corresponding solution u. (Color scale represent solution values.)
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Thank You !
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