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Preface

The Spring Semester 2018 marks my fourth attempt to teach Sobolev spaces or, as I prefer to call them, the

energy spaces to graduate students from our Computational Science, Engineering and Mathematics (CSEM)

graduate program at the Institute for Computational Engineering and Sciences (ICES), at The University of

Texas at Austin. This presentation is the class notes on the subject.

I have been dealing with Sobolev spaces (with a different degree of understanding) throughout my whole

academic career but I had to restart my study on the subject with the adventure of proving error estimates for

the Projection-Based Interpolation (PBI), see [11, 8, 5, 12, 10] for the mathematical aspects of the technology.

I somehow survived with a heavy help of Ivo Babuška and Annalisa Buffa, but I began to see strongly the

need for a deeper study on the subject of fractional Sobolev spaces and, in particular, the tricky H̃s spaces.

Around that time, Mark Ainsworth recommended to me the fantastic book of McLean [18] and I began to

develop my lecture notes based on his presentation of Sobolev spaces (a mere 50 pages in the book).

These notes, to a large degree, is a rewrite of McLean’s chapter with extra details provided. In particular,

I have tied the presentation to our book with J. Tinsley Oden [20] and have attempted the presentation to be

self-contained. The last chapter presents perhaps the most original part of these notes, developed with my

student - Federico Fuentes, and we will attempt to publish a summary of it in a small paper. None of these

results are new, we have been learning the theory of traces for the H(curl) space from the ground breaking

papers [3, 4, 19].

A very special thanks go to Martin Costabel who has been patiently teaching me the subject, answering

multiple (not always smart) E-mails and questions, and correcting my mistakes.

Last but not least, understanding the energy spaces presented here is critical for the development of the

Discontinuous Petrov Galerkin (DPG) Method co-invented with Jay Gopalakrishnan [13].
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This is a third version of the notes, the original notes were placed on the web in May 2018. In Fall 2018

I corrected a number of mistakes pointed out by Martin, and added Theorem 4.1.12. In Fall 2021, I taught

the subject to a wonderful group of students: Jacob Badger, Lianghao Cao, Jonathan Kelley, Mark Loveland,

Dingcheng Luo, Chenyu Tian, Chuning Wang and Yi Wang, who helped me further to eliminate a lot of small

mistakes and improve the presentation of several proofs. The notes come with many exercises including most

of those from McLean’s book. I have completed the solution manual. Please contact me for a copy of it if

you intend to use the notes for teaching.

Leszek F. Demkowicz

Austin, August 2022





1
Introduction

1.1 Variational Formulations

This section reviews a number of classical and less classical variational formulations for a few of standard

model problems to motivate the study of energy spaces. For a more detailed discussion and more examples,

see e.g. [7], [20], Section 6.6, and [14], Chapter 1. In all following examples, Ω is a domain (= open and

connected set) in Rn with boundary Γ split into disjoint parts Γ1,Γ2.

Diffusion-Convection-Reaction Problem

The classical formulation reads as follows. Find a sufficiently regular∗ function u that satisfies the following

Partial Differential Equation (PDE) and Boundary Conditions (BCs).
− ∂

∂xi
(aij(x)

∂u

∂xj
) + bj(x)

∂u

∂xj
+ c(x)u = f(x) x ∈ Ω

u(x) = u0(x) x ∈ Γ1

aij(x)
∂u

∂xj
ni = σ0(x) x ∈ Γ2

or, using a more compact absolute notation,
−div (a∇u) + b∇u+ cu = f in Ω

u = u0 on Γ1

(a∇u)n = σ0 on Γ2

where coefficients (material data) a = aij(x), b = bj(x), c = c(x), and right-hand sides (load data) f =

f(x), u0 = u0(x), σ0 = σ0(x) are given. We can identify viscous flux σ = a∇u as a separate variable and

rewrite the second order equation as a system of first order equations.

σ − a∇u = 0 in Ω

−div σ + b∇u+ cu = f in Ω

u = u0 on Γ1

σn = σ0 on Γ2

∗u ∈ C1(Ω) ∩ C2(Ω)

3
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Standard variational formulation. Let

U = V := {v ∈ H1(Ω) : v = 0 on Γ1}

Find solution u ∈ ũ0 + U such that

(a∇u,∇v) + (b∇u, v) + (cu, v) = (f, v) + ⟨σ0, v⟩Γ2
,

for every v ∈ V . Here the trial space U and test space V are equal and consist of functions that, along with

their first derivatives, are square integrable, and vanish on Γ1. Function ũ0 ∈ H1(Ω) is a finite-energy lift of

boundary data u0. (u, v) denotes the L2(Ω) inner product, and ⟨σ0, v⟩Γ2
is the L2 inner product on boundary

part Γ2. Derivatives are understood in the sense of distributions and vanishing on Γ1 in the sense of traces.

These notes are supposed to help you to understand all these notions more precisely.

Eliminating boundary conditions on test functions. Each variational formulation leads to a separate Fi-

nite Element (FE) approximation. It may be convenient to eliminate the boundary conditions on test functions

and redefine the test space,

V = H1(Ω) .

We are testing now with more test functions so we expect additional unknowns. Indeed, the additional

unknown is the flux σ̂ on the boundary. The new formulation looks as follows.
u ∈ H1(Ω) , u = u0 on Γ1

σ̂ ∈ H− 1
2 (Γ) , σ̂ = σ0 on Γ2

(a∇u,∇v) + (b∇u, v) + (cu, v)− ⟨σ̂, v⟩ = (f, v) v ∈ H1(Ω)

Above H− 1
2 (Γ) denotes the trace space of another energy space,

H(div,Ω) := {v ∈ (L2(Ω)3 : div v ∈ L2(Ω)}

where the divergence is again understood in the sense of distributions. We will spend a lot of time discussing

these two energy spaces as well.

Ultraweak variational formulation. You may want to develop variational formulations starting with the

first order system rather than the second order equation. The ultraweak variational formulation is the most

“relaxed” one as it seeks solution in the L2(Ω) space.

û ∈ H
1
2 (Γ) , û = u0 on Γ1

σ̂ ∈ H− 1
2 (Γ) , σ̂ = σ0 on Γ2

u ∈ L2(Ω), σ ∈ (L2(Ω))3

(a−1σ, τ) + (u, divτ)− ⟨û, τn⟩ = 0 τ ∈ H(div,Ω)

(σ,∇v)− ⟨σ̂, v⟩+ (u,− div(bv) + cv) + ⟨bnû, v⟩ = (f, v) v ∈ H1(Ω)
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where bn := b · n, τn = τ · n denote normal components of b and τ respectively. Above a−1 denotes the

inverse of diffusion matrix a, and H
1
2 (Γ) denotes the trace space of space H1(Ω), to be discussed. Note that

we have now two unknowns that live on the boundary and two unknowns defined on Ω.

Time Harmonic Maxwell Equations

We seek electric (complex-valued) electric field E = E(x) and magnetic field H(x) satisfying:

• Faraday’s law in Ω,
1

µ
∇× E = −iωH ,

• Ampère’s law in Ω,

∇×H = J imp + σE + iωϵE .

• BCs on the electric field on Γ1,

n× E = n× E0 ,

• BCs on the magnetic field on Γ2,

n×H = n×H0 ,

Above, µ, ϵ, σ denote permeability, permittivity and conductivity (functions of position x), ω is the angular

frequency and J imp = J imp(x) is a prescribed impressed current.

Eliminating magnetic field H , we obtain a second order curl-curl problem,
∇× ( 1µ∇× E)− (ω2ϵ− iωσ)E = −iωJ imp in Ω

n× E = n× E0 on Γ1

n× ( 1µ∇× E) = n× (−iωH0) := iωJ imp
S on Γ2

where J imp
S is termed to be the impressed surface current.

Standard variational formulation looks as follows.E ∈ H(curl,Ω), n× E = n× E0 on Γ1

( 1µ∇× E,∇× F )− ((ω2ϵ− iωσ)E,F ) = −iω(J imp, F ) + iω⟨J imp
S , F ⟩Γ2

for every test function F ∈ H(curl,Ω) : Ft = 0 on Γ1 . Here Ft = −n × (n × F ) is the (standard)

tangential component of F on the boundary. We have arrived at a new energy space,

H(curl,Ω) := {E ∈ L2(Ω) : ∇× E ∈ (L2(Ω))3}

where the curl operator is understood in the distributional sense. The BCs above are understood again in the

sense of traces. The H(curl,Ω) energy space and the corresponding two traces Et and n× E = n× Et are

a central focus of these notes.
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Eliminating BCs on the test functions is again possible. It leads to a new unknown - the magnetic field

(impressed surface current) on the boundary.
E ∈ H(curl,Ω), n× E = n× E0 on Γ1

Ĥ ∈ H− 1
2 (curl,Γ) , n× Ĥ = n×H0 on Γ2

( 1µ∇× E,∇× F )− iω⟨n× Ĥ, F ⟩ − ((ω2ϵ− iωσ)E,F ) = −iω(J imp, F ) F ∈ H(curl,Ω)

The new energy spaceH− 1
2 (curl,Γ), perhaps the most difficult subject of these notes, is the (first) trace space

of H(curl,Ω).

Ultraweak variation formulation. We finish with the most relaxed formulation derived directly from the

first order system, see [6] for details.

Ê ∈ H− 1
2 (curl,Γ) , n× Ê = n× E0 on Γ1

Ĥ ∈ H− 1
2 (curl,Γ) , n× Ĥ = n×H0 on Γ2

E,F ∈ (L2(Ω))3

(E,∇× F )− ⟨n× Ê, F ⟩+ iω(µH,F ) = 0 F ∈ H(curl,Ω)

(H,∇× F )− ⟨n× Ĥ, F ⟩ − ((σ + iωϵ)E,F ) = (J imp, F ) F ∈ H(curl,Ω)

Notice the new unknown - boundary trace Ê of the electric field.

REMARK 1.1.1 The presentation on Maxwell equations is very simplified. In reality, we have

to satisfy two more equations: Gaussian law for magnetic field and so-called continuity equation.

For ω ̸= 0, the extra equations are linearly dependent and they are automatically satisfied at the

continuous level (in some sense depending upon the variational formulation and functional setting).

The whole art of discretization of Maxwell equations is to assure that, with a proper discretization,

these extra equations are also well approximated on the discrete level. This leads to the concept of

differential complex and exact sequence discussed in Section 4.1. For more details on the subject,

see [9, 14].

The next two exercises represent a bit a “cart before horses” as they require an elementary knowledge of

energy spaces in one space dimension. They are supposed to motivate studying these notes and refresh your

knowledge of fundamental results from Functional Analysis including the Closed Range Theorem (for both

continuous and closed operators) and the Babuška-Nečas Theorem.
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Exercises

Exercise 1.1.1 Study the simplest boundary value problem,

u′ = f in (0, l) ,

with each of the following boundary conditions:

(i) Inflow BC: u(0) = 0.

(ii) Outflow BC: u(l) = 0.

(iii) Inflow and outflow BC together: u(0) = 0, u(l) = 0.

(iv) No BCs at all.

Discuss the well-posedness (existence, uniqueness, possible compatibility conditions for f , continuous

dependence upon data f ) within each of the following formalisms:

1. closed operator setting in L2,

2. continuous operator setting in L(H1, L2),

3. trivial variational formulation,

4. weak variational formulation.

Discuss relations between the different formulations and the corresponding stability constants using

Closed Range Theorem (for both closed and continuous operators). Identify clearly dual (transpose)

operators and discussed their role. Consult [20], Section 6.6. (10 points)

Exercise 1.1.2 Repeat Exercise 1.1.1 for another “baby problem”,

−u′′ + u = f in (0, l) ,

with the boundary conditions:

u(0) = 0 u′(l) = 0 .

Discuss first the well-posedness using the “strong formulations”: closed operator setting in L2, and

continuous operator setting in L(H2, L2). Next, identify the derivative as a new unknown, σ = u′, and

reformulate the problem using the first order setting. Following the discussion in Section 1.1, consider

then the four possible variational formulations: trivial, classical, mixed, and ultraweak. Discuss the

relation between the corresponding stability constants. (10 points)





2
Preliminaries

2.1 Lp Functions

This section reviews some fundamental facts about the Lp functions. Let f ∈ Lp(Ω) and v ∈ Lp∗(Ω) for

some p ∈ (1,∞), 1/p+ 1/p∗ = 1. Hölder inequality states that

|
∫
Ω

fv| ≤ ∥f∥Lp(Ω)∥v∥Lp∗ (Ω) ,

i.e., linear functional in v defined by the left-hand side is continuous on Lp∗(Ω) with the norm bounded by

(in fact equal to) the Lp-norm of function f . It turns out that the converse of this statement is true as well. If

a function f generates a bounded functional in v then f must be an Lp function with a bound on its norm.

THEOREM 2.1.1 (Duality argument)

Let p ∈ [1,∞], and let f be a measurable, complex-valued function defined on a measurable set

Ω ⊂ Rn. Assume that

|
∫
Ω

fv dx| ≤M∥v∥Lp∗ (Ω) ∀v ∈ Lp∗(Ω) ,

with some constant M . Then f ∈ Lp(Ω), and

∥f∥Lp(Ω) ≤M .

PROOF

Case: p ∈ (1,∞).

Step 1: f ≥ 0, m(Ω) <∞.

Define a sequence of functions fn := min{f, n}. Then fn is measurable and bounded. Testing with

v = fp−1
n , we obtain,

∫
Ω

fpn =

∫
Ω

fnf
p−1
n ≤

∫
Ω

ffp−1
n ≤M

(∫
Ω

fpn

)1− 1
p

︸ ︷︷ ︸
∥v∥Lp∗ (Ω)

9
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and, therefore, (∫
Ω

fpn

)1/p

≤M .

But, by the monotone convergence theorem ([20], Lemma 3.5.1),∫
Ω

fpn →
∫
Ω

fp as n→ ∞ .

Passing to the limit in the inequality above we get the required result.

Step 2: f ≥ 0, Ω arbitrary.

Let χn be the indicator function of Ωn := B(0, n) ∩ Ω. We have

|
∫
Ωn

fv| = |
∫
Ω

fχnv| ≤M∥χnv∥Lp∗ (Ω) =M∥v∥Lp∗ (Ωn) .

By Step 1, ∫
Ω

(fχn)
p =

∫
Ω

χnf
p =

∫
Ωn

fp ≤Mp .

But again, by the monotone convergence theorem,∫
Ω

(fχn)
p →

∫
Ω

fp ,

and the bounds holds in the limit.

Step 3: f arbitrary, Ω arbitrary.

Define

ϕ =


1 if f = 0

|f |
f

if f ̸= 0 .

We have,

|
∫
Ω

|f |ϕv| = |
∫
Ω

fϕ−1ϕv| = |
∫
Ω

fv| ≤M∥v∥Lp∗ (Ω) =M∥ϕv∥Lp∗ (Ω) .

By Step 2, |f | ∈ Lp(Ω) and, therefore, f ∈ Lp(Ω) as well, and the bound holds.

Case: p = 1.

Just test with

v =

{
f/|f | f ̸= 0

1 f = 0 .

Case: p = ∞.

Let E be an arbitrary measurable subset of Ω. Test with the same v as above but premultiplied

with indicator function χE to obtain:

1

m(E)

∫
E

|f | ≤M .

This implies that ∥f∥L∞(Ω) ≤ M . Indeed, if there were |f(x)| > M on some subset E of positive

measure, then the average of |f | over the very set would be strictly greater than M .
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REMARK 2.1.1 Contrary to Theorem 2.1.1, the fundamental representation theorem for the

dual of Lp∗ ([20], Theorem 5.12.1)

(Lp∗)′ ∼ Lp ,

does not hold for p∗ = ∞ as there exist bounded linear functionals on L∞(Ω) that are not generated

by L1-functions. But here the job is easier, we confine ourselves to functionals generated by functions

to deduce only the integrability properties of the generating function.

Distribution function. Let Ω ⊂ Rn be an open set, and u be a real- or complex-valued function such that

|u(x)| is finite almost everywhere. Let σ > 0. We introduce the distribution function of function u defined

by:

m(σ, u) := meas({x ∈ Ω : |u(x)| > σ}) (2.1)

where meas denotes the Lebesgue measure. Function m(σ, u), defined on (0,∞) takes values in [0,∞], i.e.,

it is an extended real-valued function. Clearly, m(σ, u) is (weakly) decreasing. It can be proved that m(σ, u)

is continuous from the right, Additionally, if u ∈ Lp(Ω), p ∈ [1,∞], then

∥u∥Lp(Ω) =

(
p

∫ ∞

0

σpm(σ, u)
dσ

σ

)1/p

1 ≤ p <∞

∥u∥L∞(Ω) = inf{σ : m(σ, u) = 0} ,

see Exercise 2.1.1. If no confusion occurs, we will abbreviate symbol “meas” for Lebesgue measure to a

single letter m.

p-mean modulus of continuity. Let u ∈ Lp(Rn), p ∈ [1,∞). We define the p-mean modulus of continuity

of function u by:

ωp(t, u) := sup
|h|≤t

(∫
Rn

|u(x+ h)− u(x)|p dx
)1/p

. (2.2)

Note that case p = ∞ is excluded. This is because of the crucial density result:

C0(Ω)
Lp

= Lp(Ω)

which holds only for p ∈ [1,∞), comp. Exercises 4.9.1 - 4.9.4 in [20]. Here C0(Ω) denotes the space of

functions defined on Ω that are continuous and with a compact support contained in Ω.

Take now an arbitrary ϵ > 0. By the density result, there exists a function g ∈ C0(Rn) such that

∥g − u∥Lp ≤ ϵ

3
.

Recall that any continuous function defined on a compact set is automatically uniformly continuous, see

Exercise 2.1.2. Thus, for any ϵ1 > 0 there exists a δ such that

|h| < δ ⇒ |g(x+ h)− g(x)| < ϵ1 .
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Consequently,

(∫
Rn

|g(x+ h)− g(x)|p dx
)1/p

≤ (ϵp1m(supp g))1/p = ϵ1m(supp g)1/p

Let Thg(x) := g(x+ h). Take ϵ1 = ϵ
3 m(supp g)−1/p. We have thus,

∥Thg − g∥Lp ≤ ϵ

3
∀ |h| < δ = δ(ϵ1(ϵ)) .

Finally,

∥Thu− u∥Lp ≤ ∥Thu− Thg∥Lp︸ ︷︷ ︸
=∥u−g∥Lp

+∥Thg − g∥Lp + ∥g − u∥Lp ≤ ϵ .

We have arrived at the following result.

PROPOSITION 2.1.1

Let u ∈ Lp(Rn), p ∈ [1,∞). Then

ωp(t, u) → 0 as t→ 0 .

The following result is a consequence of integral form of Minkowski inequality, see [20], Proposition

5.12.1.

THEOREM 2.1.2 (Hardy’s Inequalities)

Let α > 0 and p ∈ [1,∞). The following inequalities hold:

[∫ ∞

0

(
x−α

∫ x

0

|f(y)| dy
y

)p
dx

x

] 1
p

≤ 1

α

[∫ ∞

0

|y−αf(y)|p dy
y

] 1
p

(2.3)

and,

[∫ ∞

0

(
xα
∫ ∞

x

|f(y)| dy
y

)p
dx

x

] 1
p

≤ 1

α

[∫ ∞

0

|yαf(y)|p dy
y

] 1
p

(2.4)
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PROOF Inequality (2.3):

[∫ ∞

0

(
x−α

∫ x

0

|f(y)| dy
y

)p
dx

x

] 1
p

=

[∫ ∞

0

x−αp
(∫ 1

0

|f(xt)| dt
t

)p
dx

x

] 1
p

(change of variable: y = xt)

≤
∫ 1

0

[∫ ∞

0

x−αp|f(xt)|p dx
x

] 1
p dt

t
(Integral Minkowski Inequality)

=

∫ 1

0

[∫ ∞

0

(t−1y)−αp|f(y)|p dy
y

] 1
p dt

t
(change of variable: xt = y, dxx = dy

y )

=

∫ 1

0

tα−1 dt︸ ︷︷ ︸
=1/α

[∫ ∞

0

|y−αf(y)|p dy
y

] 1
p

Proof of inequality (2.4) is fully analogous.

Exercises

Exercise 2.1.1 Prove that distribution function (2.1) is continuous from the right, and

∥u∥Lp(Ω) =

(
p

∫ ∞

0

σpm(σ, u)
dσ

σ

)1/p

1 ≤ p <∞

∥u∥L∞(Ω) = inf{σ : m(σ, u) = 0} .

(10 points)

Exercise 2.1.2 Prove that any continuous function defined on a compact set must be uniformly continuous.

(3 points)

2.2 Convolutions

Let u, v denote complex-valued functions defined on the whole Rn. The convolution of functions u and v is

defined as:

(u ∗ v)(x) :=
∫
Rn

u(x− y)v(y) dy .
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We are implicitly assuming that product u(x − ·)v(·) ∈ L1(Rn). A simple change of variables shows that

convolution is symmetric,

(u ∗ v)(x) =
∫
Rn

u(x− y)v(y) dy

=

∫
Rn

u(z)v(x− z) dz (z = x− y)

= (v ∗ u)(x) .

More precisely, if either the left- or right-hand side is well defined, the so is the other side, and they are equal.

The definition can be extended to three functions,

u ∗ v ∗ w := (u ∗ v) ∗ w .

As the operation is associative (Exercise 2.2.1), i.e.,

(u ∗ v) ∗ w = u ∗ (v ∗ w)

we are justified to use the notation without any parentheses indicating the order of computing the convolu-

tions. By induction, the notion extends to any finite number of functions.

The following theorem formulates sufficient conditions for the convolution to be well defined, and its

continuity properties.

THEOREM 2.2.1

Let
1

p
+

1

q
= 1 +

1

r
, p, q, r ∈ [1,∞] ,

and u ∈ Lp(Rn), v ∈ Lq(Rn). Then u ∗ v exists a.e. and

∥u ∗ v∥Lr ≤ ∥u∥Lp ∥v∥Lq .

PROOF Let u ∈ Lp(Rn), v ∈ Lq(Rn) and ϕ ∈ Lr∗(Rn) be a “testing function” where p, q, r

satisfy the relation above. Let ψ(x) := ϕ(−x). The result from Exercise 2.2.2 implies that

|⟨u ∗ v, ϕ⟩| ≤ |(u ∗ v ∗ ψ)(0)| ≤ ∥u∥Lp ∥v∥Lq ∥ψ∥Lr∗ = ∥u∥Lp ∥v∥Lq ∥ϕ∥Lr∗

Thus, by Theorem 2.1.1, u ∗ v ∈ Lr(Rn) and the estimate holds.

In the case of r = ∞, we can obtain a stronger result.

THEOREM 2.2.2

Let p ∈ [1,∞], and u ∈ Lp(Rn), v ∈ Lp∗(Rn). Then
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(i) u ∗ v is uniformly continuous in Rn.

(ii) For p ∈ (1,∞) we control additionally behavior of u ∗ v at infinity,

|(u ∗ v)(x)| → 0 as |x| → ∞ .

PROOF

Case: p <∞. We have,

|(u ∗ v)(x)− (u ∗ v)(y)| = |
∫
Rn

(u(x− z)− u(y − z))v(z) dz| ≤ ωp(|x− y|, u) ∥v∥Lp∗

and the uniform continuity follows from Proposition 2.1.1.

Case: p = ∞. Switch u with v.

In order to prove the second part, we begin by noticing that the Lebesgue Theorem implies that∫
|y|>R

|u(y)|p dy → 0 as R→ ∞ .

Consequently,

∀ ϵ ∃R0 > 0 ∀R > R0

∫
|y|>R

|u(y)|p dy < ϵp and
∫
|y|>R

|v(y)|p∗ dy < ϵp∗ .

Note that the argument breaks down for p = ∞. We have now,

|(u ∗ v)(x)| ≤ |
∫
|y|≤R

u(x− y)v(y) dy|+ |
∫
|y|>R

u(x− y)v(y) dy|

≤

(∫
|y|≤R

|u(x− y)|p dy

)1/p

∥v∥Lp∗ (Rn) + ∥u∥Lp(Rn)

(∫
|y|>R

|v(y)|p∗ dy

)1/p∗

≤ ϵ∥v∥Lp∗ (Rn) + ∥u∥Lp(Rn) ϵ

provided |x| ≥ 2R. Notice that |x− y| ≥ R for |x| ≥ 2R and |y| ≤ R.

Exercises

Exercise 2.2.1 Associativity of convolutions. Prove that

(u ∗ v) ∗ w = u ∗ (v ∗ w)

for u, v, w ∈ L1(Rn). (5 points)

Exercise 2.2.2 ([18], Exercise 3.3) Let uj ∈ Lpj (Rn), j = 1, . . . ,m, 1
p1

+ . . .+ 1
pm

= m− 1. Prove the

bound:

|(u1 ∗ . . . ∗ um)(x)| ≤ ∥u1∥Lp1 (Rn) · · · ∥um∥Lpm (Rn)
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for any x ∈ Rn.

Outline of the proof: Let fj ∈ L1(Rn), j = 1, . . . ,m be non-negative functions with compact supports

and unit L1-norms. Let 0 ≤ λj ≤ 1, j = 1, . . . ,m. Fix x ∈ Rn and consider the function:

g(λ) := (fλ1
1 ∗ · · · ∗ fλm

m )(x) λ := (λ1, . . . , λm)

with f(x)0 := 1 for any value of f(x).

(i) Show that g(ẽj) = 1 where

ẽj := (1, . . . , 0︸︷︷︸
j

, . . . , 1) ∈ Rm .

(ii) Use the fact that, for any positive aj and non-negative λj , µj ,

m∏
j=1

a
(1−t)λj+tµj

j = exp

(1− t)

m∑
j=1

ln a
λj

j + t

m∑
j=1

ln a
µj

j


to show that the function g : [0, 1]m → [0,∞) is convex.

(iii) Deduce that g(λ) ≤ 1 if λ1 + . . .+ λm = m− 1. Hint: λ =
∑m
j=1(1− λj)ẽj .

(iv) Deduce the final result.

(10 points)

Exercise 2.2.3 Let u, v ∈ L1(Rn) ∩ C∞(Rn). Show that,

supp u ∗ v ⊂ supp u+ supp v := {x+ y : x ∈ supp u, y ∈ supp v}

if supp u or supp v is bounded. (3 points)

2.3 Differentiation

Multiindex notation. We shall use the standard multiindex notation for partial derivatives. Let u be a

complex-valued function defined on an open set Ω ⊂ Rn. Partial derivatives of u will be denoted by:

∂αu(x) :=
∂|α|u

∂xα1
1 · · · ∂xαn

n
(x)

where

α = (α1, . . . , αn) ∈ Nn, |α| = α1 + . . .+ αn .
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Differentials. Let x ∈ Ω. The first differential of function u at x, denoted dxu, is a linear functional on Rn,

dxu ∈ (Rn)∗,

(dxu)(y) = (dxu)(

n∑
i=1

yiei) =

n∑
i=1

(dxu)(ei)︸ ︷︷ ︸
= ∂u

∂xi
(x)

yi =

n∑
i=1

∂u

∂xi
(x) yi .

The second differential of function u at x, denoted d2xu, is a bilinear, symmetric functional on Rn, d2xu ∈
M2

sym(Rn),

(d2xu)(y, y) = (d2xu)(

n∑
i=1

yiei,

n∑
j=1

yjej) =

n∑
i=1

n∑
j=1

yiyj (d
2
xu)(ei, ej)︸ ︷︷ ︸

= ∂2u
∂xi∂xj

(x)

=
∑
|α|=2

2!

α1! · · ·αn!
∂αu(x) yα1

1 · · · yαn
n

=
∑
|α|=2

2!

α!
∂αu(x) yα

where

yα := yα1
1 · · · yαn

n , α! := α1! · · ·αn! .

Notice how the multiindex notation helps us to avoid using two separate indices i and j. The k-th differential

is a k-linear, symmetric functional on Rn, dkxu ∈Mk
sym(Rn),

(dkxu)(y, . . . , y︸ ︷︷ ︸
k times

) =
∑
|α|=k

k!

α!
∂αu(x) yα .

We can write now a particular version of the Taylor formula in a very compact form,

u(x+ y) =

m∑
k=0

1

k!
dkxu(y, . . . , y) +

1

m!

∫ 1

0

(1− t)mdm+1
x+tyu(y, . . . , y) dt .

If we define the k-th derivative of u, denoted u(k), as the function that for each x ∈ Ω, prescribes the

corresponding k-th order differential at x,

u(k) : Ω ∋ x→ dkxu ∈Mk
sym(Rn) ,

then we can rewrite the Taylor formula in a form resembling its 1D version,

u(x+ y) =

m∑
k=0

1

k!
u(k)(x)(y, . . . , y) +

1

m!

∫ 1

0

(1− t)mu(m+1)(x+ ty)(y, . . . , y) dt . (2.5)

THEOREM 2.3.1 (Differentiation and convolution commute)

Let k ∈ N, p ∈ [1,∞]. Let u ∈ Ck0 (Rn) and v ∈ Lp(Rn). Then

(i) u ∗ v ∈ Ck(Rn) and,

(ii) ∂α(u ∗ v) = (∂αu) ∗ v ∀|α| ≤ k.
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PROOF

Case: k = 0 has already been proved, see Theorem 2.2.2.

Case: k = 1. Denote the finite difference corresponding to partial derivative by:

(∆l,hu)(x) :=
u(x+ hel)− u(x)

h
. (2.6)

We have,
(u ∗ v)(x+ hel)− (u ∗ v)(x)

h
=

∫
Rn

u(x+ hel − z)− u(x− z)

h
v(z) dz ,

i.e., the finite difference and convolution commute,

∆l,h(u ∗ v) = (∆l,hu) ∗ v .

We have thus the estimate,

|∆l,h(u ∗ v)(x)− (∂lu ∗ v)(x)| ≤ |((∆l,hu− ∂lu) ∗ v)(x)| ≤ ∥∆l,hu− ∂lu∥Lp∗ ∥v∥Lp .

As derivatives of function u are continuous and have compact support, we have a global, pointwise

bound

|∂lu(x)| ≤ C

for some C. By the Mean-Value Theorem, finite difference (2.6) equals derivative ∂lu(x+ ξhel) for

some ξ ∈ [0, 1] and, therefore, it is bounded by constant C as well. Consequently,

|u(x+ hel)− u(x)

h
− ∂lu(x)| ≤ 2C .

We have thus a trivial dominating function and, by the Lebesgue Theorem, pointwise convergence

∆l,h → ∂lu implies global convergence,∫
Rn

|∆l,hu− ∂lu|p∗ =

∫
supp u

|∆l,hu− ∂lu|p∗ → 0 as h→ 0 .

Case: k > 1. Use induction.

Theorem 2.3.1 leads to the concept of smoothing by convolution. Let ψ ∈ C∞
0 (Rn) be an arbitrary non-

negative function with a support in the unit ball and unit integral,

ψ ≥ 0, ψ(x) = 0 for |x| > 1,

∫
Rn

ψ = 1 .

We scale ψ with an ϵ > 0,

ψϵ(x) := ϵ−nψ(ϵ−1x), ψϵ(x) = 0 for |x| > ϵ,

∫
Rn

ψϵ = 1 . (2.7)

By Theorem 2.3.1, ψϵ ∗ u is C∞ and we have the following convergence result.

THEOREM 2.3.2

Let u ∈ Lp(Rn), p ∈ [1,∞). Then
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(i) ∥ψϵ ∗ u∥Lp ≤ ∥u∥Lp and,

(ii) ∥ψϵ ∗ u− u∥Lp ≤ ωp(ϵ, u) .

PROOF The first assertion follows immediately from Theorem 2.2.1,

∥ψϵ ∗ u∥Lp ≤ ∥ψϵ∥L1 ∥u∥Lp = ∥u∥Lp .

We have,

(ψϵ ∗ u)(x)− u(x) = (u ∗ ψϵ)(x)− u(x)

∫
Rn

ψϵ(y) dy =

∫
|y|≤ϵ

[u(x− y)− u(x)]ψϵ(y) dy .

|⟨ψϵ ∗ u− u, ϕ⟩| ≤
∫
Rn

∫
|y|≤ϵ

|u(x− y)− u(x)|ψϵ(y) dy |ϕ(x)| dx

=

∫
|y|≤ϵ

∫
Rn

|u(x− y)− u(x)|ψϵ(y) |ϕ(x)| dx dy

≤
∫
|y|≤ϵ

ωp(ϵ, u) ∥ϕ∥Lp∗ψϵ(y) dy

= ωp(ϵ, u) ∥ϕ∥Lp∗ .

Use Theorem 2.1.1 to finish the argument.

Recall that continuous functions with compact support are dense in Lp(Ω) for p ∈ [1,∞). We can upgrade

the density result now to C∞-functions.

COROLLARY 2.3.1

C∞
0 (Ω) is dense in Lp(Ω) for p ∈ [1,∞).

PROOF Select a sequence of compact sets Kj such that

K1 ⊂⊂ K2 ⊂⊂ . . .Kj ⊂⊂ Kj+1 ⊂⊂ . . . Ω Ω =

∞⋃
j=1

Kj .

You can take for instance,

Kj := {x ∈ Ω : d(x,Rn − Ω) ≥ 1

j
, |x| ≤ j} .

Let χj be the indicator function of set Kj . Consider,

uj := uχj , uj,ϵ := ψϵ ∗ uj .

Note that the convolution used to define uj,ϵ is well-defined for sufficiently small ϵ. We have,

∥uj,ϵ − u∥Lp ≤ ∥uj,ϵ − uj∥Lp + ∥uj − u∥Lp .
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The second term converges to zero by the standard Lebesgue Theorem argument, the first one by

Theorem 2.3.2. Question: Where have we used the assumption that p ̸= ∞ ?

We finish this section with an approximation result for indicator functions.

THEOREM 2.3.3 (External Approximation of Indicator Function)

Let F ⊂ Rn be an arbitrary closed set. There exists a function χϵ ∈ C∞(Rn) such that

χϵ(x) = 1 x ∈ F

0 ≤ χϵ(x) ≤ 1, |∂αχϵ(x)| ≤ C(α) ϵ−|α| 0 < d(x, F ) < ϵ

χϵ(x) = 0 d(x, F ) ≥ ϵ .

PROOF Let vϵ ∈ L∞(Rn) be defined by:

vϵ(x) =

{
1 d(x, F ) < ϵ

0 d(x, F ) ≥ ϵ .

Let ψϵ be a function like in (2.7). Set χϵ := ψϵ/4 ∗ vϵ/2. Then function χϵ satisfies the vanishing

conditions listed above (explain, why?) and we have the estimate:

|(∂αχϵ)(x)| = |(∂α(ψϵ/4 ∗ vϵ/2))(x)| = |(vϵ/2 ∗ ∂αψϵ/4)(x)|

= |
∫
Rn

vϵ/2(x− y) ∂αψϵ/4(y) dy|

≤
∫
|y|≤ϵ/4

|∂αψϵ/4(y)| dy ≤ C∥∂αψ∥L∞︸ ︷︷ ︸
depends upon α

ϵ−nϵ−|α|ϵn

as,

(∂αψϵ)(x) = ϵ−nϵ−|α|(∂αψ)(ϵ−1x) .

COROLLARY 2.3.2

The dependence of the bounding constant upon index α is unavoidable. Consider the 1D case illus-

trated in Fig. 2.1. If all derivatives ψ(m)(ξ) of function ψ are bounded uniformly by some constant

C, we have the estimate:

|ψ(x)−
m∑
k=1

1

k!
ψ(k)(0)xk︸ ︷︷ ︸
=0

| = 1

(m+ 1)!
|ψ(m+1)(ξ)|xm+1 ≤ C

1

(m+ 1)!
xm+1 x ∈ (0, 1)

with ξ being some intermediate point between 0 and x. Upon passing with m→ ∞, we get ψ(x) = 0,

a contradiction.
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x

ψ

10

(x)

Figure 2.1
Function ψ.

Exercises

Exercise 2.3.1 ([18], Exercise 3.5) Derive Taylor formula (2.5). (10 points)

Outline of the proof:

(i) Use integration by parts and induction to derive Taylor formula in one dimension:

f(s) =

m∑
j=0

f (j)(0)

j!
sj +

sm+1

m!

∫ 1

0

(1− t)mf (m+1)(ts) dt .

(ii) Take f(s) := u(x+ sy) and apply the 1D formula.

Exercise 2.3.2 Differentiation of product of functions. Prove the formula:

∂α(fg) =
∑
γ≤α

(
α
γ

)
∂γf ∂α−γg .

(5 points)

2.4 Distributions

L1
loc functions. Let Ω ⊂ Rn be an open set. Consider a measurable function u : Ω → C. The following

two conditions are equivalent to each other, see Exercise 2.4.2.

∀x ∈ Ω ∃B = B(x, ϵ) u ∈ L1(B)

∀ compact K ⊂ Ω u ∈ L1(K)
(2.8)
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We say that function u is locally integrable and denote the space of such functions by L1
loc(Ω). We will use

the smoothing by convolution technique to prove the following fundamental result.

THEOREM 2.4.1

Let u ∈ L1
loc(Ω) satisfy the orthogonality condition:∫

Ω

uϕ = 0 ∀ϕ ∈ C∞
0 (Ω) .

Then u = 0 a.e. in Ω.

PROOF Let x ∈ Ω. Consider a ball B(x, 2δ) ⊂ Ω and take ψϵ like in (2.7). Let

uB(z) :=

{
u(z) z ∈ B(x, 2δ)

0 otherwise
, uB ∈ L1(Rn) .

Then, for z ∈ B(x, δ),

(ψϵ ∗ uB)(z) =
∫
Rn

uB(y)ψϵ(z − y) dy =

∫
Ω

u(y)ψϵ(z − y) dy = 0 ∀ϵ < δ ,

and

∥(ψϵ ∗ uB︸ ︷︷ ︸
=0

−uB∥L1(B(x,δ)) ≤ ∥ψϵ ∗ uB − uB∥L1(Rn) ≤ ω1(ϵ, uB) → 0 as ϵ→ 0 .

Consequently, u = 0 a.e. in B(x, δ), i.e.

m({z ∈ B(x, δ) : u(z) ̸= 0}) = 0 .

This implies that u = 0 a.e. in every compact subset of Ω (explain, why). As Ω can be represented

as a union of a countable family of compact subsets (see proof of Corollary 2.3.1), this in turn implies

that u = 0 a.e. in Ω as well.

Note that the result does not follow from a duality argument for spaces L∞ as the test functions are not

dense in L∞.

Test functions and distributions. Space of infinitely differentiable functions with compact support in Ω,

C∞
0 (Ω), equipped with a very special topology of the locally convex (l.c.) inductive topological limit, see

[20], pp. 366-371, is called the space of (Schwartz) test functions and denoted by D(Ω). In principle, every

time we use the symbol D(Ω) instead of C∞
0 (Ω), we emphasize the importance of the topology. Space D(Ω)

is not first countable, i.e. one cannot introduce it with countable bases of neighborhoods. In fact, it is not even

sequential, i.e. notions of sequential continuity and continuity for functions are not equivalent. However, see

[20], p. 414, a linear functional defined on D(Ω) is continuous iff it is sequentially continuous. As the

topological dual of the space of test functions, denoted D′(Ω), is identified as the space of distributions on
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Ω, it is sufficient to work only with the notion of sequential continuity for distributions. It turns out that a

sequence of test functions ϕj converges to zero in D(Ω) iff there exists a compact set K ⊂ Ω such that

supp ϕj ⊂ K, j = 1, . . . and sup
K

|∂αϕj | → 0 ∀α ,

see [20], Proposition 5.3.2. Consequently, a linear functional f ∈ (C∞
0 (Ω))∗ is a distribution if

⟨f, ϕj⟩ := f(ϕj) → 0 for any ϕj
D(Ω)→ 0 .

Once we have introduced the dual space D′(Ω), we need to decide about the topology for D′(Ω). Recall that

for a normed space V , its topological dual V ′ can be equipped with the strong topology introduced by the

(dual) norm,

∥f∥V ′ := sup
v

|⟨f, v⟩|
∥v∥V

,

weak topology introduced by functionals from the bidual space V ′′, or weak∗ topology generated by V . For

reflexive spaces, V ∼ V ′′ and the weak and weak∗ topologies are the same. So, it should not be surprising

that the topology in D′(Ω) can be introduced in more than one way. In these notes we shall equip D′(Ω) with

the weak∗ topology and restrict ourselves to sequences only, i.e.,

fj → 0 in D′(Ω)
def⇔ ⟨fj , ϕ⟩ → 0 ∀ϕ ∈ D(Ω) .

Occasionally, we shall also need a larger space of test functions, a locally convex topological vector space

(lctvs), E(Ω) = C∞(Ω), with the topology introduced by the family of seminorms

sup
K

|∂αϕ|,

for any compactK ⊂ Ω and multiindex α. As the topology can be introduced with a countable set of compact

sets, see proof of Collorary 2.3.1, space E(Ω) is first countable and, consequently, continuity is equivalent to

sequential continuity for any functional defined on E(Ω), linear or not.

As the space D(Ω) is dense in space E(Ω), see Exercise 2.4.3, and

ϕj → 0 in D(Ω) ⇒ ϕj → 0 in E(Ω) ,

see Exercise 2.4.4, i.e. space D(Ω) is continuously embedded in space E(Ω), we have automatically the

continuous embedding for the dual spaces as well,

E ′(Ω) ↪→ D′(Ω) .

The embedding symbol communicates two facts.

(i) Let ι : D(Ω) → E(Ω) be the continuous injection of D(Ω) into E(Ω). The transpose ιT maps then

dual E ′(Ω) into dual D′(Ω),

ιT : E ′(Ω) ∋ f → f ◦ ι ∈ D′(Ω) .
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The density result implies that the transpose operator is injective, i.e.

⟨f, ϕ⟩ = 0∀ϕ ∈ D(Ω) ⇒ ⟨f, ϕ⟩ = 0∀ϕ ∈ E(Ω) .

Only then we can talk about the “embedding”.

(ii) The transpose operator is always automatically continuous. In our case,

fn → 0 in E ′(Ω) ⇒ fn → 0 in D′(Ω)

which is automatically satisfied for the weak∗ topologies. Indeed, the statement above means:

⟨fn, ϕ⟩ → 0 ∀ϕ ∈ E(Ω) ⇒ ⟨fn, ϕ⟩ → 0 ∀ϕ ∈ D(Ω)

which is trivially satisfied since D(Ω) ⊂ E(Ω).

We shall characterize space E ′(Ω) in a moment as the space of distributions with compact support, see

Theorem 2.4.2.

Regular and irregular distributions. With every function u ∈ L1
loc(Ω) we associate the corresponding

linear functional Ru ∈ (C∞
0 (Ω))∗ defined by the Lebesgue integral,

⟨Ru, ϕ⟩ :=
∫
Ω

uϕ .

Note that the integral is finite (Explain, why?) so the functional Ru is well-defined. Let ϕn → 0 in D(Ω) and

K be a compact set such that supp ϕj ⊂ K. Then

|
∫
Ω

uϕj | = |
∫
K

uϕj | ≤ ∥u∥L1(K) ∥ϕj∥L∞(K) → 0 as j → 0 ,

so Ru is a distribution. Distributions generated by L1
loc-functions are called regular. Any distribution that is

not regular is identified as an irregular distribution. The first and perhaps the most important example of an

irregular distribution is the famous Dirac’s delta. We define the Dirac’s delta at a point x0 ∈ Ω by:

D(Ω) ∋ ϕ→ ⟨δx0
, ϕ⟩ := ϕ(x0) ∈ C .

Note that δx0
is trivially continuous on D(Ω). In the case of x0 = 0, we drop the index and use the simplified

notation δ := δ0. Suppose now that δx0
is a regular distribution, i.e., there exists a function u ∈ L1

loc(Ω) such

that ∫
Ω

uϕ = ϕ(x0) ∀ϕ ∈ C∞
0 (Ω) .

Consequently, ∫
Ω−{x0}

uϕ = 0 ∀ϕ ∈ C∞
0 (Ω− {x0}) .

By Theorem 2.4.1, u = 0 a.e. in Ω − {x0} and, therefore, u = 0 a.e. in Ω, a contradiction since δx0
is not

zero. In most of engineering and physics textbooks we encounter the integral symbol for Dirac’s delta:

⟨δx0
, ϕ⟩ =

∫
Ω

δ(x− x0)ϕ(x) dx .
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The integral above has nothing to do with the Lebesgue integral and should be understood simply as another

symbol for the delta functional that, as we have just shown, cannot be generated by a function. In stronger

words, the use of this symbol is mathematically illegal and should be avoided. We will give many more

examples of irregular distributions.

Space L1
loc(Ω) is continuously embedded in D′(Ω), i.e., operator

R : L1
loc(Ω) ∋ u→ Ru ∈ D′(Ω)

is injective and continuous. Injectivity follows from Theorem 2.4.1. In order to understand the continuity, we

have first to “topologize” space L1
loc(Ω). We equip L1

loc(Ω) with l.c.t. introduced by the family of seminorms:

pK(u) :=

∫
K

|u|, compact K ⊂ Ω .

As we can restrict ourselves to a countable set of compact sets, this is a first countable topology. The conti-

nuity of the embedding now easily follows,∫
K

un → 0 ∀ compact K ⊂ Ω ⇒
∫
Ω

unϕ→ 0 ∀ϕ ∈ D(Ω) .

Restriction of a distribution. Many definitions for functions can be extended “by duality” to distributions.

We start with the concept of a restriction. Let G be an open subset of Ω and f ∈ D′(Ω) a distribution on Ω.

The restriction of f to G, f |G ∈ D′(G) is defined by

⟨f |G, ϕ⟩ := ⟨f, ϕ̃⟩, ϕ ∈ D(G)

where ϕ̃ denotes the zero extension of test function ϕ to set Ω. Note that the zero extension of ϕ belongs to

D(Ω), and

ϕn → 0 in D(G) ⇒ ϕ̃n → 0 in D(Ω) .

Consequently, the restriction f |Ω is well-defined.

Support of a distribution. Having defined the concept of restriction of a distribution, we can extend the

notion of support from smooth functions to distributions. We cannot do it directly using the pointwise values

of a distribution as they are undefined. Let f ∈ D′(Ω). We define the support of f , denoted supp f to be the

smallest (relatively) closed set F in Ω such that the restriction of f to difference Ω − F vanishes. Explain

why such smallest relatively closed set always exists. Equivalently,

supp f = Ω−G

where G is the largest (relatively) open subset of Ω such that f |G = 0. Note that, since Ω is open, G is

relatively open in G iff G is open. For instance, according to the definition, Dirac’s delta δx is supported at

the single point x.

If u ∈ L1
loc(Ω), we define the essential support of u, denoted ess suppu, to be the smallest (relatively)

closed subset F of Ω such that the restriction of u to difference Ω− F is zero a.e. in Ω− F . One can prove
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that the essential support of function u coincides with the support of the corresponding regular distribution

Ru, see Exercise 2.4.5.

We are ready now to characterize space E ′(Ω) as distributions with compact support.

THEOREM 2.4.2 (Characterization of E ′(Ω))

We have:

E ′(Ω) = {u ∈ D′(Ω) : supp u is compact, and supp u ⊂ Ω} .

PROOF

Case: ⊃. Use Theorem 2.3.3 to fetch a function χ ∈ C∞
0 (Ω) such that χ = 1 in an ϵ-neighborhood

of supp u, and define:

⟨ũ, ϕ⟩ := ⟨u, χϕ⟩ ∀ϕ ∈ E(Ω) .

Let now ϕ ∈ E(Ω) and ϕj ∈ E(Ω) be a sequence converging to ϕ in E(Ω). Then χϕj → χϕ in D(Ω)

and, therefore,

⟨ũ, ϕj⟩ = ⟨u, χϕj⟩ → ⟨u, χϕ⟩ = ⟨ũ, ϕ⟩ ,

i.e., ũ ∈ E ′(Ω). Take an arbitrary test function ϕ ∈ D(Ω). Then (1− χ)ϕ ∈ D(Ω) and (1− χ)ϕ = 0

in the ϵ-neigborhood of supp u, so

⟨u, (1− χ)ϕ⟩ = 0 .

But this means that

⟨ũ, ϕ⟩ = ⟨u, χϕ⟩ = ⟨u, ϕ⟩ ,

i.e., u = ũ ∈ E ′(Ω).

Case: ⊂. Suppose supp u is not compact. Take a sequence of compact sets like in the proof of

Corollary 2.3.1,

K1 ⊂⊂ K2 ⊂⊂ . . .Ω Ω =
∞⋃
j=1

Kj .

If the support of u is not compact then

u|Ω−Kj
̸= 0 ∀j

(explain,why). Consequently, for every j, there exists a test function ϕj ∈ D(Ω) such that

supp ϕj ⊂ Ω−Kj , ⟨u, ϕj⟩ ≠ 0 .

We can normalize functions ϕj with ⟨u, ϕj⟩ to obtain ⟨u, ϕj⟩ = 1. But, by the definition of topology

in E(Ω) (explain why),

ϕj → 0 in E(Ω) ⇒ ⟨u, ϕj⟩ → 0

a contradiction.
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Derivative of a distribution. Let u ∈ D′(Ω) and α ∈ Nn. Motivated with the integration by parts formula,

we define:

⟨∂αu, ϕ⟩ := (−1)|α| ⟨u, ∂αϕ⟩ , ϕ ∈ D(Ω) .

Note that

ϕj
D(Ω)−→ 0 ⇒ ∂αϕj

D(Ω)−→ 0 ,

so ∂αu ∈ D′(Ω). Distributions, like C∞ functions, have derivatives of any order.

Example 2.4.1

Consider one-dimensional case: Ω = (a, b). Let u : (a, b) → C be a function consisting of two

smooth branches:

u(x) :=


u1(x) x ∈ (a, x0)

anything at x = x0

u2(x) x ∈ (x0, b)

where u1 ∈ C1[a, x0] and u2 ∈ C1[x0, b]. Let Ru be the regular distribution associated with function

u. Definition of distributional derivative and elementary calculations show that (see e.g. [9], p.32)

⟨ d
dx
Ru, ϕ⟩ = ⟨Ru′ , ϕ⟩+ [u(x0)]ϕ(x0)

or, in the argumentless notation,

d

dx
Ru = Ru′ + [u(x0)]δx0 .

Above, d
dx denotes the distributional derivative, u′ stands for the classical, pointwise derivative of u

defined everywhere except for x0, and [u(x0)] := u2(x0) − u1(x0) is the jump of u at point x0. In

particular, if function u is globally continuous, i.e., [u(x0)] = 0, then

d

dx
Ru = Ru′ .

Explain why the value of u at x0 does not matter.

Example 2.4.2

Example 2.4.1 generalizes to multidimensions. Let Ω ⊂ Rn be a open set partitioned into two open

subsets Ωi, i = 1, 2, separated by interface Γ0. More precisely,

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, Γ0 = ∂Ω1 ∩ ∂Ω2 .

Let u be again a scalar-valued function consisting of two smooth branches:

u(x) :=


u1(x) x ∈ Ω1

anything x ∈ Γ0

u2(x) x ∈ Ω2 .
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where ui ∈ C1(Ωi), i = 1, 2. Let Ru again detote the regular distribution associated with function

u. Definition of distributional derivative and elementary integration by parts formula lead to:

⟨ ∂

∂xi
Ru, ϕ⟩ = ⟨Ru,i

, ϕ⟩+
∫
Γ0

[u]ni ϕdS︸ ︷︷ ︸
=:⟨δΓ0,[u]ni

,ϕ⟩

(2.9)

or, in the argumentless notation,

∂

∂xi
Ru = Ru,i

+ δΓ0,[u]ni
.

Here, ∂
∂xi

denotes the distributional derivative of Ru, u,i stands for the classical, pointwise partial

derivative ∂u
∂xi

defined everywhere except for x ∈ Γ0, [u](x) := u2(x)− u1(x), x ∈ Γ0 is the jump of

u across Γ0, and ni are components of unit normal to Γ0 directed from Ω1 into Ω2. Finally, δΓ0,[u]ni

is an irregular distribution defined by the boundary integral, dependent upon jump of u and normal

n, comp. Exercise 2.4.8. Again, if function u is globally continuous, i.e., [u] = 0, then

∂

∂xi
Ru = Ru,i

.

Complex conjugate ū of a distribution u is defined by:

⟨u, ϕ⟩ := ⟨u, ϕ⟩ , ϕ ∈ D(Ω) .

Convolution of a distribution with a test function. Let f ∈ L1
loc(Rn) and ψ, ϕ ∈ D(Rn). We have,∫

Rn

(f ∗ ψ)(z)ϕ(z) dz =

∫
Rn

∫
Rn

f(z − y)ψ(y) dy ϕ(z) dz

=

∫
Rn×Rn

f(z − y)ψ(y)ϕ(z) dz dy (Fubini)

=

∫
Rn×Rn

f(x)ψ(y)ϕ(x+ y) dx dy (z = x+ y)

=

∫
Rn

f(x)

∫
Rn

ψ(y)ϕ(x+ y) dy dx (Fubini)

=

∫
Rn

f(x)

∫
Rn

ψ(−y)ϕ(x− y) dy︸ ︷︷ ︸
=((ψ̌∗ϕ)(x)

dx (y = −y)

where ψ̌(x) = ψ(−x). This suggests to define the convolution of distribution f ∈ D′(Rn) with test function

ψ ∈ D(Rn) as:

⟨f ∗ ψ, ϕ⟩ := ⟨f, ψ̌ ∗ ϕ⟩ , ϕ ∈ D(Rn) .

The convolution is well defined because the operation:

D(Rn) ∋ ϕ→ ψ̌ ∗ ϕ ∈ D(Rn) (2.10)
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is well defined and continuous, see Exercise 2.4.11. Note also that the convolution of a distribution and a test

function is actually a function. Indeed,

⟨f ∗ ψ, ϕ⟩ = ⟨f,
∫
Rn

ψ(y − ·)ϕ(y) dy⟩ =
∫
Rn

⟨f, ψ(y − ·)⟩ϕ(y) dy .

In fact, it is a C∞ function, comp. Exercise 2.4.12.

For example, it is easy to check that the convolution with Dirac’s delta reduces to the identity operator,

⟨δ ∗ ψ, ϕ⟩ = ⟨δ, ψ̌ ∗ ϕ⟩ = (ψ̌ ∗ ϕ)(0) =
∫
Rn

ψ̌(−y)ϕ(y) dy =

∫
Rn

ψ(y)ϕ(y) dy = ⟨ψ, ϕ⟩ .

Product of a distribution with a C∞ function. Let ψ ∈ C∞(Ω) and u ∈ D′(Ω). One more time we “pass

the job to the test function” to define:

⟨ψu, ϕ⟩ := ⟨u, ψϕ⟩ , ϕ ∈ D(Ω) .

Note that the product is well defined because a) ψϕ ∈ D(Ω), b) ϕj → 0 in D(Ω) implies that ψϕj →
0 in D(Ω) as well.

We conclude this section with a result characterizing Dirac’s delta. Support of δx contains a single point,

supp δx = {x}. It turns out that, conversely, a distribution with the support at a single point, must be a linear

combination of δx and its derivatives.

THEOREM 2.4.3

Let u ∈ D′(Ω) be a distribution with the support in a single point, supp u ⊂ {x}, x ∈ Ω. Then u

must be of the following form:

u =
∑

|α|≤m

aα∂
αδx, for some m ∈ N ,

where coefficients aα are given by:

aα =
(−1)|α|

α!
⟨u, ϕ⟩ where ϕ(t) = (t− x)α .

PROOF Choose sufficiently small ϵ such that K := B(x, ϵ) ⊂ Ω. By Exercise 2.4.6, there exists

a positive integer m such that

|⟨u, ϕ⟩| ≤ C(m,K)
∑

|α|≤m

sup
K

|∂αϕ| , ∀ϕ ∈ D(Ω) such that supp ϕ ⊂ K .

Take now a test function ϕ ∈ E(Ω) (distributions with compact support belong to E ′(Ω)) and consider

the Taylor’s expansion (2.5) of ϕ,

ϕ(y) =

m∑
k=0

1

k!
ϕ(k)(x)(y − x, . . . , y − x)︸ ︷︷ ︸

:=ϕ1(y)

+
1

m!

∫ 1

0

(1− t)mϕ(m+1)(x+ t(y − x))(y − x, . . . , y − x) dt︸ ︷︷ ︸
:=ϕ2(y)

.
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The action of u on ϕ1 yields:

⟨u, ϕ1⟩ =
∑

|α|≤m

1

α!
⟨u, ∂αϕ(x)(· − x)α⟩︸ ︷︷ ︸
∂αϕ(x)⟨u,(·−x)α⟩

(ϕ(j)(x)(y − x, . . . , y − x) =
∑
|α|=j

j!

α!
∂αϕ(x)(y − x)α)

=
∑

|α|≤m

aα⟨∂αδx, ϕ⟩ (definition of derivative of distribution.)

We show now that action of u on the remainder ϕ2 vanishes. By Theorem 2.3.3, there exists a

smooth function χ ∈ C∞(Rn) such that

χ(y) =

{
1 |y| ≤ 1

2

0 |y| ≥ 1 .

Define χϵ(y) := χ(ϵ−1(y − x)) to obtain:

χϵ(y) =

{
1 on B(x, ϵ/2)

0 outside of B(x, ϵ)
and |∂αχϵ| ≤ C(α)ϵ−|α| .

Since (1− χϵ)ϕ2 = 0 in B(x, ϵ/2), and supp u ⊂ {x}, u must vanish on (1− χϵ)ϕ2 and, therefore,

⟨u, ϕ2⟩ = ⟨u, χϵϕ2 + (1− χϵ)ϕ2⟩ = ⟨u, χϵϕ2⟩ .

By Exercise 2.3.2 and Exercise 2.4.7, for any |α| ≤ m,

|∂α(χϵϕ2)| ≤
∑
γ≤α

(
α
γ

)
|∂γϕ2|︸ ︷︷ ︸

≤Cϵm+1−|γ|

|∂α−γχϵ|︸ ︷︷ ︸
≤Cϵ−|α−γ|

≤ Cϵ .

Consequently,

|⟨u, ϕ2⟩| ≤ C
∑

|α|≤m

sup
K

|∂α(χϵϕ2)| ≤ Cϵ→ 0 as ϵ→ 0 .

Can you explain why index m in Theorem 2.4.3 must be finite ?

Exercises

Exercise 2.4.1 Existence of C∞ functions with compact support. Consider the function:

u(x) :=

{
e−

1
x x > 0

0 x ≤ 0

Prove that limx→0+ u
(j)(x) = 0 and conclude that u(x) is aC∞ function. Use the function to construct

a C∞ function ψ with support equal to [−1, 1] and different from zero in (−1, 1).

(3 points)
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Exercise 2.4.2 Prove equivalence of conditions (2.8). (2 points)

Exercise 2.4.3 Consider a sequence of compact sets Kj as in the proof of Corollary 2.3.1. Choose χj ∈
C∞

0 (Ω) such that χj |Kj = 1. Let ϕ ∈ E(Ω). Prove that

χjϕ→ ϕ in E(Ω) .

Consequently, space D(Ω) is dense in space E(Ω). (2 points)

Exercise 2.4.4 Prove that

ϕj → 0 in D(Ω) ⇒ ϕj → 0 in E(Ω) .

(2 points)

Exercise 2.4.5 Let u ∈ L1
loc(Ω). Prove that

ess supp u = supp Ru

where Ru is the regular distribution generated by function u. (3 points)

Exercise 2.4.6 Continuity in D′(Ω). Let u be a linear functional defined on D(Ω). Show that u is sequen-

tially continuous (and, therefore, continuous [20], p. 414) iff for any compact set K ⊂ Ω, there exists

an m ∈ N such that

|⟨u, ϕ⟩| ≤ C(m,K)
∑

|α|≤m

sup
K

|∂αϕ| , ∀ϕ ∈ D(Ω) such that supp ϕ ⊂ K .

Hint: Use proof by contradiction. The condition appears naturally when you study the locally convex

topological inductive limit [20], p. 414. (3 points)

Exercise 2.4.7 Prove the estimate for function ϕ2 from the proof of Theorem 2.4.3:

|∂βϕ2| ≤ C(α)ϵm+1−|β| in B(x, ϵ), |β| ≤ m+ 1 .

(3 points)

Exercise 2.4.8 Prove that the boundary integral in formula (2.9) defines an irregular distribution. (3 points)

Exercise 2.4.9 Revisit Exercise 2.2.3 and prove the identity

supp u ∗ v ⊂ supp u+ supp v

for any u, v ∈ L1(Rn) (not necessarily continuous). Symbol supp above denotes the essential support

of an L1-function. As in Exercise 2.2.3, we assume that u or v has a compact support. (10 points)

Exercise 2.4.10 Let Ω = (0, 1) and u ∈ L2(Ω). Prove that u′′ ∈ L2(Ω) implies u′ ∈ L2(Ω) as well. All

derivatives are understood in the sense of distributions. (5 points)
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Exercise 2.4.11 Prove that map (2.10) is continuous. (3 points)

Exercise 2.4.12 Prove that the convolution of a distribution u ∈ D′(Rn) with a test function ψ ∈ D(Rn),

(u ∗ ψ)(x) := ⟨u, ψ(x− ·)⟩

is a C∞ function. Proceed along the following steps.

Step 1: Let xn → x. Show that

ψ(xn − ·) → ψ(x− ·) in D(Rn)

and conclude that (u ∗ ψ)(x) is a continuous function.

Step 2: Show that

∆l,h(u ∗ ψ)(x) := h−1[(u ∗ ψ)(x+ hel)− (u ∗ ψ)(x)] → ⟨∂lu, ψ(x− ·)⟩ as h→ 0 .

and conclude the final result.

2.5 Fourier Transform

L-periodic functions. A measurable function u : Rn → C is L-periodic if

u(x+ kL) = u(x) x ∈ Rn, k ∈ Zn .

Restricting ourselves to functions that are L2-integrable on cube (0, L)n, we can equip the space with the

inner product

(u, v) =

∫
(0,L)n

u(x)v(x) dx

to obtain a Hilbert space L2
per(Rn). One can show then (not a cheap result...) that Laplace operator is a

well-defined, closed and self-adjoint operator from ( a dense subspace of) L2
per(Rn) into itself. Spectral

Theory for Self-Adjoint Operators [20], Section 6.11, shows that spectrum of the Laplacian consists of real

non-negative eigenvalues only. Elementary separation of variables shows then that the eigenvectors are given

by

ϕk(x) = L−n/2ei2π
k·x
L

with k ∈ Zn, and the corresponding eigenvalues

λk =

(
2π|k|
L

)2

.
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Note that the eigenvectors have been normalized to form an orthonormal system. It follows from the Spectral

Theorem that eigenvectors ϕ form a complete orthonormal system, i.e.,

u(x) =
∑
k∈Zn

(u, ϕk)L2
per(Rn)ϕk(x) =

1

Ln

∑
k∈Zn

ûL(
k

L
)ei2π

k·x
L

where

ûL(ξ) =

∫
(0,L)n

u(x)e−i2πξ·x dx .

Let u ∈ L2(Rn) with a compact (essential) support in some (−L/2, L/2). Consider its L-periodic extension

and the corresponding frequency content illustrated in Fig. 2.2 for the one-dimensional case. Elementary

calculations show that if we consider the original function with compact support in interval (−L,L) and only

then consider its 2L-periodic extension (i.e. double the value of period L), the corresponding representation

will consist of old frequencies (and identical values for them) and new frequencies in between the old ones.

If we continue the process, we expect the frequencies to fill the entire real line. This is exactly the intuition

behind the definition of the Fourier transform.

Figure 2.2
Change of frequency spectrum from L to 2L.

Classical Fourier transform. Let u ∈ L1(Rn). We define its Fourier transform Fu = û by

(Fu)(ξ) = û(ξ) :=

∫
Rn

u(x)e−i2πξx dx .

Note that we use a simplified notation, ξx stands for the dot product ξ ·x. The formal (at this point) L2-adjoint

of the Fourier transform is equal to:

(F∗u)(ξ) :=

∫
Rn

u(x)ei2πξx dx .
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We expect operator F to be invertible with the inverse equal to its adjoint, F−1 = F∗. Hölder inequality

implies that the Fourier transform is well-defined. We have the following classical result.

THEOREM 2.5.1

Let u, û ∈ L1(Rn) and u is continuous at a point x. Then

u(x) = (F∗û)(x) .

PROOF

Step 1: Gaussian is a fixed point for the Fourier transform. Let ψ(x) = e−π|x|
2

. One can prove, see

Exercise 2.5.1, that

Fψ = ψ .

The same property is shared by the adjoint. Indeed,

(F∗ψ)(x) = (Fψ)(−x) = ψ(−x) = ψ(x) .

Step 2: Consider now the scaled Gaussian:

ψϵ(x) := ϵ−nψ(ϵ−1x) .

By Exercise 2.5.2, formula 1,

Fx→ξ(ϵ
−nψ(ϵ−1x)︸ ︷︷ ︸

ψϵ(x)

)(ξ) = (Fx→ξψ︸ ︷︷ ︸
=ψ

)(ϵξ) = ψ(ϵξ)

and, by Exercise 2.5.2, formula 2,

F∗
ξ→x(ψ(ϵξ))(x) = ϵ−n F∗

ξ→xψ︸ ︷︷ ︸
=ψ

(ϵ−1x) = ψϵ(x) .

In other words, the inversion formula holds for the scaled Gaussian as well.

Step 3: By Step 2 result, we have,∫
Rn

û(ξ)ψ̂ϵ(ξ)e
i2πξx dξ =

∫
Rn

(∫
Rn

e−i2πξyu(y) dy

)
ψ̂ϵ(ξ) e

i2πξx dξ

=

∫
Rn

u(y)

∫
Rn

ei2πξ(x−y)ψ̂ϵ(ξ) dξ dy

=

∫
Rn

u(y)ψϵ(x− y) dy

= (ψϵ ∗ u)(x) .

For every ξ,

ψ̂ϵ(ξ) = ψ̂(ϵξ) = ψ(ϵξ) → 1 as ϵ→ 0 .
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Thus, by the Lebesgue Theorem (show the dominating function),∫
Rn

û(ξ)ψ̂ϵ(ξ)e
i2πξx dξ →

∫
Rn

û(ξ)ei2πξx dξ .

In other words,

(F∗û)(x) = lim
ϵ→0

(ψϵ ∗ u)(x)

and it remains to show that the limit on the right-hand side equals u(x) at points of continuity of u.

Towards this goal, assume that u is continuous at x, and pick an arbitrary ϵ0 > 0. There exists

then a δ0 > 0 such that

|u(x− y)− u(x)| < ϵ0
3

for |y| < δ0 .

Consequently,

|(ψϵ ∗ u)(x)− u(x)| = |
∫
Rn

[u(x− y)− u(x)]ψϵ(y) dy|

≤
∫
|y|<δ0

|u(x− y)− u(x)|ψϵ(y) dy +
∫
|y|≥δ0

|u(x− y)− u(x)|ψϵ(y) dy

≤ ϵ0
3

∫
Rn

ψϵ(y) dy︸ ︷︷ ︸
=1

+

(∫
Rn

|u(x− y)| dy
)

sup
|y|≥δ0

ψϵ(y) dy + |u(x)|
∫
|y|≥δ

ψϵ(y) dy

≤ ϵ0
3

+ ∥u∥L1(Rn)ϵ
−ne−π(δ0/ϵ)

2

+ |u(x)|
∫
|y|≥δ

ψϵ(y) dy .

As “exponential takes over any polynomial”, term

ϵ−ne−π(δ0/ϵ)
2

converges to zero as ϵ → 0 so, for sufficiently small ϵ, the second term above can also be bounded

by ϵ0/3.

The integral in the third term estimates as follows.∫
|y|≥δ

ψϵ(y) dy = m(S1)

∫ ∞

δ0

ϵ−ne−
πr2

ϵ2 rn−1 dr

= m(S1)

∫ ∞

δ0
ϵ

e−πt
2

tn−1 dt (r = ϵt)

wherem(S1) denotes the (n-1)-dimensional measure of the unit sphere. As the integrand is summable

over (0,∞), the integral goes to zero as ϵ → 0 and, for sufficiently small ϵ, the third term above is

bounded by ϵ0/3 as well.

COROLLARY 2.5.1

Let ǔ(x) := u(−x). Then

(F(F∗u))(x) = (F∗(F ǔ))(−x) = ǔ(−x) = u(x) .
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In other words, we have FF∗ = id at points of continuity of u as well.

Fourier transform has a regularizing effect on the function being transformed.

LEMMA 2.5.1

Let u ∈ L1(Rn). Then its Fourier transform û is bounded and uniformly continuous over Rn.

PROOF We have,

|û(ξ + η)− û(ξ)| = |
∫
Rn

u(x)e−i2πξx(e−i2πηx − 1) dx|

≤
∫
Rn

|u(x)| |e−i2πηx − 1| dx

≤ 2

∫
Rn−BR

|u(x)| dx+

∫
BR

|u(x)| |e−i2πηx − 1|︸ ︷︷ ︸
≤2π|η| |x|

dx

≤ 2

∫
Rn−BR

|u(x)| dx+ 2π|η|R
∫
BR

|u(x)| dx .

Given ϵ > 0, we choose sufficiently large R to bound the first term by ϵ/2, and then we choose

sufficiently small η to make the second term bounded by ϵ/2 as well. Finally,

|û(ξ)| ≤ |
∫
Rn

e−i2πξxu(x) dx| ≤
∫
Rn

|u(x)| dx ,

for any ξ ∈ Rn.

Rapidly decreasing test functions. We introduce one more space of test functions defined on Rn,

S(Rn) := {ϕ ∈ C∞(Rn) : sup
x∈Rn

|xα∂βϕ(x)| <∞ ∀α, β}

The countable set of seminorms

pα,β(ϕ) := sup
x∈Rn

|xα∂βϕ(x)|

generates a first countable locally convex topological vector space topology so the continuity of any functional

defined on S(Rn) is equivalent to its sequential continuity. It follows that

ϕj → 0 ⇔ pα,β(ϕj) = sup
x∈Rn

|xα∂βϕj(x)| → 0 ∀α, β . (2.11)

Let ϕ ∈ S(Rn). Elementary calculations show that

Fx→ξ (∂
αϕ(x)) (ξ) = (i2πξ)αϕ̂(ξ) . (2.12)

This in turn implies that

Fx→ξ ((−i2πx)αϕ(x)) (ξ) = ∂αϕ̂(ξ) . (2.13)
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The classical Fourier transform restricted to space S(Rn),

F : S(Rn) → S(Rn) ,

is well-defined, i.e., Fourier transform of a rapidly decaying function is also a rapidly decaying function, and

it is continuous, see Exercise 2.5.3. Theorem 2.5.1 implies that F−1 = F∗.

As the following inclusions are continuous with dense images, see Exercise 2.5.4,

D(Rn) d
↪→ S(Rn) d

↪→ E(Rn) ,

we can immediately conclude the corresponding embeddings for the dual spaces,

E ′(Rn) ↪→ S ′(Rn) ↪→ D′(Rn) .

Elements of dual S ′(Rn) are called tempered distributions. The following Proposition provides a sufficient

condition for a regular distribution to be tempered. Let u : Rn → C be a function such that u(x) =

O(|x|k), |x| → ∞, for some integer k, i.e., there exists a constant C > 0 such that

|u(x)| ≤ C|x|k for sufficiently large |x| .

We say that function u is slowly growing.

PROPOSITION 2.5.1

Let u ∈ L1
loc(Rn) be a slowly growing function. Then Ru ∈ S ′(Rn).

PROOF Recall that in a l.c.t.v.s. with the topology set by a family of seminorms pα(ϕ), α ∈ I,

a linear functional l(ϕ) is continuous iff there exists a constant C > 0 and a finite subset I0 ⊂ I such

that

|l(ϕ)| ≤ Cmax
α∈I0

|pα(ϕ)| ,

see [20], Exercise 5.2.6. Next note that the integral∫
|x|>1

|x|−(n+1) dx =

∫
S1

∫ ∞

1

r−(n+1)rn−1︸ ︷︷ ︸
=r−2

dr dS1

is finite. Let k be the exponent in the definition of slowly growing function. Let r = |x|. We have,

|
∫
Rn

uϕ| ≤
∫
|x|≤1

|uϕ|+
∫
|x|>1

|ur−k|︸ ︷︷ ︸
≤C

r−(n+1)r(n+k+1)|ϕ|

≤ sup
Rn

|ϕ|
∫
|x|≤1

|u|+ C sup
Rn

{r(n+k+1)|ϕ|}
∫
|x|>1

|x|−(n+1) .

where the supremum in the second term is bounded by the seminorms as well. Indeed, let 2l be an

upper bound for n+ k + 1. Then

r(n+k+1) ≤ r2l = (x21 + . . .+ x2n)
l ≤ nl

∑
|α|=l

x2α |x| > 1
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which implies

sup
|x|>1

{r(n+k+1)|ϕ(x)|} ≤ nl
∑
|α|=l

sup
|x|>1

|x2αϕ(x)| .

Fourier transform of tempered distributions. Let u ∈ L1(Rn). Definitions and Fubini’s Theorem imply

(check it) that ∫
Rn

ûϕ =

∫
Rn

uϕ̂ , ϕ ∈ S(Rn) .

This motivates the definition of Fourier transform for tempered distributions. Let u ∈ S ′(Rn).

⟨Fu, ϕ⟩ := ⟨u,Fϕ⟩ , ϕ ∈ S(Rn) .

Note that the continuity of F on S(Rn) implies that F(u) is well-defined, i.e., it belongs to S ′(Rn). In

the same way we extend the definition of F∗ to the tempered distributions. Note that both transforms are

continuous operators on S ′(Rn).

Property (2.12) extends to tempered distributions. Let u ∈ S ′(Rn). The ∂αu ∈ S ′(Rn) as well, and

⟨F(∂αu), ϕ⟩ = ⟨∂αu,Fϕ⟩ (definition of Fourier transform for tempered distributions)

= (−1)|α|⟨u, ∂αϕ̂⟩ (definition of distributional derivative)

= (−1)|α|⟨u,Fx→ξ((−i2πx)αϕ(x))⟩ (Property (2.13))

= ⟨Fu, (i2πx)αϕ⟩ (definition of Fourier transform for tempered distributions)

= ⟨(i2πx)αFu, ϕ⟩ (definition of product of a C∞ function with a distribution) ,

i.e., F(∂αu) = (i2πx)αFu. Additionally,

⟨F∗Fu, ϕ⟩ = ⟨Fu,F∗ϕ⟩ = ⟨u,FF∗ϕ⟩ = ⟨u, ϕ⟩, ϕ ∈ S(Rn) ,

i.e., F∗F = I . Similarly, FF∗ = I and, therefore, F−1 = F∗ and (F∗)−1 = F on S ′(Rn). This and the

property above imply that property (2.13) extends to tempered distributions as well.

Example 2.5.1

Fourier transform of Dirac’s delta equals unity. Indeed,

⟨Fδ, ϕ⟩ = ⟨δ, ϕ̂⟩ = ϕ̂(0) =

∫
Rn

e−i2π0ξϕ(ξ) dξ =

∫
Rn

ϕ(ξ) dξ = ⟨1, ϕ⟩,

i.e., Fδ = 1. Similarly, F∗δ = 1 as well and, therefore, we know immediately that, conversely,

F1 = δ. It is more difficult to derive the last formula directly, comp. Exercise 2.5.7.

THEOREM 2.5.2 (Plancherel)

Fourier transform is an isometry from L2(Rn) into itself, i.e.,

(Fu,Fv)L2 = (u, v)L2 , u, v ∈ L2(Rn) .
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Additionally, F∗ represents the L2-adjoint∗ of F and F−1 = F∗ which proves that F is a surjection.

PROOF Let u, v ∈ S(Rn). By Theorem 2.5.1,

(Fu,Fv) = (F∗Fu︸ ︷︷ ︸
=u

, v) = (u, v) ,

so F is an isometry from S(Rn) into itself. As isometries are automatically continuous and space

S(Rn) is dense in L2(Rn) (explain, why?) operator F can be extended in a unique way to the L2-

space, comp. [20], Exercise 5.18.1. Let u ∈ L2(Rn) and v = Fu ∈ L2(Rn) be the corresponding

value of the (L2 extended ) Fourier transform. As L2(Rn) ⊂ L1
loc(Rn) and L2-functions are slowly

growing (explain, why?), we have the corresponding regular distribution Rv and,

⟨FRu, ϕ⟩ =
∫
Rn

uFϕ (definition of Fourier transform for tempered distributions)

=

∫
Rn

Fu︸︷︷︸
=v

ϕ (property of classical Fourier transform + density argument)

= ⟨Rv, ϕ⟩, ∀ϕ ∈ D(Rn) ,

i.e., FRu = Rv. In other words, the L2 extension of classical Fourier transform coincides with the

distributional generalization. Same reasoning applies to F∗. Now, by the density argument, the

identity

(Fu, v) = (u,F∗v)

extends from u, v ∈ S(Rn) to u, v ∈ L2(Rn) which “upgrades” F∗ from the formal to the actual

L2-adjoint. Finally, replacing v above with Fv, we obtain that F∗F = id. A similar argument with

u shows that FF∗ = id as well. Consequently, F−1 = F∗.

Fourier transform of convolutions. Let u, v ∈ L1(Rn). We have:

Fx→ξ((u ∗ v)(x))(ξ) =
∫
Rn

e−i2πξx
∫
Rn

u(x− y)v(y) dy dx

=

∫
Rn

∫
Rn

e−i2πξxu(x− y) dx v(y) dy (Fubini)

=

∫
Rn

∫
Rn

e−i2πξ(z+y)u(z) dz v(y) dy (x− y = z)

=

∫
Rn

e−i2πξyû(ξ)v(y) dy

= û(ξ)v̂(ξ) ,

i.e., Fourier transform sets convolutions into products.

∗Not longer just formal adjoint.
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The result generalizes to distributions. First of all, recall the notion of convolution of a distribution with a

test function. Let u ∈ S ′(Rn), ψ ∈ D(Rn), and ϕ ∈ D(Rn). We defined the convolution u ∗ ψ by:

⟨u ∗ ψ, ϕ⟩ := ⟨u, ψ̌ ∗ ϕ⟩ .

where ψ̌(x) = ψ(−x). As before, the fact that the operation,

ϕ ∋ S(Rn) → ψ̌ ∗ ϕ ∈ S(Rn) (2.14)

is well-defined and continuous (Exercise 2.5.9) implies that the convolution u ∗ ψ can be extended to ϕ ∈
S(Rn), i.e. it is a well-defined tempered distribution.

We are now ready to compute Fourier transform of convolution u ∗ ψ. First of all, for ψ ∈ D(Ω) and

ϕ ∈ S(Ω),
F∗(ψ̌ ∗ Fϕ) = F(ψ)ϕ implies ψ̌ ∗ Fϕ = F(Fψ ϕ) .

We have now,
⟨F(u ∗ ψ), ϕ⟩ = ⟨u ∗ ψ,Fϕ⟩ = ⟨u, ψ̌ ∗ Fϕ⟩

= ⟨u,F(Fψ ϕ)⟩ (identity above)

= ⟨Fu,Fψ ϕ⟩ = ⟨FψFu, ϕ⟩ .

Thus, F(u ∗ ψ) = Fu · Fψ .
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Exercises

Exercise 2.5.1 ([18], Exercise 3.11) Prove that

Fx→ξ

(
e−π|x|

2
)
=

n∏
j−1

∫ ∞

−∞
e−2πξjxj−πx2

j dxj = e−π|ξ|
2

.

Hint: Method I: Use contour integration to prove that∫ ∞

−∞
e−π(x+iξ)

2

dx = 1, ξ ∈ R

and the fact that ∫ ∞

−∞
e−πx

2

dx = 1 ,

see, e.g., [15], p.57.

Hint: Method II: Consider 1D case and prove that both Gaussian u(x) = eπx
2

and its Fourier transform

satisfy the differential equation:

u′ + 2πxu = 0 .

(10 points)

Exercise 2.5.2 ([18], Exercise 3.12) Let ψ ∈ L1(Rn). Prove the scaling properties:

Fx→ξ(ϵ
−nψ(ϵ−1x))(ξ) = (Fx→ξψ)(ϵξ)

and,

F∗
ξ→x(ψ(ϵξ))(x) = ϵ−n(F∗

ξ→xψ)(ϵ
−1x) .

(2 points)

Exercise 2.5.3 Show that the classical Fourier transform restricted to the space of rapidly decaying test func-

tions,

F : S(Rn) → S(Rn) ,

is well-defined and continuous. (5 points)

Exercise 2.5.4 Show that the corresponding inclusions are continuous with dense images.

D(Rn) d
↪→ S(Rn) d

↪→ E(Rn) .

Hint: Use external approximation χϵn of closed ball B̄(0, n) indicator function from Theorem 2.3.3. (5

points)
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Exercise 2.5.5 If you do not like the extension argument used in the text to define the Fourier transform for

L2-functions, here is another way to get there. Let u ∈ L2(Rn). Take N > 0 and define

uN (x) :=

{
u(x) for |x| < N

0 otherwise

Explain why uN ∈ L1(Rn), and define:

Fu︸︷︷︸
new

:= lim
N→∞

FuN︸ ︷︷ ︸
classical

where the limit is understood in theL2 sense. Prove that the limit exists and show that the new definition

delivers the same result as the two definitions discussed in the text. (3 points)

Exercise 2.5.6 Prove the Riemann-Lebesgue Lemma: Let u ∈ L1(Rn). Then û(ξ) → 0 for |ξ| → ∞.

In other words: ∫
Rn

e−i2πξxu(x) dx→ 0 as |ξ| → ∞ .

Hint: Prove the result first for u ∈ C∞
0 (Rn) and then use the density of C∞

0 (Rn) in L1(Rn).
Conclude that also,∫

Rn

sin(2πξx)u(x) dx→ 0,

∫
Rn

cos(2πξx)u(x) dx→ 0, as |ξ| → ∞ .

(3 points)

Exercise 2.5.7 Compute directly, using the definition of Fourier transform for tempered distributions only,

Fourier transform of unity function. Note that∫ ∞

0

sin t

t
dt =

π

2
(2.15)

where the integral above is not a Lebesgue integral but it is a singular integral defined by the limit:∫ ∞

0

sin t

t
dt := lim

b→∞

∫ b

0

sin t

t
dt .

(5 points)

Exercise 2.5.8 Compute Fourier transform of Heaviside function. (5 points)

Exercise 2.5.9 Prove that operation (2.14) is well-defined and continuous. (2 points)
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2.6 Tensor Product of Distributions

Tensor product of test functions. Let Ω = Ω1 × Ω2 where Ω1 ⊂ Rn1 and Ω2 ⊂ Rn2 are open sets with

n1 +n2 = n. Let ϕi ∈ D(Ωi), i = 1, 2 be arbitrary test functions. Tensor product of test functions is defined

as

(ϕ1 ⊗ ϕ2)(x1, x2) := ϕ1(x1)ϕ2(x2) , x = (x1, x2) ∈ Ω1 × Ω2 . (2.16)

Obviously, function ϕ1 ⊗ ϕ2 ∈ C∞
0 (Ω).

LEMMA 2.6.1

Finite sums of tensor products of test functions,∑
k

ϕk1 ⊗ ϕk2 , ϕi ∈ D(Ωi), i = 1, 2 ,

form a dense subset of D(Ω).

PROOF First of all, note that the number of terms in the sums above, although always finite,

can be arbitrary large. The result is a direct consequence of a multidimensional version of the

celebrated Weierstrass Theorem for approximating smooth functions with polynomials on compact

sets. Let ϕ ∈ D(Ω) be an arbitrary test function and Ki ⊂ Ωi, i = 1, 2, compacts sets such that

supp ϕ ⊂ K := K1 × K2. Let Pj(x1, x2) be a sequence of polynomials converging uniformly to

function ϕ along with all its derivatives. Choose two arbitrary test functions χi ∈ D(Ωi) such that

χi = 1 in Ki, and consider a sequence of functions

Pj(x1, x2)χ1(x1)χ2(x2)

As polynomials are finite sums of monomials xα1
1 xα2

2 , functions above are finite sums of tensor

products of test functions xαi
i χi(xi). Uniform convergence of polynomials to function ϕ implies

convergence of test functions above to ϕ in D(Ω).

Take now an arbitrary test function ϕ ∈ D(Ω), distribution u2 ∈ D′(Ω2) and define:

ϕ1(x1) = ⟨u2, ϕ(x1, ·)⟩ (2.17)

LEMMA 2.6.2

Function ϕ1 ∈ D(Ω1). Moreover, if D(Ω) ∋ ϕj → 0 in D(Ω) then the corresponding functions ϕj1

converge to zero in D(Ω1). The same conclusions hold if we replace test functions D(Ω) with rapidly

decaying test functions S(Rn × Rm) and distributions D′(Ω2) with tempered distributions S ′(Rm).
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PROOF The first part follows immediately from Exercise 2.6.2. To prove the result for rapidly

decaying test functions, recall that S(Rm) is a locally convex topological vector space (l.c.t.v.s) with

the topology generated by the family of seminorms,

pα,β(u) = sup
Rm

|xα∂βu| .

Moreover, a linear functional u defined on the l.c.t.v.s is continuous iff there exists a finite subset I

of indices α, β, and a constant C such that

|⟨u, ϕ⟩| ≤ C
∑

(α,β)∈I

pα,β(u)

(see [20], Exercise 5.2.6). Let γ be an arbitrary multiindex. By Exercise 2.6.3, we can migrate

derivative ∂γx1
under the distribution, i.e.

∂γx1
⟨u, ϕ(x1, ·)⟩ = ⟨u, ∂γx1

ϕ(x1, ·)⟩ .

Using the continuity criterion for u we have, for every multiindex δ,

sup
x1

|xδ1∂γx1
⟨u, ϕ(x1, ·)⟩| = sup

x1

|xδ1⟨u, ∂γx1
ϕ(x1, ·)⟩|

≤ sup
x1

|xδ1| C
∑

(α,β)∈I

sup
x2

|xα2 ∂γyϕ(x1, x2)|

which remains bounded by the assumption that ϕ ∈ S(Rn × Rm). The continuity property follows.

Tensor product of distributions. Let ui ∈ D′(Ωi), i = 1, 2. Let ϕ ∈ D(Ω) and ϕ1 be defined by (2.17).

Tensor product of distributions ui is defined as

⟨u1 ⊗ u2, ϕ⟩ := ⟨u1, ϕ1⟩ . (2.18)

First of all, Lemma 2.6.2 implies that the tensor product u1 ⊗ u2 is well defined. Indeed,

ϕj → 0 in D(Ω) ⇒ ϕj1 → 0 in D(Ω1) ⇒ ⟨u1, ϕj1⟩ → 0 .

i.e., u1 ⊗ u2 is continuous. In the same way, tensor product of tempered distributions is a well-defined

tempered distribution as well.

Secondly, notice that the density result from Lemma 2.6.1 implies that it is sufficient to define action of

u1 ⊗ u2 on tensor products of test functions for which definition (2.18) reduces to:

⟨u1 ⊗ u2, ϕ1 ⊗ ϕ2⟩ = ⟨u1, ϕ1⟩ ⟨u2, ϕ2⟩ .

The same density result implies that the tensor product of distributions is commutative,

u1 ⊗ u2 = u2 ⊗ u1 .
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For regular distributions Rui
, ui ∈ L1

loc(Ωi), tensor product reduces to the iterated integral,

⟨Ru1 ⊗Ru2 , ϕ⟩ =
∫
Ω1

u1(x1)

∫
Ω2

u2(x2)ϕ(x1, x2) dx1 dx2 ,

and defines a regular distribution generated by tensor product of functions u1, u2. For more examples of

tensor products of distributions, see [21] and Section 3.5. For instance, we have trivially:

δx1 ⊗ δx2 = δ(x1,x2) .

LEMMA 2.6.3

Let ϕ ∈ D(Ω1 × Ω2) ( or S(Ω1 × Ω2)). Let u ∈ D′(Ω2) (or S ′(Ω2)) and G ⊂ Ω1. Then∫
G

⟨u, ϕ(x, ·)⟩ dx = ⟨u,
∫
G

ϕ(x, ·) dx⟩ ,

i.e., action of u and integration in x commute with each other.

PROOF The result is a consequence of the commutativity of tensor product of distributions.

Let χG ∈ L1
loc(Ω1) be the indicator function of set G. Then

⟨χG ⊗ u, ϕ⟩ :=
∫
Ω1

χG(x)⟨u, ϕ(x, ·)⟩ dx =

∫
G

⟨u, ϕ(x, ·)⟩ dx

and,

⟨u⊗ χG, ϕ⟩ := ⟨u,
∫
Ω1

χG(x)ϕ(x, ·) dx⟩ = ⟨u,
∫
G

ϕ(x, ·) dx⟩ .

As we have seen from Lemma 2.5.1, Fourier transform of anL1-function is a continuous function. Identity:

Fx→ξ((−i2πx)αu(x))(ξ) = ∂αû(ξ)

implies that if, additionally, u has a compact support (and, therefore, every (−i2πx)αu(x) is an L1-function

as well), its Fourier transform is a C∞ function. It turns out that the observation is true for any distribution

with compact support.

LEMMA 2.6.4

Let u ∈ D′(Rn) with a compact support. Then û is a regular distribution generated by a C∞-function,

denoted with the same symbol, and defined by:

û(ω) := ⟨u, χ(·)e−i2πω·⟩ (2.19)

where χ ∈ C∞
0 (Rn), equal one in the support of u.
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PROOF First of all, û(ω) is well-defined, i.e., its value is independent of choice of function χ,

comp. Exercise 2.6.1. We have now,

⟨Fu, ϕ⟩ = ⟨u, ϕ̂⟩ = ⟨u, χϕ̂⟩ = ⟨u, χ(·)
∫
Rn

ϕ(x)e−i2πx· dx⟩

= ⟨u,
∫
Rn

χ(·)ϕ(x)e−i2πx·︸ ︷︷ ︸
∈D(Rn×Rn)

dx⟩

=

∫
Rn

⟨u, χ(·)e−i2πx·⟩︸ ︷︷ ︸
=:û(x)

ϕ(x) dx (Lemma 2.6.3) .

Function û(x) is a C∞-function, comp. Exercise 2.6.2.

Exercises

Exercise 2.6.1 Prove that value of (2.19) is independent of the choice of function χ. (2 points)

Exercise 2.6.2 Let B = B(y0, ϵ) ⊂ Rm. Consider a function

Rn ×B ∋ (x, y) → ϕ(x, y) ∈ C

with the following properties:

(i) there exists a compact set K ⊂ Rn such that

supp ϕ(·, y) ⊂ K ∀y ∈ B ,

(ii) for every multiindex α, derivative ∂αxϕ(x, y) exists for all (x, y) in the domain of ϕ and,

∂αxϕ(x, ·) ∈ C1(B) ∀x ∈ Rn .

Prove that, for arbitrary u ∈ D′(Rn), function

f(y) := ⟨u, ϕ(·, y)⟩, y ∈ B

is differentiable at y0, and
∂f

∂yj
= ⟨u, ∂ϕ

∂yj
(·, y0)⟩ .

Consult [21], Theorem 2.7.2, if necessary. (5 points)

Exercise 2.6.3 This problem is a slight variation of Exercise 2.6.2. Consider a function ϕ ∈ S(Rn × Rm).

Prove that, for any tempered distribution u ∈ S ′(Rn),

∂

∂yj
⟨u, ϕ(·, y)⟩ = ⟨u, ∂ϕ

∂yj
(·, y)⟩ .

(5 points)



3
Sobolev Spaces

3.1 Sobolev Spaces Hs

Let Ω ⊂ Rn be an arbitrary domain (= open and connected set). Let k be a natural number and p ∈ [1,∞].

The classical Sobolev space is defined as:

W k,p(Ω) := {u ∈ Lp(Ω) : ∂αu ∈ Lp(Ω), |α| ≤ k} ,

with the norm:

∥u∥p
Wk,p(Ω)

:=

k∑
l=0

∑
|α|=l

l!

α!
∥∂αu∥pLp(Ω) ,

and the corresponding seminorm of order k,

|u|p
Wk,p(Ω)

:=
∑
|α|=k

k!

α!
∥∂αu∥2Lp(Ω) ,

compare formulas for the differentials. The derivatives in the definition above are understood in the sense

of distributions. This is a delicate and crucial point. We begin with an Lp-function u and consider the

corresponding regular distribution Ru. We can differentiate Ru in the sense of distributions as many times as

we wish. When we request derivative

∂αu := ∂αRu

to be an Lp-function as well, we request first of all that distribution ∂αRu is regular, i.e., it is generated

by an L1
loc-function, denoted with the same symbol ∂αu and, additionally, this function is Lp-integrable.

Thus, function from Example 2.4.1 will not live in Sobolev space W 1,p(a, b) unless it is globally continuous.

Otherwise, the distributional derivative includes the Dirac’s delta which is not a regular distribution. The

same comment applies to Example 2.9.

Alternatively, we can say that function v = ∂αu in the sense of distributions iff∫
Ω

v ϕ = (−1)|α|
∫
Ω

u ∂αϕ ∀ϕ ∈ D(Ω) .

Take a second to realize why the two reasonings are equivalent. The Sobolev space is a Banach space, i.e., it

is complete. Indeed, let un be a Cauchy sequence in W k,p(Ω). Definition of the norm implies that ∂αun is

Cauchy in Lp(Ω) for every |α| ≤ k. As Lp(Ω) is complete, ∂αun must converge to some vα ∈ Lp(Ω). We

47
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need only to show that ∂αu = vα in the sense of distributions. By definition,∫
Ω

∂αun ϕ = (−1)|α|
∫
Ω

un ∂
αϕ ∀ϕ ∈ D(Ω) .

Passing to the limit with n→ ∞ and utilizing the continuity of both sides, we get:∫
Ω

vα ϕ = (−1)|α|
∫
Ω

u ∂αϕ ∀ϕ ∈ D(Ω)

which proves exactly what we wanted.

In the case of p = 2 we have a Hilbert space with the norm derived from the inner product:

(u, v)Wk(Ω) :=

k∑
l=0

∑
|α|=l

l!

α!
(∂αu, ∂αv)L2(Ω) .

For Lipschitz domains (to be defined), the W k(Ω) := W k,2(Ω) space coincides with space Hk(Ω) (with

equivalent but not equal norms) that will be defined momentarily. For that reason, very often in the literature,

symbols Hk(Ω) and W k(Ω) are used interchangeably. In these notes, most of the time, we will restrict

ourselves to the case p = 2 only. Recall examples of variational formulations using spaces H1(Ω) or H2(Ω).

Fractional Sobolev spaces on Rn. We would like now to extend the definition of (Hilbert) Sobolev space

W k(Ω) to an arbitrary real value of k. The need for such an extension can be motivated in many ways. First

of all, Sobolev spaces are not only used as energy spaces for various formulations but also for accessing

regularity of solutions. Many solutions live in a fractional Sobolev space. Recall that the h-convergence rate

r equals the minimum of polynomial order p and the regularity index s, r = min{p, s}. Without means for

using real values of s, we cannot estimate precisely the rate. More recently, fractional Sobolev spaces have

also been identified as energy spaces for non-local formulations (peridynamics).

We will begin with the case of Ω = Rn. Recalling the action of Fourier transform on derivatives,

∂̂αu(ξ) = (i2πξ)αû(ξ) ,

we can represent the Sobolev norm in the frequency domain as:

∥u∥2Wk(Rn) =

∫
Rn

 k∑
l=0

∑
|α|=l

l!

α!
(2πξ)2α

 |û(ξ)|2 dξ

The weight in the integral is equivalent to the Bessel kernel,

k∑
l=0

∑
|α|=l

l!

α!
(2π)lξ2α =

k∑
l=0

(2π)l
∑
|α|=l

l!

α!
ξ2α ∼ (1 + |ξ|2)k .

comp. Exercise 3.1.1.

This leads to the natural and elegant definition of fractional Sobolev spaces on Rn for any s ∈ R:

Hs(Rn) := {u ∈ S ′(Rn) : (1 + |ξ|2)s/2û(ξ) ∈ L2(Rn)}
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with the inner product given by the weighted L2-product in the frequency domain:

(u, v)Hs :=

∫
Rn

(1 + |ξ|2)sû(ξ)v̂(ξ) dξ .

By construction, spaces W k(Rn) and Hk(Rn) are equal, with equivalent norms.

Bessel potential of order s ∈ R is defined by:

(Jsu)(x) :=

∫
Rn

(1 + |ξ|2)s/2 û(ξ) ei2πxξ dξ = F∗
ξ→x((1 + |ξ|2)s/2û(ξ))(x), x ∈ Rn ,

or, using argument-less notation,

Jsu = F∗
ξ→x((1 + |ξ|2)s/2Fx→ξu) .

Bessel potential is thus a composition of three operators: Fourier transform, multiplication with the weight

(1 + |ξ|2)s/2, and the adjoint (inverse) Fourier transform. As all three operations are continuous on S(Rn),
Bessel potential is a continuous linear map from S(Rn) into itself. It follows immediately from the definition

that

Fx→ξ((J
su)(x))(ξ) = (1 + |ξ|2)s/2û(ξ) .

We also easily have:

Js+r = JsJr, J0 = I ⇒ (Js)−1 = J−s ,

i.e., Js is actually an isomorphism from S(Rn) onto itself, with the inverse equal to J−s. We also have:

⟨Jsu, v⟩ = ⟨u, Jsv⟩ or (Jsu, v) = (u, Jsv), u, v ∈ S(Rn)

where ⟨·, ·⟩ denotes the duality pairing, and

(u, v) := ⟨u, v⟩, v ∈ V, u ∈ V ′ ,

with V denoting any topological vector space. For V = L2(Ω), (·, ·) coincides with the L2 inner product

which justifies the notation. The last properties motivate definition of the Bessel potential for tempered

distributions:

⟨Jsu, ϕ⟩ := ⟨u, Jsϕ⟩ or (Jsu, ϕ) := (u, Jsϕ), ϕ ∈ S(Rn) .

It follows that (the extended potential) Js is a well defined continuous map from S ′(Rn) into itself with the

same properties as the original potential Js.

The fractional Sobolev space can now be characterized as the inverse image of L2-space through the Bessel

potential,

Hs(Rn) = {u ∈ S ′(Rn) : Jsu ∈ L2(Rn)} .

By construction, Js : Hs(Rn) → L2(Rn) is a unitary isomorphism. This implies immediately the following

properties (see Exercises 3.1.2 and 3.1.3).
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• Hs(Rn) is separable.

• D(Rn) is dense in Hs(Rn).

• The fractional Sobolev spaces form a scale:

Ht(Rn) d
↪→ Hs(Rn) s < t .

• Topological dual of Hs(Rn) equals H−s(Rn) with equal norms:

∥u∥H−s = sup
v

|⟨u, v⟩|
∥v∥Hs

.

Fractional Sobolev spaces on an arbitrary domain. Let Ω ⊂ Rn be now an arbitrary domain. The

Sobolev spaceHs(Ω) consists of restrictions fromHs(Rn) to Ω, and it is equipped with the minimum energy

extension norm:
Hs(Ω) := {u ∈ D′(Ω) : ∃U ∈ Hs(Rn) : u = U |Ω}

∥u∥Hs(Ω) := inf
U ∈ Hs(Rn)
U |Ω = u

∥U∥Hs(Rn) .

We will relate now the definition with standard constructions in Functional Analysis to prove, among other

things, that Hs(Ω) is a Hilbert space, i.e., it is complete, and the minimum extension norm is generated by

an inner product.

Let F be a closed subset of Rn. We define:

Hs
F (Rn) := {u ∈ Hs(Rn) : supp u ⊂ F}.

It follows immediately (show it) that Hs
F (Rn) is a closed subspace of Hs(Rn). Consequently, the quotient

space Hs(Rn)/Hs
Ω′(Rn) is well defined, see [20], Lemma 5.17.1, and embedding

ι : Hs(Ω) ∋ u→ [U ] = U +Hs
Ω′(Rn) ∈ Hs(Rn)/Hs

Ω′(Rn), where U ∈ Hs(Rn), U |Ω = u ,

is a well defined isometric isomorphism, comp. Exercise 3.1.4. This is a standard reasoning for Banach

spaces. For Hilbert spaces we have the Orthogonal Decomposition Theorem, see [20], Theorem 6.2.1,

Hs(Rn) = Hs
Ω′(Rn)

⊥
⊕ (Hs

Ω′(Rn))⊥ ,

and space Hs(Ω) is isometrically isomorphic with the orthogonal complement. This shows immediately that

space Hs(Ω) is a Hilbert space. The Orthogonal Decomposition Theorem helps also to identify the inner

product in Hs(Ω), although in somehow abstract way. Let P,Q = I − P be the orthogonal projections of

Hs(Rn) onto Hs
Ω′(Rn) and its orthogonal complement. The inner product in space Hs(Ω) is equal to:

(u, v)Hs(Ω) = (QU,QV )Hs(Rn) where U |Ω = u, V |Ω = v .

Once we understand the Functional Analysis picture, a number of immediate observations follows.
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• Space Hs(Ω) is separable.

• Restriction operator:

Hs(Rn) ∋ U → U |Ω ∈ Hs(Ω)

is continuous with norm equal one.

• Subspace:

C∞
0 (Ω) := {U |Ω : U ∈ C∞

0 (Rn)}

is dense in Hs(Ω) (consequence of density of C∞
0 (Rn) in Hs(Rn) and continuity of the restriction

operator).

Topological dual of Hs(Ω). For Ω = Rn, the dual of space Hs is simply space H−s. For general domains

Ω, the story is much more technical. Let s ∈ R. We start with the definition of a new space:

H̃s
Ω(Rn) := C∞

0 (Ω)
Hs(Rn)

⊂ Hs
Ω
(Rn) ⊂ Hs(Rn) .

By C∞
0 (Ω) we really understand zero extensions of such test functions in Ω to the whole Rn.

THEOREM 3.1.1

We have,

H̃−s
Ω (Rn) ↪→ (Hs(Ω))

′
↪→ H−s

Ω
(Rn) .

More precisely, the topological dual of space Hs(Ω) is isometrically isomorphic with a subspace of

H−s
Ω

(Rn) containing H̃s
Ω(Rn).

We will prove shortly that if Ω is a C0-domain (to be defined) then

H̃−s
Ω (Rn) = H−s

Ω
(Rn) .

Consequently, for C0-domains, the dual of Hs(Ω) can be identified with either of the two spaces.

PROOF of Theorem 3.1.1. Let U ∈ H̃−s
Ω (Rn). Take v ∈ Hs(Ω) and an arbitrary extension

V ∈ Hs(Rn), V |Ω = v. Product

(U, V )Rn :=

{
⟨U, V ⟩ for s ≥ 0

⟨V,U⟩ for s ≤ 0

depends only upon v. Indeed, let V |Ω = 0, U = limk→∞ Uk, Uk ∈ C∞
0 (Ω) where the convergence is

understood in the H−s(Rn) norm. Passing to the limit in

(Uk, V ) = 0 ,
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we obtain (U, V ) = 0 as well. Define thus

(U, v) := (U, V )Rn where V |Ω = v, V ∈ Hs(Rn) .

We have,

|(U, v)| = |(U, V )Rn | ≤ ∥U∥H−s(Rn) ∥V ∥Hs(Rn) .

Taking infimum wrt V , we obtain,

|(U, v)| ≤ ∥U∥H−s(Rn) ∥v∥Hs(Ω)

which proves that

(U, ·) ∈ (Hs(Ω))′ and ∥(U, ·)∥(Hs(Ω))′ ≤ ∥U∥H−s(Rn) .

To prove the second embedding, consider an arbitrary l ∈ (Hs(Ω))′, and define the corresponding

functional on Hs(Rn):
{Hs(Rn) ∋ V → l(V |Ω) ∈ C} ∈ (Hs(Rn))′ .

As H−s(Rn)is dual to Hs(Rn), there exists an U ∈ H−s(Rn) such that

(U, V ) = l(V |Ω), V ∈ Hs(Rn)

and,

∥U∥H−s(Rn) = sup
V ∈Hs(Rn)

|l(V |Ω)|
∥V ∥Hs(Rn)

.

Take now any V ∈ C∞
0 (Rn − Ω). Then V |Ω = 0 which implies that

(U, V )Rn = l(V |Ω) = 0 .

This proves that supp U ⊂ Ω, i.e., U ∈ H−s
Ω

.

Comment: We will show that, for C0-domains and s ≥ − 1
2 , we can identify space H̃s

Ω(Rn) = Hs
Ω
(Rn) of

distributions defined on the whole space Rn, with a subspace of distributions defined on Ω, denoted H̃s(Ω).

Consequently, for range s ∈ [− 1
2 ,

1
2 ], spaces Hs(Ω) and H̃−s(Ω) are dual to each other.

Exercises

Exercise 3.1.1 Prove that

k∑
l=0

(2π)l
∑
|α|=l

l!

α!
ξ2α ≤ C(k)(1 + |ξ|2)k and (1 + |ξ|2)k ≤ C(k)

k∑
l=0

(2π)l
∑
|α|=l

l!

α!
ξ2α ,

for all ξ ∈ Rn. (3 points)
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Exercise 3.1.2 Weighted L2 spaces. Consider a weighted L2
w(Ω) space with the inner product:

(u, v)w =

∫
ω

wuv

where w is a measurable function almost everywhere positive in Ω. Argue why the completness of the

standard L2-space implies the completness of the weighted space. Prove that the following maps are

unitary isomorphisms.

L2
w ∋ u → w1/2u ∈ L2

L2 ∋ u → w1/2u ∈ L2
1/w

L2
1/w ∋ u → {L2

w ∋ v →
∫
Ω
uv ∈ C} ∈ (L2

w)
′ .

(5 points)

Exercise 3.1.3 Explain in detail why D(Rn) is dense in Hs(Rn), for any s ∈ Rn. Hint: Use the fact that

Bessel potential is a unitary isomorphism and it maps fast decaying test functions into itself. Recall

also that D(Rn) is dense in L2(Rn). (5 points)

Exercise 3.1.4 Prove that the map

ι : Hs(Ω) ∋ u→ [U ] = U +Hs
Ω′(Rn) ∈ Hs(Rn)/Hs

Ω′(Rn), where U ∈ Hs(Rn), U |Ω = u ,

is a well defined isometric isomorphism.

(3 points)

3.2 Sobolev Spaces W s

Slobodeckij seminorm. Let Ω ⊂ Rn be a domain, and let µ ∈ (0, 1). The Slobodeckij seminorm is defined

as:

|u|2µ,Ω :=

∫
Ω

∫
Ω

|u(x)− u(y)|2

|x− y|n+2µ
dxdy . (3.1)

For Ω = Rn, we will use a simplified notation |u|µ := |u|µ,Rn . The Slobodeckij seminorm can then be

expressed in terms of Fourier transform û.

LEMMA 3.2.1

Let µ ∈ (0, 1). We have:

|u|2µ := |u|2µ,Rn = aµ

∫
Rn

|ξ|2µ |û(ξ)|2 dξ (3.2)

where

aµ :=

∫ ∞

0

t−2µ−1

∫
|ω|=1

|ei2πω1t − 1|2 dωdt
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with ω1 being the first component of ω ∈ Rn.

PROOF Elementary calculations show that

(Fx→ξu(x+ h)) (ξ) = ei2πξh (Fx→ξu(x)) (ξ) .

Consequently, for (δhu)(x) := u(x+ h)− u(x),

(Fx→ξδhu) (ξ) = (ei2πξh − 1)û(ξ) .

We have now,

|u|2µ =

∫
Rn

∫
Rn

|u(y + h)− u(y)|2

|h|n+2µ
dh dy (change of variable x = y + h)

=

∫
Rn

1

|h|n+2µ

∫
Rn

|δhu(y)|2 dy dh (Fubini)

=

∫
Rn

1

|h|n+2µ

∫
Rn

|ei2πξh − 1|2 |û(ξ)|2 dξ dh (Plancherel Theorem)

=

∫
Rn

|û(ξ)|2
(∫

Rn

|ei2πξh − 1|2

|h|n+2µ
dh

)
︸ ︷︷ ︸

a weight

dξ (Fubini) .

We now focus on computing the weight. First, we switch to (n-dimensional) spherical coordinates:

h = ρω, ρ = |h|, ω =
h

|h|
∈ unit sphere S, dh = ρn−1 dρ dω ,

to obtain ∫
Rn

|ei2πξh − 1|2

|h|n+2µ
dh =

∫ ∞

0

ρ−2µ−1

∫
|ω|=1

|ei2πρξω − 1|2 dω dρ .

After another change of variable:

t = ρ|ξ|, ρξω = ρ|ξ|︸︷︷︸
=t

ξ

|ξ|
ω ,

the inner integral over the unit sphere transforms into:∫
|ω|=1

|ei2πt
ξ
|ξ|ω − 1|2 dω .

As the integral is invariant wrt rotations, we can rotate the system of coordinates for ω in such

a way that the first coordinate alligns with vector ξ
|ξ| . In the new system of coordinates vector

ξ
|ξ| = (1, 0, . . . , 0) so the whole integral becomes:∫

|ω|=1

|ei2πtω1 − 1|2 dω .

Consequently, we arrive at the formula:∫ ∞

−∞
(t|ξ|−1)−1−2µ|ξ|−1

∫
|ω|=1

|ei2πtω1 − 1|2 dω dt = |ξ|2µ aµ .

Note that
∫
|ω|=1

|ei2πω1t − 1|2 dω is O(t2) for t→ 0 and O(1) for t→ ∞, so the constant aµ is finite

but it blows up for both µ→ 0 and µ→ 1.
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Slobodeckij norm. Let s = k + µ where k ∈ N, µ ∈ (0, 1). We define the Slobodeckij norm as:

∥u∥2W s(Ω) := ∥u∥2Wk(Ω) + a−1
µ

∑
|α|=k

k!

α!
|Dαu|2µ,Ω (3.3)

Notice that we have rescaled the seminorm contributions with factor a−1
µ .

For Ω = Rn, the Bessel norm and the Slobodeckij norm are equivalent. Indeed,

∥u∥2Hs(Rn) =

∫
Rn

(1 + |ξ|2)s |û(ξ)|2 dξ and,

∥u∥2W s(Rn) =

∫
Rn

 k∑
l=0

(2π)l
∑
|α|=l

l!

α!
ξ2α + |ξ|2µ(2π)k

∑
|α|=k

k!

α!
ξ2α

 |û(ξ)|2 dξ

The kernels

(1 + |ξ|2)s and

 k∑
l=0

(2π)l
∑
|α|=l

l!

α!
ξ2α + |ξ|2µ(2π)k

∑
|α|=k

k!

α!
ξ2α

 (3.4)

are equivalent, see Exercise 3.2.1, with the equivalence constants dependent upon s only. For instance, for

s = µ ∈ (0, 1), we have

(1 + |ξ|2)µ and (1 + |ξ|2µ) .

Then
For |ξ| ≤ 1 : (1 + |ξ|2)µ ≤ 2µ ≤ 2 ≤ 2(1 + |ξ|2µ)
For |ξ| ≥ 1 : (1 + |ξ|2)µ ≤ (2|ξ|2)µ = 2µ|ξ|2µ ≤ 2(1 + |ξ|2µ)

so,

(1 + |ξ|2)µ ≤ 2(1 + |ξ|2µ)

Similarly,
For |ξ| ≤ 1 : 1 + |ξ|2µ ≤ 2 ≤ 2(1 + |ξ|2)µ

For |ξ| ≥ 1 : (1 + |ξ|2)µ ≤ (2|ξ|2)µ ≤ 2|ξ|2µ ≤ 2(1 + |ξ|2)µ

so,

(1 + |ξ|2µ) ≤ 2(1 + |ξ|2)µ

as well. We might say that choosing the Bessel kernel over the Slobodeckij kernel is a matter of an algebraic

convenience or elegance only.

The equivalence of Bessel and Slobodeckij norms in Rn transfers to arbitrary domains under some addi-

tional assumptions. Let Ω ⊂ Rn. Recall that the norm in Hs(Ω) is defined through the minimum energy

extension norm,

∥u∥2Hs(Ω) = min{∥U∥2Hs(Rn) : U |Ω = u} .

The Slobodeckij norm (3.3) is always bounded by the minimum extension norm. Indeed, let U ∈ Hs(Rn)
be the minimum energy extension of u to Rn.

∥u∥W s(Ω) ≤ ∥U∥W s(Rn) since Ω ⊂ Rn

≈ ∥U∥Hs(Rn) equivalence of norms

= ∥u∥Hs(Ω) minimum energy extension
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The inverse inequality requires some assumptions on regularity of the domain.

THEOREM 3.2.1

Let s ≥ 0. Assume there exists a continuous extension operator E : W s(Ω) → W s(Rn). Then

spaces W s(Ω) and Hs(Ω) coincide with each other with equivalent norms.

PROOF
∥u∥Hs(Ω) ≤ ∥Eu∥Hs(Rn) (minimum energy extension argument)

≈ ∥Eu∥W s(Rn) (equivalence of norms)

≤ C∥u∥W s(Ω) (continuity of extension operator E) .

We will construct such extension operators for Lipschitz domains (to be defined). In the case of a general

domain Ω, space W s(Ω) may be larger, see Exercise 3.2.3.

The Sloboditskij norm is indispensable in proving many results for fractional Sobolev spaces. Here is one

of them.

LEMMA 3.2.2

Let ϵ > 0. Let Kj = B(0, j), and χϵj ∈ C∞
0 (Rn) be the corresponding C∞ approximation of indicator

function χj := χBj
from Theorem 2.3.3. Let u ∈ Hs(Rn) , s ∈ R. We have:

χϵju→ u in Hs(Rn) .

PROOF Case: s = k ∈ N. We start with the L2-estimate.∫
Rn

|(1− χϵj)u(x)|2 ≤
∫
Rn−Bj

|u(x)|2 → 0 as j → ∞

since ∫
Rn

|u(x)|2 dx <∞ .

The same reasoning applies to arbitrary derivative ∂α. The formula from Exercise 2.3.2 extends to

distributional derivatives (prove it...),

∂α((1− χϵj)u) =
∑
γ≤α

(
α
γ

)
∂γ(1− χϵj) ∂

α−γu .

Each of derivatives ∂γ(1 − χϵj) is bounded (pointwise) with a bound independent of j (see Theo-

rem 2.3.3) and each derivative ∂α−γu is L2-integrable.
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Case: Arbitrary s ≥ 0. For the Sloboditskij seminorm things are a bit more technical but the idea

is exactly the same. You have to mimic with differences what we have done above with derivatives.

Let ϕj := 1− χϵj . We have a simple estimate

|ϕj(x)u(x)− ϕj(y)u(y)| ≤ |ϕj(x)| |u(x)− u(y)|+ |ϕj(x)− ϕj(y)| |u(y)|
≤ |u(x)− u(y)|+ |ϕj(x)− ϕj(y)| |u(y)| .

Consequently, for µ ∈ (0, 1),∫
Rn×Rn−Bj×Bj

|ϕj(x)u(x)− ϕj(y)u(y)|2

|x− y|n+2µ
dxdy ≤ 2

∫
Rn×Rn−Bj×Bj

|u(x)− u(y)|2

|x− y|n+2µ
dxdy

+2

∫
Rn×Rn−Bj×Bj

|ϕj(x)− ϕj(y)|2 |u(y)|2

|x− y|n+2µ
dxdy

The first integral goes to zero by the integrability argument. The second integral is bounded by:∫
Rn

|u(y)|2
∫
Rn

|ϕj(y + h)− ϕj(y)|2

|h|n+2µ
dh︸ ︷︷ ︸

=:wj(y)

dy .

We know that

|ϕj(y + h)− ϕj(y)| ≤ C|h| ,

with constant C independent of both y and j. This shows that the weights are uniformly bounded,

wj(y) =

∫
|h|≤1

|ϕj(y + h)− ϕj(y)|2

|h|n+2µ
dh+

∫
|h|>1

|ϕj(y + h)− ϕj(y)|2

|h|n+2µ
dh

≤ C

∫
|h|≤1

|h|2

|h|n+2µ
dh+ 4

∫
|h|>1

1

|h|n+2µ
dh .

As u ∈ L2(Rn), its is sufficient to show that the weights wj(y) go pointwise to zero. Let y ∈ Rn.
For j > |y|, ϕj(y) = 0, and the integral reduces to:∫

Rn

|ϕj(y + h)|2

|h|n+2µ
dh =

∫
Rn

|ϕj(z)|2

|z − y|n+2µ
dz ≤

∫
|z|≥j

1

|z − y|n+2µ
dz → 0 as j → ∞ .

This finishes the proof for s = µ. For s = k + µ, the reasoning has to be applied to the k-th

derivatives.

Notice that in process of proving the convergence, we have also proved the bound:

∥(1− χϵj)u∥Hk(Rn) ≤ C∥u∥Hk(Rn) s ≥ 0 ,

with C depending upon k and ϵ, but independent of u. You can also deduce the bound from

the Uniform Boundedness Theorem, see [20],Theorem 5.8.1. By the duality argument, the bound

extends to negative s. Indeed,

|⟨(1− χϵj)u, ϕ⟩| = |⟨u, (1− χϵj)ϕ⟩|

≤ ∥u∥H−s(Rn) ∥(1− χϵj)ϕ∥Hs(Rn)

≤ ∥u∥H−s(Rn) C∥ϕ∥Hs(Rn)
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which implies that

∥(1− χϵj)u∥H−s(Rn) ≤ C∥u∥H−s(Rn) .

Case: −s < 0. Pick an arbitrary ϵ0 > 0. Let u ∈ H−s(Rn) and v ∈ C∞
0 (Rn). Let ϕϵj = 1− χϵj as

above. We have:
∥ϕϵju∥H−s(Rn) ≤ ∥ϕϵj(u− v)∥H−s(Rn) + ∥ϕϵjv∥H−s(Rn)

≤ C∥u− v∥H−s(Rn) + ∥ϕϵjv∥L2(Rn)

By density of test functions in H−s(Rn), we can select a v ∈ C∞
0 (Rn) such that the first term is

bounded by ϵ0/2. By the result for non-negative s, the second term is bounded by ϵ0/2 for sufficiently

large j as well.

REMARK 3.2.1

1. We proved that ϕju→ 0 in Hs(Rn) for any u ∈ Hs(Rn) and ϕj = 1− χϵj . Upon examination

of the proof, we can see that functions ϕj can be replaced with any other sequence of C∞

functions with derivatives bounded uniformly in j, and vanishing on ball Bj .

2. Lemma 3.2.2 illustrates the fact that the definition of space Hs(Rn) involves a certain decay

of functions at infinity. This is intuitively clear for positive values of s but less so for negative

s. Note also that closed balls Bj can be replaced with any sequence of compact sets, Kj such

that

K1 ⊂⊂ K2 ⊂⊂ . . .Kj ⊂⊂
∞⋃
j=1

Kj = Rn .

Exercises

Exercise 3.2.1 Prove that kernels (3.4) are equivalent with equivalence constants depending upon s only. (5

points)

Exercise 3.2.2 Consider Ω = B(0, 12 ) ⊂ R2 and function

u = ln | ln r|

where r, θ are polar coordinates. Show that u ∈ H1(Ω). (3 points)

Exercise 3.2.3 Let Ω be the crack domain.

Ω = (−1, 1)× (−1, 1)− [0, 1)× {0} ,

see Fig. 3.1. Prove that there exists no continuous extension operator from W 1(Ω) to W 1(R2) ∼
H1(R2). Consequently, space W 1(Ω) is larger than space H1(Ω). (10 points)



Sobolev Spaces 59

Figure 3.1
The crack domain.

Exercise 3.2.4 Let α ∈ [0, 12 ]. Prove that function u(x) = xα belongs to space W 1/2+α−ϵ(0, 1) for any

(small) ϵ > 0. (10 points)

3.3 Domain Regularity and Density Results

All results proved so far, hold for arbitrary domains Ω ⊂ Rn. In this section, we learn how to characterize

regularity of a domain or, more precisely, its boundary Γ = ∂Ω := Ω− Ω.

Hypographs. Let x = (x1, . . . , xn) ∈ Rn. We will use the notation:

x = (x′, xn) ∈ Rn−1 × R ∼ Rn where x′ = (x1, . . . , xn−1) .

Let ζ : Rn−1 ∋ x′ → xn = ζ(x′) ∈ Rn be now a continuous function. By the hypograph of function ζ, the

hypograph domain or, shortly, a C0-hypograph, we mean the open set:

{x ∈ Rn : xn < ζ(x′) x′ ∈ Rn−1} .

Explain why the set is open. If function ζ is Lipschitz, we talk about a Lipschitz hypograph orC0,1 hypograph.

If ζ is a Ck,1 function, k = 1, . . . ,∞, we speak about a Ck,1 hypograph. Recall that notation Ck,θ is used

for k times differentiable functions such that k-th derivatives are Hölder continuous with exponent θ ∈ (0, 1].

For θ = 1 we have Lipschitz continuous functions, hence the notation.

Finally, if function ζ is continuous and piecewise smooth, we will call it a piecewise smooth hypograph.

More precisely, we say that a continuous function f defined on an open set G

f : G→ R ,
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is piecewise smooth if G can be partitioned into a finite number of open sets Gj , j = 1, . . . , N such that

Gi ∩Gj = ∅ for i ̸= j , G =

N⋃
j=1

Gj ,

and restriction f |Gj
∈ C1(Gj), for each j = 1, . . . , N .

Ck, Ck,1, Lipschitz and polyhedral domains. A domain Ω ⊂ Rn is said to be a Ck or Ck,1 domain if its

boundary Γ is compact and there exist open cubes Gj = (aj1, b
j
1)× . . .× (ajn, b

j
n) , j = 1, . . . , J , such that:

• Gj , j = 1, . . . , J is an open cover of Γ;

• for each j = 1, . . . , J , cube Gj can by extended to the whole space with Ω ∩ Gj extending to a Ck

or Ck,1 hypograph. The local systems of coordinates for the cube may be obtained from the canonical

coordinates in Rn by a rigid body motion.

The definition is illustrated in Fig. 3.2. AC0,1 domain is called a Lipschitz domain. Finally, if each hypograph

is piecewise smooth, we speak about a polyhedral domain.

Partition of unity. A finite or infinite sequence of functions ψj ∈ C∞(Rn) is called a a partition of unity

for a set S if

• ψj ≥ 0;

• For each x ∈ S, there exists a neighborhood B such that only a finite number of functions ψj is

non-zero in B;

•
∑
j ψj(x) = 1 x ∈ S.

Note that, by the second assumption, the sum in the third condition is always finite.

LEMMA 3.3.1

Let S be an arbitrary set in Rn and G an arbitrary∗ open cover for set S. There exists a partition

of unity ϕj ∈ C∞
0 (Rn) such that

∀ j ∃G ∈ G : supp ϕj ⊂ G .

∗It need not be countable.
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x’

G j

G j

G j

xn

G j

b)
c)

d)

a)

Figure 3.2
Regularity of a domain. a) Open cover of domain boundary Γ. b) A particular open set Gj covering a part of
Γ. c) Same set Gj after rotation. d) Extension of Ω ∩Gj to a hypograph domain.

PROOF Let H be the union of all sets G from family G. Obviously, H is an open set. There

exists† a sequence of compact sets Ki ⊂ H such that

Ki ⊂ intKi+1 i = 1, 2, . . . and
∞⋃
1

Ki = H .

†See. e.g., Lemma 5.3.1 in [20].
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Consider compact sets

F1 = K1, Fj = Kj − intKj−1 j = 2, 3, . . . .

Note that Fj ∩ Kj−2 = ∅ for j > 2. For every x ∈ Fj there exists an open set G ∈ G such that

x ∈ G. For j > 2, x ∈ G−Kj−2 as well. Pick an open cube Gj,x neighborhood of x, contained in G

for j = 1, 2 and in G−Kj−2, for j > 2. The family of open cubes Gj,x, x ∈ Fj constitutes an open

cover for the compact set Fj and, therefore, we can always extract a finite number of those cubes

that still cover set Fj . Notice that each cube Gj,x may intersect only with a finite number of cubes

corresponding to sets Fj−1 and Fj+1. Collect now all the cubes into one countable family of cubes

{Gj,x}. For every cube Gj,x, pick a C∞ function ψj with support in the cube (comp. Exercise 2.4.1)

and different from zero at x. The construction implies that only a finite number of functions is

different from zero at point x. Normalize,

ϕj(x) =
ψj(x)∑
i ψi(x)

,

to obtain the partition of unity.

THEOREM 3.3.1

Let Gj be a countable open cover for a domain Ω ⊂ Rn. There exists a corresponding partition of

unity ψj for domain Ω such that

supp ψj ⊂ Gj , ∀j .

We will say that partition ψj is subordinate to cover Gj.

PROOF Let ϕi be a partition of unity from Lemma 3.3.1. For each j, define the index set:

Ij := {i : supp ϕi ⊂ Gj , i /∈
j−1⋃
k=1

Ik}

and set:

ψj :=
∑
i∈Ij

ϕi .

Note that sets Ij may be empty, finite or infinite. Because of the last possibility, we cannot claim

that functions ψj have a compact support.

LEMMA 3.3.2

Let s ∈ R and ϵ > 0. For every u ∈ Hs(Rn) there exists a function v ∈ C∞
0 (Rn) such that

∥u− v∥Hs(Rn) < ϵ and supp v ⊂ {x ∈ Rn : d(x, supp u) < ϵ} .
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PROOF Proof is a direct consequence of Lemma 3.2.2 and Exercise 3.3.1.

LEMMA 3.3.3

Let Ω ⊂ Rn be an arbitrary open set, and s ≥ 0. The set

W s(Ω) ∩ C∞(Ω)

is dense in W s(Ω).

PROOF Consider open sets:

Gj := {x ∈ Ω : d(x,Γ) >
1

j
, |x| < j} , j = 1, 2, . . . ,

and the corresponding partition of unity ψj subordinate to Gj . Note that boundedness of Gj implies

that ψj have compact supports. Let u ∈ W s(Ω), s ≥ 0. Take an arbitrarily small ϵ > 0. We claim

that functions ψ̃ju where tilde denotes the zero extension, belong to W s(Rn) = Hs(Rn). We start

with s = 1. Indeed, for u ∈W 1(Ω), ψ ∈ D(Ω) and ϕ ∈ D(Rn),

⟨∂jψ̃u, ϕ⟩ = −⟨ψ̃u, ∂jϕ⟩ (definition of distributional derivative)

= −⟨ψ̃ũ, ∂jϕ⟩ (ψ̃u = ψ̃ũ)

= −⟨ũ, ψ̃∂jϕ⟩ (definition of product of C∞ function with distribution)

= −⟨u, ∂j(ψ̃ϕ)− ∂jψ̃ ϕ⟩ (ψ̃ ∂jϕ has a support in Ω)

= ⟨∂ju, ψ̃ϕ⟩+ ⟨u, ∂jψ̃ ϕ⟩

= ⟨ψ̃∂ju, ϕ⟩+ ⟨∂jψ̃ u, ϕ⟩ ,

i.e.,

∂j(ψ̃u) = ψ̃ ∂ju+ ∂̃jψ u ∈ L2(Rn)

and, ψ̃u ∈ W 1(Ω) as claimed. By induction, the result holds for any integer s. Consider now

µ ∈ (0, 1). We have:

ψ(x)u(x)− ψ(y)u(y) = ψ(x)(u(x)− u(y)) + (ψ(x)− ψ(y))u(y)

and, therefore,

|ψ(x)u(x)− ψ(y)u(y)|2 ≤ 2|ψ(x)|2 |u(x)− u(y)|2 + 2|ψ(x)− ψ(y)|2 |u(y)|2 . (3.5)

Consider an auxiliary 1D function:

χ(t) := ψ(x+ t(y − x)) .

By the Mean-Value Theorem,

ψ(y)− ψ(x) = χ(1)− χ(0) = χ′(ξ) =
∂ψ

∂xj
(x+ ξ(y − x))(yj − xj) .
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Thus, by the Weierstrass Theorem, there exists a constant C > 0 such that

|ψ(x)| ≤ C and |ψ(x)− ψ(y)| ≤ C|x− y|

for all x. The Slobodeckij integral corresponding to the first term in (3.5) is thus bounded by the

Slobodeckij seminorm of u. For the second term we have:∫
Ω

∫
Ω

|ψ(y)− ψ(x)|2

|x− y|n+2µ
|u(x)|2 dx dy =

∫
Ω

∫
Ω

|ψ(y)− ψ(x)|2

|x− y|n+2µ
|u(x)|2 dy dx ≤ C

∫
Ω

|u(x)|2 dx

since, ∫
Rn

|ψ(y)− ψ(x)|2

|x− y|n+2µ
dy ≤ C

∫
|x−y|≤1

|y − x|−n−2µ+2 dy + C

∫
|x−y|>1

|y − x|−n−2µ dy

and both integrals on the right-hand side are finite and independent of x.

By Lemma 3.3.2, there exist functions vj ∈ D(Ω) such that

∥ψju− vj∥W s(Ω) ≤ ∥ψ̃ju− ṽj∥Hs(Rn) ≤
ϵ

2j
and supp vj ⊂

1

j
− neighborhood of supp ˜ψju . (3.6)

Define now v(x) =
∑∞
j=1 vj . We claim that the sum is locally finite and, therefore, we can conclude

that v ∈ C∞(Ω). Indeed, by the definition of partition of unity, for any x ∈ Ω, there exists a

neighborhood B(x, δx) and a constant Nx such that

Nx∑
j=1

ψj = 1 in B(x, δx) ,

i.e., ψj = 0 in B(x, δx) for j > Nx. In other words, suppψju ⊂ Ω − B(x, δx). Condition (3.6) on

support of vj implies that, for 1
j <

δx
2 , supp vj ⊂ Ω − B(x, δx2 ), i.e., vj = 0 in B(x, δx2 ). Finally,

comp. Exercise 3.3.2,

∥u− v∥W s(Ω) = ∥
∞∑
j=1

(ψju− vj)∥W s(Ω) ≤
∞∑
j=1

∥ψju− vj∥W s(Ω) < ϵ .

THEOREM 3.3.2 (Theorem 3.29 in [18])

Let Ω be a C0-domain in Rn. Then

(i) C∞
0 (Ω) is dense in W s(Ω), for all s ≥ 0,

(ii) C∞
0 (Ω) is dense in Hs

Ω
(Rn), for every s ∈ R. Consequently,

H̃s
Ω(Rn) = Hs

Ω
(Rn) s ∈ R .
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PROOF (i) Case: Ω is a C0-hypograph.

Let u ∈ W s(Ω), s ≥ 0. As C∞(Ω) ∩W s(Ω) is dense in W s(Ω) (Lemma 3.3.3), we may assume

additionally that u ∈ C∞(Ω). Let ϵ > 0. For each δ > 0, define the “shifted function”:

uδ(x) := u(x′, xn − δ), x ∈ Ωδ := {x ∈ Rn : xn < ζ(x′) + δ} .

Differentiation and shifting commute,

∂αuδ = (∂αu)δ , (3.7)

i.e. derivative of the shifted function equals the shifted derivative. Let w̃ denote the zero extension

of function w to the entire Rn. If w ∈ Lp(Ω) then w̃ ∈ Lp(Rn). Recalling Proposition 2.1.1, we have

∥u− uδ|Ω∥L2(Ω) ≤ ∥ũ− ũδ∥L2(Rn) → 0 as δ → 0 .

By the commutativity property above,

∥∂αu− ∂α(uδ|Ω)∥L2(Ω) = ∥∂αu− (∂αu)δ|Ω∥L2(Ω) ≤ ∥∂̃αu− (∂̃αu)δ∥L2(Rn) → 0 as δ → 0 .

A similar reasoning holds for the Sloboditskij seminorms. It is sufficient to notice that if we introduce

an auxiliary function of two variables,

v(x, y) :=
u(x)− u(y)

|x− y|n2 +µ
, (x, y) ∈ Ω× Ω

and define the corresponding shifted function

vδ(x, y) := v((x′, xn − δ), (y′, yn − δ)) (x, y) ∈ Ωδ × Ωδ

then

vδ(x, y) =
uδ(x)− uδ(y)

|x− y|n2 +µ
.

Consequently, if seminorm |u|µ,Ω is finite, i.e. v ∈ L2(Ω× Ω), then,

|u− uδ|Ω|µ,Ω = ∥v − vδ|Ω×Ω∥L2(Ω×Ω) → 0 as δ → 0 .

Commutativity of derivatives and shift implies the same result for the seminorm applied to deriva-

tives. We have thus,

uδ|Ω → u in W s(Ω) as δ → 0 .

Choose now such a δ that

∥u− uδ|Ω∥W s(Ω) <
ϵ

2
.

Next, employ a cutoff function χ = χδ/2 from Theorem 2.3.3 for set Ω̄, i.e.

χ =

{
1 on Ω

0 on Rn − Ωδ/2 .
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As χ and all its derivatives are bounded, we have,

χuδ ∈W s(Rn) = Hs(Rn) = C∞
0 (Rn) .

Consequently, there exists a test function V ∈ C∞
0 (Rn) such that

∥χuδ − V ∥W s(Rn) <
ϵ

2
.

Set v = V |Ω, and use triangle inequality to finish the argument.

∥u− v∥W s(Ω) = ∥u− uδ|Ω + (χuδ − V )|Ω∥W s(Ω)

≤ ∥u− uδ|Ω∥W s(Ω) + ∥χuδ − V ∥W s(Rn) < ϵ .

(i) Case: Ω is a C0-domain. Let Gj , j = 1, . . . , J be an open cover for Γ = ∂Ω from the definition

of Lipschitz domain. Define,

Gδ0 = {x ∈ Ω : d(x,Γ) > δ} .

Claim: there exists a δ > 0 such that

Ω ⊂ Gδ0 ∪
J⋃
j=1

Gj .

Indeed, assume to the contrary that there exists a sequence xn ∈ Ω such that

d(xn,Γ) ≤
1

n
and xn /∈

J⋃
j=1

Gj .

Let yn ∈ Γ be the corresponding sequence of points on Γ that realize the distance, i.e.

d(xn,Γ) = d(xn, yn) .

Compactness of Γ implies that there exists a subsequence, denoted with same symbol yn that

converges to a point y ∈ Γ. Consequently, xn converges to y as well. But y must belong to an open

set Gj from the cover. Consequently, for sufficiently large n, xn ∈ Gj as well, a contradiction.

Let now u ∈ W s(Ω) and ϵ > 0 be an arbitrary constant. Let {ψj}J0 be a partition of unity

subordinate to cover G0 := Gδ0, G1, . . . , GJ of domain Ω. By the result above for the hypograph, for

each product ψju ∈W s(Gj ∩ Ω), there exists a function vj ∈ C∞
0 (Rn) such that

∥ψju− vj |Gj∩Ω∥W s(Gj∩Ω) <
ϵ

J + 1
, j = 1, . . . , J .

By Lemma 3.3.2 and equivalence of Bessel and Sloboditskij norms in Rn, there exists also a function

v0 ∈ C∞
0 (Rn) such that the same estimate holds for ψ0u,

∥ψ0u− v0|Ω∥W s(Ω) <
ϵ

J + 1
.
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Function v :=
∑J
j=0 vj ∈ C∞

0 (Rn), and

∥u− v|Ω∥W s(Ω) = ∥
J∑
j=0

(ψju− vj)∥W s(Ω) ≤ ∥ψ0u− v0∥W s(Ω) +

J∑
j=1

∥ψju− vj∥W s(Gj∩Ω) < ϵ .

(ii) Case: Ω is a C0-hypograph.

Let h ∈ Rn. For a ϕ ∈ S(Rn), define a ‘shifted function’,

ϕh(x) := ϕ(x+ h) .

The identity: ∫
Rn

uh(x)ϕ(x) dx =

∫
Rn

u(x)ϕ−h(x) dx ,

suggests to define the shift for a tempered distribution u ∈ S ′(Rn) as,

⟨uh, ϕ⟩ := ⟨u, ϕ−h⟩ .

Take now an arbitrary u ∈ Hs
Ω
(Rn), s ∈ R, and ϵ > 0. For δ > 0, consider a shifted distribution

uδ(x) := uh(x) where h = (0, δ) ∈ Rn−1 × R .

By Exercise 3.3.3,

uδ ∈ Hs(Rn) and supp uδ ⊂ {x ∈ Rn : xn ≤ ζ(x′)− δ} .

We have,

uδ → u in Hs(Rn) as δ → 0 .

Indeed, for any h,

∥u(·+ h)− u(·)∥2Hs(Rn) =

∫
Rn

(1 + |ξ|2)s|ei2πhξ − 1|2 |û(ξ)|2 dξ .

and the result is implied by the Lebesgue Dominated Convergence Theorem. Finish the proof by

applying Lemma 3.3.2 to function uδ.

Contrary to the reasoning in the first part of this proof, this is an easy argument as we operate

only on distributions in Rn.

(ii) Case: Ω is a C0-domain. The proof is fully analogous to the one for (i).

REMARK 3.3.1 Let s ∈ R. Theorem 3.3.2(ii) and Theorem 3.1.1 imply now that

(Hs(Ω))′ = H̃−s
Ω (Rn) = H−s

Ω
(Rn) ,

with equivalent norms. By reflexivity of Hilbert spaces, conversely,

(H̃s
Ω(Rn))′ = H−s(Ω) ,
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with equivalent norms, as well.

Exercises

Exercise 3.3.1 ([18], Exercise 3.17) Let ψ and ψϵ be functions like in (2.7).

(i) Let u ∈ D′(Rn). Show that convolution uϵ := ψϵ ∗ u lives in E(Rn) and

supp uϵ ⊂ {x ∈ Rn : d(x, supp u) ≤ ϵ} .

(ii) Let u ∈ Hs(Rn), s ∈ R. Show that

∥uϵ∥Hs(Rn) ≤ ∥u∥Hs(Rn) and ∥uϵ − u∥Hs(Rn) → 0 as ϵ→ 0 .

(10 points)

Exercise 3.3.2 (Generalized triangle inequality) Let Ω ⊂ Rn be an arbitrary open set, and s ≥ 0. Let

uj ∈W s(Ω) be a sequence of functions such that the sum

u =

∞∑
j=1

uj

is locally finite, and
∞∑
j=1

∥uj∥W s(Ω) <∞ .

Prove that

∥u∥W s(Ω) = ∥
∞∑
j=1

uj∥W s(Ω) ≤
∞∑
j=1

∥uj∥W s(Ω) .

(5 points)

Exercise 3.3.3 (Shifted functions) Let h ∈ Rn. For a ϕ ∈ S(Rn), define a ‘shifted function’,

ϕh(x) := ϕ(x+ h) .

• Prove that the shift operation:

S(Rn) ∋ ϕ→ ϕh ∈ S(Rn)

is a well-defined and continuous linear map.

• Note the identity: ∫
Rn

uh(x)ϕ(x) dx =

∫
Rn

u(x)ϕ−h(x) dx ,

and extend the definition of shift to tempered distributions by:

⟨uh, ϕ⟩ = ⟨u(x)ϕ−h⟩ .

Prove that the shift operation is a well-defined continuous map from S ′(Rn) into itself as well.
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• Let u ∈ Hs(Rn) (for negative s, u is a distribution). Prove that

(Fuh)(ξ) = ei2πξh(Fu)(ξ) .

Consequently, uh is in Hs(Rn) as well.

(5 points)

3.4 Calderón Extension Theorem

Existence of extension operator,

E : W s(Ω) ∋ u→ Eu ∈W s(Rn) , s ≥ 0 ,

provides a crucial argument in proving equivalence of W s(Ω) and Hs(Ω) spaces. This section contains a

simplified version of presentation in Appendix 1 from [18]. The bulk of the work will be done for the case of a

Lipschitz hypograph domain with the partition of unity argument for an arbitrary Lipschitz domain presented

in the end of the section.

x’

x n x’ζ(  ) x’ζ(  )xn −( )= −

x’ζ(  )

xn

~

Figure 3.3
Construction of the symmetric extension for a hypograph domain.

We start with the analysis of the symmetric extension, see Fig. 3.3. Let

Ω := {x = (x′, xn) ∈ Rn : xn < ζ(x′) , x′ ∈ Rn−1}

where ζ is a Lipschitz function,

|ζ(x′)− ζ(y′)| ≤M |x′ − y′| x′, y′ ∈ Rn−1 .
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For u ∈W s(Ω) ∩ C∞
0 (Ω), define the symmetric extension by:

(E0u)(x) :=


u(x) x ∈ Ω

u(x′, 2ζ(x′)− xn︸ ︷︷ ︸
=:x̃

) x ∈ Rn − Ω . (3.8)

THEOREM 3.4.1

Operator E0 admits a unique extension to a continuous operator:

E0 : W s(Ω) ∋ u→ E0u ∈W s(Rn) , for s ∈ [0, 1] .

PROOF Transformation x→ x̃ has a unit jacobian. This implies that

∥E0u∥2L2(Rn) = ∥u∥2L2(Ω) + ∥E0u∥2L2(Rn−Ω) = 2∥u∥2L2(Ω) .

In turn, for x ∈ Rn − Ω, the chain formula for differentiation,
∂(E0u)

∂xj
(x) =

∂u

∂xj
(x̃) + 2

∂u

∂xn
(x̃)

∂ζ

∂xj
(x′) 1 ≤ j ≤ n− 1

∂(Euu)

∂xn
(x) = − ∂u

∂xn
(x̃) ,

implies the estimates:

∥∂(E0u)

∂xj
∥L2(Rn−Ω) ≤ ∥ ∂u

∂xj
∥L2(Ω) + 2M∥ ∂u

∂xn
∥L2(Ω), for j = 1, . . . , n− 1 ,

∥∂(E0u)

∂xn
∥L2(Rn−Ω) = ∥ ∂u

∂xn
∥L2(Ω) .

It remains to analyze the Sloboditskij seminorm. Let µ ∈ (0, 1). The seminorm can be split into

four integrals:

|E0u|2µ,Rn = |u|2µ,Ω + I2 + I3 + I4 .

We start with I2,

I2 =

∫
xn>ζ(x′)

∫
yn>ζ(y′)

|u(x̃)− u(ỹ)|2

|x− y|n+2µ
dx dy .

As for the single integral norms, we intend to change variables from x, y to x̃, ỹ, but we need first

to estimate the denominator. We have:

|x̃n − ỹn| ≤ 2 |ζ(x′)− ζ(y′)|︸ ︷︷ ︸
≤M |x′−y′|

+|xn − yn| ≤
√
1 + 4M2

(
|x′ − y′|2 + |xn − yn|2

) 1
2︸ ︷︷ ︸

=|x−y|

so,

|x̃− ỹ| =
(
|x′ − y′|2 + (x̃n − ỹn)

2
) 1

2 ≤
(
|x− y|2 + (1 + 4M2)|x− y|2

) 1
2 ≤

√
2 + 4M2︸ ︷︷ ︸
=:C

|x− y| .
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This implies now a bound for I2,

I2 =

∫
x̃n<ζ(x′)

∫
ỹn<ζ(y′)

|u(x̃)− u(ỹ)|2

|x− y|n+2µ
dx̃ dỹ ≤ Cn+2µ

∫
x̃n<ζ(x′)

∫
ỹn<ζ(y′)

|u(x̃)− u(ỹ)|2

|x̃− ỹ|n+2µ
dx̃ dỹ︸ ︷︷ ︸

=|u|2µ,Ω

.

We proceed similarly with I3,

I3 =

∫
xn>ζ(x′)

∫
yn<ζ(y′)

|u(x̃)− u(y)|2

|x− y|n+2µ
dx dy .

If yn − x̃n < 0 then

|yn − x̃n| = x̃n − yn ≤ xn − yn .

Otherwise,

yn − x̃n ≤ ζ(y′) + xn − 2ζ(x′) ≤ ζ(y′) + ζ(y′)− yn︸ ︷︷ ︸
≥0

+xn − 2ζ(x′) = (xn − yn) + 2(ζ(x′)− ζ(y′)).

Consequently, for both cases,

|yn − x̃n| ≤ |xn − yn|+ 2|ζ(x′)− ζ(y′)| ≤ |xn − yn|+ 2M |x′ − y′| .

Therefore,

|y − x̃|2 = |y′ − x′|2 + |yn − x̃n|2 ≤ |y′ − x′|2 + 2|xn − yn|2 + 8M2|x′ − y′|2 ≤ (1 + 8M2)︸ ︷︷ ︸
=:C2

|y − x|2 .

The lower bound for |x− y| implies then an upper bound for I3,

I3 ≤ Cn+2µ|u|2µ,Ω .

Procedure to bound I4 is fully analogous to that for I3.

We proceed now with the construction of a general extension operator based on a version of Sobolev

representation formula. Define the cone:

K := {y ∈ Rn : yn < −M |y′|}

and notice that x+K ⊂ Ω, for all x ∈ Ω. Take a cut-off function χ ∈ C∞
0 ([0,∞)), equal 1 in a neighborhood

of 0. Consider now an arbitrary u ∈ W s(Ω) ∩ C∞
0 (Ω), a point ω on unit sphere S, and apply Exercise 3.4.1

to function ρ→ u(x+ ρω)χ(ρ) to arrive at the identity:

u(x) = u(x)χ(0) =
(−1)k

(k − 1)!

∫ ∞

0

ρk−1 d
k

dρk
[u(x+ ρω)χ(ρ)] dρ

=
(−1)k

(k − 1)!

k∑
l=0

(
k
l

)∫ ∞

0

χ(k−l)(ρ)
dl

dρl
u(x+ ρω)︸ ︷︷ ︸

u(l)(x+ρω;ω)

ρk−1 dρ

=
(−1)k

(k − 1)!

k∑
l=0

(
k
l

)∫ ∞

0

χ(k−l)(ρ)u(l)(x+ ρω; ρω) ρk−l−1 dρ

(3.9)
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Take now a smooth function ψ(ω) defined on the unit sphere with a support contained in cone V scaled in a

such a way that ∫
S

ψ(ω) dS =
(−1)k

(k − 1)!
.

Multiply both sides of identity (3.9) with ψ(ω) and integrate over unit sphere S to obtain:

u(x) =

k∑
l=0

(
k
l

)∫
S

ψ(ω)

∫ ∞

0

χ(k−l)(ρ)u(l)(x+ ρω; ρω) ρk−l−n ρn−1 dρ dS

=

k∑
l=0

(
k
l

)∫
Rn

ψ(
y

|y|
)χ(k−l)(|y|) u(l)(x+ y; y)︸ ︷︷ ︸∑

|α|=l
l!
α!∂

αu(x+y)yα

|y|k−l−n dy

=

k∑
l=0

∑
|α|=l

∫
Rn

(
k
l

)
l!

α!
ψ(

y

|y|
)χ(k−l)(|y|)yα |y|k−l−n︸ ︷︷ ︸
=:Ψα(−y)

∂αu(x+ y) dy

=

k∑
l=0

∑
|α|=l

∫
Rn

Ψα(−y)∂αu(x+ y) dy =

k∑
l=0

∑
|α|=l

∫
Rn

Ψα(y)∂
αu(x− y) dy

=

k∑
l=0

∑
|α|=l

(Ψα ∗ ∂αu)(x)

At this point, this is just a clever representation formula for function u(x), x ∈ Ω. Notice that the assumption

on support of ψ(ω) assures that the integration is done only within domain Ω. The symmetric extension

operator E0 now comes in. Replacing derivatives ∂αu with their extensions E0∂
αu, we define a general

extension operator,

(Eku)(x) :=

k∑
l=0

∑
|α|=l

(Ψα ∗ E0(∂
αu))(x) . (3.10)

THEOREM 3.4.2

Operator Ek admits a unique extension to a continuous operator:

Ek : W s(Ω) ∋ u→ Eku ∈W s(Rn) , for s ∈ [k, k + 1) .

Before we can prove our main result, we need to introduce the concept of homogeneous distributions and

establish some basic facts about them.

Homogeneous functions and distributions. A function u : Rn−{0} → C is homogeneous of degree a ∈ C
if

(Mtu)(x) := u(tx) = tau(x) t > 0 , x ∈ Rn−{0} .

One checks easily that, for u ∈ L1
loc(Rn),

⟨Mtu, ϕ⟩ = t−n⟨u,M1/tϕ⟩ t > 0, ϕ ∈ D(Rn) .
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This leads to the definition of Mtu for a general distribution u ∈ D′(Rn). We say now that the distribution u

is homogeneous of degree a ∈ C on Rn if Mtu = tau, i.e.

⟨Mtu, ϕ⟩ := t−n⟨u,M1/tϕ⟩ = ta⟨u, ϕ⟩ ϕ ∈ D(Rn) .

LEMMA 3.4.1

Let a ∈ C and let u ∈ S ′(Rn) be a homogeneous distribution of degree a on Rn. Then its Fourier

transform û is a homogeneous distribution of degree −a− n on Rn.

PROOF Let t > 0. One easily checks that

FMtϕ = t−nM1/tFϕ ϕ ∈ D(Rn) .

We have thus,
⟨Mtû, ϕ⟩ = t−n⟨Fu,M1/tϕ⟩ = t−n⟨u,FM1/tϕ⟩

= t−n⟨u, tnMtFϕ⟩ = t−n⟨M1/tu,Fϕ⟩

= ⟨t−n−au,Fϕ⟩ = t−n−a⟨Fu, ϕ⟩ .

Principal value integral. Let K ∈ C∞(Rn−{0}) be now a homogeneous function of degree −n with zero

average over the unit sphere, ∫
|ω|=1

K(ω) dω = 0 .

The principal value of K, denoted p.v.K, is defined as

⟨p.v.K, ϕ⟩ := lim
ϵ↘0

∫
|x|>ϵ

K(x)ϕ(x) dx ϕ ∈ D(Rn) .

The following results hold.

LEMMA 3.4.2

(i) The u := p.v.K is a well-defined tempered, homogeneous distribution of degree −n.

(ii) Fourier transform of u is a regular distribution generated by a homogeneous function û ∈
C∞(Rn−{0}) of degree 0. In particular, û is (pointwise) bounded.

(iii) Convolution u ∗ ψ = (p.v.K) ∗ ψ has the following continuity properties:

∥u ∗ ψ∥Hs(Rn) ≤ C∥ψ∥Hs(Rn) s ∈ R

|u ∗ ψ|µ ≤ C|ψ|µ µ ∈ (0, 1)

where | · |µ = | · |µ,Rn is the Sloboditskij seminorm.
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PROOF

(i) Let supp ϕ ⊂ B(0, R). Properties of function K imply that∫
ϵ<|x|<R

K(x) dx =

∫ R

ϵ

∫
|ω|=1

K(ρω) ρn−1 dρ dω =

∫ R

ϵ

dρ

ρ

∫
|ω|=1

K(ω) dω = 0 .

This implies that

⟨p.v.K, ϕ⟩ = lim
ϵ↘0

∫
|x|>ϵ

K(x)(ϕ(x)− ϕ(0)) dx .

To show that the limit exists is thus sufficient to show that the integrand is an L1 function.

This follows from the fact that every test function is Lipschitz continuous. Indeed,

|K(x)(ϕ(x)− ϕ(0))| ≤ C|K(x)| |x| ≤ Cρ−n+1|K(ω)| , |ω| = 1 ,

with the right hand side being summable over supp ϕ. Consequently,

⟨p.v.K, ϕ⟩ =
∫
Rn

K(x)(ϕ(x)− ϕ(0)) dx . (3.11)

The algebraic decay properties of function K (comp. Proposition 2.5.1) and formula (3.11)

imply now easily that the p.v.K can be extended to fast decaying test functions and it is

continuous on S(Rn), see Exercise 3.4.2. Finally, we easily check that p.v.K is a homogeneous

distribution of degree −n:

⟨Mt p.v.K, ϕ⟩ = t−n⟨p.v.K,M1/tϕ⟩ = t−n limϵ↘0

∫
|y|>ϵK(y)ϕ(t−1y) dy

= lim
ϵ↘0

∫
|z|>t−1ϵ

K(tz)ϕ(z) dz = t−n lim
ϵ↘0

∫
|z|>t−1ϵ

K(z)ϕ(z) dz

= t−n lim
t−1ϵ↘0

∫
|z|>t−1ϵ

K(z)ϕ(z) dz = t−n⟨p.w.K,ϕ⟩ .

(ii) Let χ ∈ C∞
0 ([0,∞)) be a cut-off function, equal 1 in a neighborhood of 0. Let

K(x) = χ(|x|)K(x)︸ ︷︷ ︸
=:K1(x)

+(1− χ(|x|))K(x)︸ ︷︷ ︸
=:K2(x)

.

Function K1, as a product of a test function and a tempered distribution, is a tempered

distribution also, and it has a compact support. Its Fourier transform K̂1 is thus a regular

distribution generated by a C∞ function, see Lemma 2.6.4.

Let supp χ ⊂ [0, R]. For |x| > R,

K2(x) = K(x) = K(|x|ω) = |x|−nK(ω) where |ω| = 1 .

As K2 is bounded on BR and K(ω) is bounded on the unit sphere, we have the bound,

|K2(x)| ≤ C(1 + |x|)−n .
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Since ∂αK is a homogeneous function of degree −n− |α|, by the same argument,

|∂αK2(x)| ≤ C(1 + |x|)−n−|α| .

with constant C depending upon α. Consider now a multiindex β such that |β| > |α|. We

claim that

∂βx [(−i2πx)αK2(x)] ∈ L1(Rn) .

Indeed,

∂β [(−i2πx)αK2(x)] =
∑
γ≤β

(
β
γ

)
∂γ(−i2πx)α ∂β−γK2(x)

=
∑

γ≤α,γ≤β

(
β
γ

)
(−i2π)|γ| (−i2πx)α−γ︸ ︷︷ ︸

≤C(1+|x|)|α−γ|

∂β−γK2(x)︸ ︷︷ ︸
≤C(1+|x|)−n−|β−γ|

≤ C(1 + |x|)−n+|α|−|β|

Consequently, by Lemma 2.5.1, (i2πξ)β∂αK̂2(ξ) is (absolutely) continuous and bounded on

Rn. In particular, for |β| > 1, ξβK̂2(ξ) and, therefore, ξβK̂(ξ) as well, are L1
loc functions.

We already know from Lemma 3.4.1 that the regular distribution corresponding to K̂ is ho-

mogeneous of order 0. We will show now that the function K̂ is homogeneous of order 0 as

well.

We have,∫
Rn

(tξ)βK̂(tξ)ϕ(ξ) dξ = t−n
∫
Rn

ηβK̂(η)ϕ(
η

t
) dη (η = tξ)

= t−n+|β|
∫
Rn

K̂(η)
(η
t

)β
ϕ(
η

t
) dη︸ ︷︷ ︸

⟨K̂,T1/tηβϕ⟩

= t|β|⟨K̂, ηβϕ⟩ (RK̂ is a homogeneous distribution of order 0)

=

∫
Rn

(tη)βK̂(η)ϕ(η) dη

=

∫
Rn

(tξ)βK̂(ξ)ϕ(ξ) dξ .

Consequently,

(tξ)β(K̂(tξ)− K̂(ξ)) = 0 a.e. in Rn ⇒ K̂(tξ) = K̂(ξ) a.e. in Rn ,

i.e., K̂ is a homogeneous function of order 0.

(iii) Assume first ψ ∈ D(Rn). The result is an immediate consequence of the fact that

F(u ∗ ψ) = û · ψ̂ ,

representation of the Sobolev norms and Sloboditskij seminorms in the Fourier domain, and

boundedness of û. Final results follow from density of test functions in Hs(Rn).
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REMARK 3.4.1 Definition of principal value extends to functionK1(x) from proof of Lemma 3.4.2.

We just cannot claim that p.v.K1 is a homogeneous distribution.

LEMMA 3.4.3

Let K ∈ C∞(Rn−{0}) be a homogeneous function of degree 1 − n. Convolution K ∗ ψ has the

following continuity properties:

∥∂j(K ∗ ψ)∥Hs(Rn) ≤ C∥ψ∥Hs(Rn) s ∈ R

|∂j(K ∗ ψ)|µ,Rn ≤ C|ψ|µ,Rn µ ∈ (0, 1)

for every ψ ∈ C∞
0 (Rn).

PROOF As K is only weakly singular, K ∈ L1
loc(Rn), and we have:

∂j(K ∗ ψ) = (K ∗ ∂jψ) =
∫
Rn

K(x− y)(∂jψ)(y) dy

= lim
ϵ↘0

∫
|y−x|>ϵ

K(x− y)(∂jψ)(y) dy

= lim
ϵ↘0

{−
∫
|y−x|>ϵ

∂K

∂yj
(x− y)ψ(y) dy +

∫
|y−x|=ϵ

K(x− y)ψ(y) nj︸︷︷︸
=(xj−yj)/ϵ

dS

︸ ︷︷ ︸
=:(∗)

} ,

with

(∗) =
∫
|ω|=1

ωj K(ϵω)︸ ︷︷ ︸
=ϵ1−nK(ω)

ϵn−1ψ(x− ϵω) dω →
∫
|ω|=1

ωjK(ω) dω︸ ︷︷ ︸
=:aj

ψ(x) as ϵ→ 0 .

Consequently,

∂j(K ∗ ψ)(x) = ajψ(x) + lim
ϵ↘0

∫
|y−x|>ϵ

∂K

∂yj
(x− y)ψ(y) dy .

Function ∂K
∂yj

(y) is homogeneous of order −n. If we show that the average of ∂K
∂yj

(y) over the unit

sphere vanishes, application of Lemma 3.4.2 will finish the proof. Towards this goal, pick an arbitrary

non-negative test function χ ∈ C∞
0 (0,∞) and normalize it to satisfy the condition:∫ ∞

0

χ(ρ)
dρ

ρ
= 1 .

We have then, ∫
Rn

∂K

∂xj
χ(|x|) dx = −

∫
Rn

K(x)χ′(|x|) xj
|x|

dx ,

or, ∫ ∞

0

∫
|ω|=1

∂K

∂xj
(ρω)χ(ρ) ρn−1dρ dω = −

∫ ∞

0

∫
|ω|=1

K(ρω)χ′(ρ)ωjρ
n−1dρ dω ,
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or, ∫ ∞

0

χ(ρ)
dρ

ρ︸ ︷︷ ︸
=1

∫
|ω|=1

∂K

∂xj
(ω) dω = −

∫ ∞

0

χ′(ρ) dρ︸ ︷︷ ︸
=0

∫
|ω|=1

K(ω)ωj dω︸ ︷︷ ︸
finite

which implies that ∫
|ω|=1

∂K

∂xj
dω = 0 .

REMARK 3.4.2 Estimates from Lemma 3.4.3 extend to functionK1 from proof of Lemma 3.4.2.

By triangle inequality, it is sufficient to show that they hold for function K2 from the same proof.

We have,

∥∂j(K2 ∗ ψ)∥2Hs(Rn) =

∫
Rn

(1 + |ξ|2) s
2 |i2πξj |2|K̂2(ξ)|2 |ψ̂(ξ)|2 dξ

=

∫
Rn

(2π|ξj ||K̂2(ξ)|)2︸ ︷︷ ︸
≤C

(1 + |ξ|2) s
2 |ψ̂(ξ)|2 dξ

≤ C∥ψ∥2Hs(Rn) ,

see proof of Lemma 3.4.2 for boundedness properties of K̂2. A similar estimate holds for the Slo-

boditskij seminorm.

PROOF of Theorem 3.4.2. We start by recalling formula for functions Ψα in spherical coordi-

nates. Skipping the constant factors, we have:

Ψα(ρ, ω) = ψ(−ω)(−ω)α χ(k−l)(ρ) ρk−n, |α| = l .

Case: l < k. Derivative χ(k−l)(ρ) vanishes in the neighborhood of 0 and, therefore, Ψα ∈ C∞
0 (Rn).

By Theorem 2.3.1, ∂β(Ψα ∗ u) = (∂βΨα) ∗ u and, since ∂βΨα ∈ C∞
0 (Rn) as well, by Theorem 2.2.1,

∥(∂βΨα) ∗ u∥L2(Rn) ≤ ∥∂βΨα∥L1(Rn)︸ ︷︷ ︸
=:C

∥u∥L2(Rn) .

for any β. This implies that

∥Ψα ∗ u∥Hs(Rn) ≤ C(s)∥u∥L2(Rn)

for any integer s ≥ 0 and, therefore, for any s ∈ [0,∞).

Case: l = k. We are dealing now with a (possibly singular) homogeneous function K(x) of degree

k − n premultiplied with the truncating function,

Ψα(x) = χ(|x|)K(x) .

By the chain formula,

∂β(χK) =
∑
γ≤β

(
β
γ

)
∂γχ∂β−γK .
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We need to discuss only the term with γ = 0. Derivative ∂βK is also a homogeneous function of

degree k − |β| − n. For |β| < k, the function is at most weakly singular, i.e. with singularity ρ1−n

that cancels out with jacobian ρn−1. Consequently, ∂βK ∈ L1(Rn) and we have the bound as above.

For |β| = k, derivative ∂βK equals first derivative of a homogeneous function of degree 1 − n and,

by Remark 3.4.2, we have,

∥∂βΨα ∗ u∥L2(Rn) ≤ C∥u∥L2(Rn) and ∥∂βΨα ∗ u∥µ ≤ C∥u∥µ .

Pulling everything together, we see that

∥E∥Hk+µ(Rn) ≤ C
∑
|α|≤k

∥E0(∂
αu)∥Hµ(Rn) ≤ C

∑
|α|≤k

∥∂αu∥Hµ(Rn) ≤ C∥u∥Hk+µ(Rn) ,

as required.

Finally, we comment shortly how to extend the construction of the extension operator to an arbitrary Lips-

chitz domain. LetGj , j = 1, . . . , J , be an open cover of boundary Γ, and ψj , j = 1, . . . , J , the corresponding

partition of unity subordinate to the cover. Let u ∈ Hs(Ω) with s = k + µ, k ∈ N, µ ∈ (0, 1). We define the

extension operator by

Eku = Ek(

J∑
j=1

ψju) :=

J∑
j=1

Ejk(ψju)

where Ejk denotes the extension operator for the j-th hypograph domain, and ψju ∈ Hs(Ωj), comp. Exer-

cise 3.4.3. We have

∥Eku∥W s(Rn) ≤ C

J∑
j=1

∥Ejk(ψju)∥W s(Rn) ≤ C

J∑
j=1

∥ψju∥W s(Ωj) ≤ C∥u∥W s(Ω) ,

with the ultimate constant C dependent upon the partition of unity functions.

Exercises

Exercise 3.4.1 Let f ∈ Ck0 ([0,∞)), k = 1, 2, . . .. Prove the representation formula:

f(0) =
(−1)k

(k − 1)!

∫ ∞

0

tk−1f (k)(t) dt .

Hint: Use induction in k. (2 points)

Exercise 3.4.2 Prove that (3.11) is a well-defined tempered distribution. (3 points)

Exercise 3.4.3 Let Ω ⊂ Rn be a domain, and ψ ∈ C∞
0 (Ω). Prove that

∥ψu∥W s(Ω) ≤ C∥u∥W s(Ω) u ∈W s(Ω), s ≥ 0

with constant C depending upon ψ. (5 points)
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3.5 Spaces H̃s(Ω)

We begin with a construction of extension operators from Sobolev spaces defined on a hyperplane to Sobolev

spaces defined on the whole space. The result logically belongs really to Section 4.1 but we will need it

already in the proof of the following Hörmander’s Theorem.

Let θj ∈ C∞
0 (R), j = 0, 1, . . . , be cut-off functions such that

θj(y) =
yj

j!
for |y| ≤ 1 .

Define extension operators:

ηj : S(Rn−1) → S(Rn)

(ηju)(x) :=

∫
Rn−1

û(ξ′) θj((1 + |ξ′|2) 1
2xn)

(1 + |ξ′|2) j
2

ei2πξ
′x′
dξ′ x ∈ Rn .

(3.12)

Definition of the cut-off functions implies that θ(k)j (0) = δjk. Consequently,

∂α(ηju)(x
′, 0) =

∫
Rn−1

(i2πξ′)α
′
û(ξ′)δjαne

i2πξ′x′
dξ′ = ∂α

′
u(x′)δjαn .

In other words, operators ηj satisfy the conditions:

∂α(ηju)(x
′, 0) =

{
∂α

′
u(x′) for αn = j

0 otherwise
(3.13)

and, for that reason, they are identified as extension operators.

LEMMA 3.5.1

Let s ∈ R be an arbitrary real number. Each of operators (3.12) admits a unique extension to:

ηj : Hs−j− 1
2 (Rn−1) → Hs(Rn) .

PROOF We need only to show that the operators are bounded in the appropriate norms. We

use the standard substitution ξn = (1 + |ξ′|2) 1
2 t, to obtain:

∥ηju∥2Hs(Rn) =

∫
Rn−1

|û(ξ′)|2

(1 + |ξ′|2)j+1

∫ ∞

−∞
(1 + |ξ′|2 + ξ2n)

s|θ̂j((1 + |ξ′|2)− 1
2 ξn)|2 dξndξ′

= Cs ∥u∥2
Hs−j− 1

2 (Rn−1)

where

Cs =

∫ ∞

−∞
(1 + t2)s |θ̂j(t)|2 dt
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is finite for all s ∈ R. Density argument finishes the proof.

Consider now the hyperplane:

F := {x ∈ Rn : xn = 0} .

The next theorem establishes a fundamental result about the subspace Hs
F (Rn) of distributions in Hs(Rn)

with compact support in hyperplane F , for any s ∈ R.

THEOREM 3.5.1 (Hörmander)

The following two scenarios hold:

(i) For s ∈ [− 1
2 ,∞), space Hs

F (Rn) is trivial, Hs
F (Rn) = {0}.

(ii) For s ∈ (−∞,− 1
2 ), any u ∈ Hs

F (Rn) must be of the form:

u =

J∑
j=0

vj ⊗ δ(j) with vj ∈ Hs+j+ 1
2 (Rn−1) (3.14)

where J = entier(−s− 1
2 ) and δ

(j) denotes the j-th derivative of Dirac’s delta.

PROOF Step 1: We begin by showing that distributions (3.14) belong to Hs
F (Rn).

⟨Fx→ξ(vj(x
′)⊗ δ(j)(xn)), ϕ(ξ)⟩

= ⟨vj(x′)⊗ δ(j)(xn), (Fξ→xϕ)(x)⟩

= ⟨vj(x′)⊗ δ(j)(xn), ϕ̂(x)⟩

= ⟨vj(x′), ⟨δ(j)(xn), ϕ̂(x′, xn)⟩R⟩Rn−1 (definition of tensor product of distributions)

= (−1)j⟨vj(x′),
∂j ϕ̂

∂xjn
(x′, 0)︸ ︷︷ ︸

=Fξ→x((−i2πξn)jϕ)(x′,0)

⟩Rn−1 = . . .

But,

Fξ→x((−i2πξn)jϕ(ξ))(x′, 0) =
∫
Rn

(−i2πξn)jϕ(ξ′, ξn)e−i2π(ξ
′x′+ξn0) dξ′ dξn

=

∫
R
(−i2πξn)j(Fξ′→x′ϕ)(x′, ξn) dξn .

Continuing, commutativity of tensor product implies:

. . . (−1)j⟨vj(x′), ⟨(−i2πξn)j , ϕ̂⟩R⟩Rn−1 = ⟨(i2πξn)j , ⟨vj(x′), ϕ̂⟩Rn−1⟩R

= ⟨(i2πξn)j , ⟨v̂j(ξ′), ϕ⟩Rn−1⟩R .
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We are ready to compute the Sobolev norms. With the substitution:

ξn = (1 + |ξ′|2) 1
2 t, 1 + |ξ′|2 + ξ2n = (1 + |ξ′|2)(1 + t2)

we have:

∥vj ⊗ δ(j)∥2Hs(Rn) =

∫
Rn

(1 + |ξ|2)s|v̂j(ξ′)|2 |2πξn|2j dξ

=

∫
Rn−1

|v̂j(ξ′)|2
∫
R
(1 + |ξ′|2)s (1 + t2)s |2π(1 + |ξ′|2) 1

2 t|2j (1 + |ξ′|2) 1
2 dt dξ′

=

∫
Rn−1

|v̂j(ξ′)|2 (1 + |ξ′|2)s+j+ 1
2 dξ′

∫
R
(1 + t2)s |2πt|2j dt︸ ︷︷ ︸

=:Cj,s

.

Finally,

Cj,s <∞ for s+ j < −1

2
and Cj,s → ∞ for s+ j → −1

2
.

Step 2: Let u ∈ Hs
F (Rn) and ϕ ∈ D(Rn) be a test function such that ∂jϕ

∂xj
n
(x′, 0) = 0 for all

0 ≤ j ≤ −(s+ 1
2 ). We will show that ⟨u, ϕ⟩ = 0. Towards this goal, define:

ϕ±(x) =

{
ϕ(x) x ∈ Rn±
0 otherwise.

Exercise 3.5.1 shows that ϕ± ∈ H̃−s(Rn±). There exists thus a sequence of test functions ϕ±m → ϕ±

in H−s(Rn). Consequently,

D(Rn − F ) ∋ ϕm := ϕ−m + ϕ+m → ϕ+ + ϕ− = ϕ in H−s(Rn) .

This implies that

⟨u, ϕ⟩ = lim
m→∞

⟨u, ϕm⟩︸ ︷︷ ︸
=0

= 0 .

In particular, if u ∈ Hs
F (Rn) for s > − 1

2 (no conditions on ϕ then), u vanishes.

Step 3: Let k ∈ N and s be such that −k− 3
2 < s < −k− 1

2 . Let u ∈ Hs
F (Rn) and 0 ≤ j ≤ k. Let

ηj be the continuous extension operators discussed in Theorem 4.1.3. Define:

vj ∈ D′(Rn−1), ⟨vj , ϕ⟩ := (−1)j⟨u, ηjϕ⟩ ϕ ∈ D(Rn−1) .

We have,

|⟨vj , ϕ⟩| ≤ ∥u∥Hs(Rn) ∥ηjϕ∥H−s(Rn) ≤ C∥u∥Hs(Rn)∥ϕ∥H−s−j− 1
2 (Rn−1)

,

i.e.

∥vj∥
Hs+j+1

2 (Rn−1)
≤ C∥u∥Hs(Rn) .
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At the same time,

⟨u−
k∑
j=0

vj ⊗ δ(j), ϕ⟩ = ⟨u, ϕ⟩ −
k∑
j=1

(−1)j⟨vj ,
∂jϕ

∂xjn
(·, 0)︸ ︷︷ ︸

=:ψj

⟩Rn

︸ ︷︷ ︸
=⟨u,ηjψj⟩

= ⟨u, ϕ−
k∑
j=0

ηjψj⟩ = 0 ∀ϕ ∈ D(Rn) ,

by Step 2 result.

Step 4: Tricky case: s = −k− 1
2 . If u ∈ H

−k− 1
2

F (Rn) then u ∈ Hs
F (Rn) for s = −k− 1

2 − ϵ as well,

for any ϵ > 0. By Step 3 result, there exist functions

vj ∈ Hj−k(Rn−1) 0 ≤ j ≤ k − 1

vk ∈ H−ϵ(Rn−1) ∀ϵ > 0

such that u =
∑k
j=0 vj ⊗ δ(j). It is sufficient to show that contribution vk = 0. In particular, this

will imply the first part of the theorem for s = − 1
2 . We have:

vk ⊗ δ(k) = u−
k−1∑
j=0

vj ⊗ δ(j) ∈ H−k− 1
2 (Rn) .

and

∥vk ⊗ δ(k)∥
H−k− 1

2
−ϵ(Rn)

= Ck,k− 1
2−ϵ

∥vk∥2H−ϵ(Rn−1) .

With ϵ→ 0,

∥vk ⊗ δ(k)∥
H−k− 1

2
−ϵ(Rn)

→ ∥vk ⊗ δ(k)∥
H−k− 1

2 (Rn)
and Ck,k− 1

2−ϵ
→ ∞ ,

so ∥vk∥2H−ϵ(Rn−1) must converge to zero. This implies:

|⟨vk, ϕ⟩| ≤ ∥vk∥H−ϵ(Rn−1)︸ ︷︷ ︸
→0

∥ϕ∥Hϵ(Rn−1)︸ ︷︷ ︸
bounded

,

so, in the limit, we get ⟨vk, ϕ⟩ = 0, for any test function ϕ.

Invariance of Sobolev spaces under multiplication. Let u ∈ Hs(Ω). Under what assumptions on a

function ψ, product ψu is in space Hs(Ω) as well ? Let us start with s = 1. For any distribution u ∈ D′(Ω)

and ψ ∈ C∞(Ω), we have the same formula for differentiating product ψu as in the classical calculus:

∂

∂xj
(ψu) =

∂ψ

∂xj
u+ ψ

∂u

∂xj
in D′(Ω) (3.15)
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where the derivatives are understood in the sense of distributions. Indeed, for any ϕ ∈ D(Ω), we have:

⟨ ∂

∂xj
(ψu), ϕ⟩ = −⟨ψu, ∂ϕ

∂xj
⟩ (definition of distributional derivative)

= −⟨u, ψ ∂ϕ

∂xj
⟩ (definition of product of a C∞ function with a distribution)

= −⟨u, ∂

∂xj
(ψϕ)− ∂ψ

∂xj
ϕ⟩

= ⟨ ∂u
∂xj

, ψϕ⟩+ ⟨u, ∂ψ
∂xj

ϕ⟩ (definition of distributional derivative)

= ⟨ψ ∂u
∂ξj

+
∂ψ

∂xj
u, ϕ⟩ (definition of product of a C∞ function with a distribution.)

If we assume additionally ψ ∈ C∞
0 (Ω), then both ψ and its derivatives are bounded and, therefore, u, ∂u∂xj

∈
L2(Ω) imply that ψu, ∂ψ∂xj

u, ψ ∂u
∂xj

∈ L2(Ω) as well. Consequently, equality (3.15) is satisfied in the L2 sense

as well. But this still leaves us with the assumption that ψ is infinitely differentiable.

We can reduce the assumption to ψ ∈ C1
0 (Ω) by proceeding slightly differently. We first note that the

integration by parts formula: ∫
Ω

∂u

∂xj
ϕdx = −

∫
Ω

u
∂ϕ

∂xj
dx

holds for any u ∈ H1(Ω) and ϕ ∈ H1(Ω) with supp ϕ ⊂ Ω. Indeed, this is a consequence of the definition of

distributional derivative and Lemma 3.3.2. We can now revisit the derivation above by replacing the duality

pairings with the integral and use the same reasoning to establish the final result for ψ ∈ C1
0 (Ω). In fact,

we can still do better by recalling the famous result of Rademacher [1919] that every uniformly Lipschitz

continuous function ψ ∈ C0,1 is differentiable a.e. with the derivatives uniformly bounded. This is sufficient

to reproduce the same steps in the context of Lebesgue integrals. In conclusion, formula:

∂

∂xj
(ψu) =

∂ψ

∂xj
u+ ψ

∂u

∂xj
in L2(Ω) (3.16)

holds for any ψ ∈ C0,1(Ω) and u ∈ H1(Ω) and implies that the product remains in H1(Ω). By induction,

the conclusion generalizes to integer s = k and ψ ∈ Ck−1,1(Ω). In the end, we obtain the following result.

LEMMA 3.5.2

Let ψ ∈ Ck−1,1(Rn). There exists a constant C = C(k) such that

∥ψu∥Hs(Ω) ≤ C∥ψ∥Wk,∞(Rn) ∥u∥Hs(Ω) ,

for any u ∈ Hs(Ω), and s ∈ [−k, k].

PROOF Prove the result first for Ω = Rn. Use duality to establish the result for negative

s = −k and interpolate between −k and k for real s. For general Ω the result is a consequence of

the definition of Hs(Ω). Let U ∈ Hs(Rn) be an extension of u. We have:

∥ψu∥Hs(Ω) ≤ ∥ψU∥Hs(Rn) ≤ C∥ψ∥Wk,∞(Rn) ∥U∥Hs(Rn) ,



84 Lecture Notes on ENERGY SPACES

and it remains to take the infimum with respect to U to get the final result. Note that we have

assumed that function ψ is defined on the whole space to avoid technicalities related to the existence

of a sufficiently regular extension to Rn.

REMARK 3.5.1 In the proof of Lemma 3.5.2 and the following Lemma 3.5.3, we have used

the interpolation argument that will be explained only in (the next) Section 3.6. More precisely, we

are using the general interpolation result from Theorem 3.6.2, and the particular result concerning

interpolation of spaces Hs(Rn), see Theorem 3.6.4. This is not very elegant but it makes the proof

much simpler. Note that, of course, we will not use these results in the following exposition on the

interpolation theory.

Invariance of Sobolev spaces under change of variables. Let

T : Rn ∋ ξ → x(ξ) ∈ Rn

be a sufficiently regular bijective map. Under what assumptions on map T , spaces Hs(Rn) get mapped onto

space Hs(Rn) ? In context of what we will need, we shall restrict ourselves only to maps with unit jacobian.

For functions u ∈ Hs(Rn), s > 0, we define‡ û to be the composition of transformation T and function u,

û(ξ) := u(x(ξ)), ξ ∈ Rn .

For distributions u ∈ H−s(Rn), s > 0, we define û by duality:

⟨û, ϕ̂⟩ := ⟨u, ϕ⟩ .

LEMMA 3.5.3

Let T be such that (components of) T and T−1 are in Ck−1,1(Rn) with a unit jacobian. Then, for

any s ∈ [−k, k], u ∈ Hs(Rn) iff û ∈ Hs(Rn) with equivalent norms.

PROOF Standard change of variables and density of C∞
0 (Rn) in L2(Rn) imply that the map

L2(Rn) ∋ u→ û ∈ L2(Rn)

is actually an isometry. The chain formula:

∂û

∂ξi
=

∂u

∂xj

∂xj
∂ξi

(summation convention at work)

and boundedness of derivatives
∂xj

∂ξi
for Lipschitz T imply that the map

H1(Rn) ∋ u→ û ∈ H1(Rn)

‡I hope, we can survive the notational collision with Fourier transform.
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is bounded. By the same argument,

Hk(Rn) ∋ u→ û ∈ Hk(Rn)

is bounded for T ∈ Ck−1,1. Use the interpolation argument then to establish the boundedness for

positive fractional s, and then the duality argument for negative s. We have essentially repeated

arguments from the proof of Lemma 3.5.2.

Note that, in case of a map T with a non-unit jacobian, the map:

Hs(Rn) ∋ u→ û ∈ Hs(Rn)

is bounded for a smaller range of s ∈ [−k + 1, k]. This is due to the presence of the jacobian jac ∈
Ck−2,1(Rn) in the duality argument.

We are ready now to extend the result of Theorem 3.5.1 to a class of sufficiently regular domains.

THEOREM 3.5.2

Let Ω be a Ck−1,1 domain, k = 1, 2, . . ., with boundary Γ. Let u ∈ Hs
Γ(Rn) for s ∈ [− 1

2 , k]. Then

u = 0.

PROOF Let Gj , j = 0, . . . , J , be now maps like in the proof of Theorem 3.3.2, and ψj , j =

0, . . . , J , be the corresponding partition of unity subordinate to maps Gj . By Lemma 3.5.2, distri-

bution ψju ∈ Hs(Gj) with a compact support in Gj . Its extension by zero lives in Hs
Γj
(Rn) where

Γj is the boundary of the corresponding hypograph domain. By Lemma 3.5.3, the corresponding

distribution ψ̂ju lives in Hs(Rn) with a support in the hyperplane F = Rn−1. By Theorem 3.5.1,

ψ̂ju = 0 and, therefore, ψju, and u =
∑
j ψju must be zero as well.

COROLLARY 3.5.1

Let Ω be a Ck−1,k domain, k = 1, 2, . . .. Let s ∈ [− 1
2 , k]. The restriction map:

Hs
Ω
(Rn) = H̃s

Ω(Rn) ∋ u→ u|Ω ∈ Hs(Ω) ,

is injective and, therefore, can be used to identify space H̃s
Ω(Rn) with a subspace of Hs(Ω), denoted

by H̃s(Ω). For s ∈ [−k, 12 ], spaces H
s(Ω), H̃−s(Ω) are dual to each other.

We shall spend the rest of this section discussing the H̃s(Ω) spaces.
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LEMMA 3.5.4

Let s ∈ (0, 12 ). There exists a constant C = C(s) such that∫ ∞

0

x−2s|u(x)|2 dx ≤ C(s)

∫ ∞

0

∫ ∞

0

|u(x)− u(y)|2

|x− y|1+2s
dxdy (3.17)

for every u ∈ C∞
0 ([0,∞)). The same inequality holds for the range of s ∈ ( 12 , 1) under additional

assumption that u(0) = 0. For s = 1
2 ± ϵ, C(s) = O( 1

ϵ2 ).

PROOF We begin by noticing that the right-hand side is finite for the whole range of s ∈ (0, 1).

Let supp u ⊂ [0, L). Breaking the integral into three contributions:∫ ∞

0

∫ ∞

0

. . . =

∫ L

0

∫ L

0

. . .+

∫ L

0

∫ ∞

L

. . .+

∫ ∞

L

∫ L

0

. . . ,

we easily show that the second and third integral are bounded by C(s)∥u∥2L2(0,L). Concerning the

first integral, we introduce the change of variables:{
x− y = ξ
x+ y = η

⇒
{
x = (ξ + η)/2
y = (η − ξ)/2 .

We can now bound the integral ∫ L

0

∫ L

0

|u(x)− u(y)|2

|x− y|1+2s
dx dy

by

1

2

∫ √
2L

0

∫ η

−η

|u( ξ+η2 )− u(η−ξ2 )|2

|ξ|1+2s
dξdη .

As u is Lipschitz continuous (explain, why?),

|u(ξ + η

2
)− u(

η − ξ

2
)| ≤ C|ξ + η

2
− η − ξ

2
| = C|ξ| ,

and we can bound the integral by:

1

2
C2

∫ √
2L

0

∫ η

−η
|ξ|1−2s dξdη = C2

∫ √
2L

0

∫ η

0

ξ1−2s dξ dη =
C2

2(1− s)

∫ √
2L

0

η2(1−s) dη <∞ .

First version of the proof. We will present first the proof from [16], Theorem 1.4.4.4, see also [18],

Lemma 3.31. We have:

u(x) = u(x)− 1

x

∫ x

0

u(y) dy +
1

x

∫ x

0

u(y) dy

=
1

x

∫ x

0

(u(x)− u(y)) dy︸ ︷︷ ︸
=:v(x)

+
1

x

∫ x

0

u(y) dy︸ ︷︷ ︸
=:w(x)

Cauchy-Schwarz inequality implies that

|v(x)|2 ≤ 1

x

∫ x

0

|u(x)− u(y)|2 dy .
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Consequently, ∫ ∞

0

x−2s|v(x)|2 dx ≤
∫ ∞

0

x−1−2s

∫ x

0

|u(x)− u(y)|2 dydx

=

∫ ∞

0

∫ ∞

y

x−1−2s|u(x)− u(y)|2 dxdy (Fubini)

≤
∫ ∞

0

∫ ∞

0

|u(x)− u(y)|2

|x− y|1+2s
dxdy ,

so the weighted norm of v(x) is under control for the whole range of s ∈ (0, 1). We will show now

that the weighted norm of component w(x) can be estimated by the weighted norm of v(x) and, in

turn, by the Sloboditskij seminorm as well. It is a bit tricky to see that

w(x) =
1

x

∫ x

0

u(y) dy = −
∫ ∞

x

v(y)

y
dy .

Indeed, notice that both sides vanish at infinity and, upon differentiating both sides with respect to

x, we get:

− 1

x2

∫ x

0

u(y) dy +
1

x
u(x) =

v(x)

x

which easily follows from the very definition of v(x).

Case: s ∈ (0, 12 ). Apply the second Hardy inequality (2.4),∫ ∞

0

x−2s|
∫ ∞

x

v(y)

y
dy|2 dx =

∫ ∞

0

|x
1−2s

2

∫ ∞

x

v(y)
dy

y
|2 dx
x

≤ 1

( 12 − s)2

∫ ∞

0

|y
1−2s

2 v(y)|2 dy
y

(α = 1−2s
2 )

=
1

( 12 − s)2

∫ ∞

0

y−2s|v(y)|2 dy

Case: s ∈ ( 12 , 1). With u(0) = 0, w(0) = 0 as well and, therefore,

w(x) = w(x)− w(0) = −
∫ ∞

x

v(y)

y
dy − (−

∫ ∞

0

v(y)

y
dy) = −

∫ x

0

v(y)

y
dy .

Apply the first Hardy inequality (2.3),∫ ∞

0

x−2s|
∫ x

0

v(y)

y
dy|2 dx =

∫ ∞

0

|x−
2s−1

2

∫ x

0

v(y)
dy

y
|2 dx
x

≤ 1

(s− 1
2 )

2

∫ ∞

0

|y−
2s−1

2 v(y)|2 dy
y

(α = 2s−1
2 )

=
1

(s− 1
2 )

2

∫ ∞

0

y−2s|v(y)|2 dy

Second version of the proof. Recall that the proof of Hardy’s inequalities was based on the use of

Integral Minkowski Inequality. It is not a surprise then that the theorem can be proved directly by

means of the Minkowski inequality.
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Case: s ∈ (0, 12 ). We demonstrate the bound for the weighted norm of function w(x). The rest of

the proof remains the same. We have,∫ ∞

0

x−2s|w(x)|2 dx =

∫ ∞

0

x−2s−2 |
∫ x

0

u(t) dt|2 dx = . . .

Let U ∈ C∞
0 (R) by a symmetric extension of u. Introducing the Fourier transform of U , we transform

the inner integral to:∫ x

0

u(t) dt =

∫ x

0

∫
R
e2πiωtÛ(ω) dω dt

=

∫
R

∫ x

0

e2πiωt dt︸ ︷︷ ︸
1

2πiω e
2πiωt|x0=

1
2πiω (e2πiωx−1)

Û(ω) dω (Fubini)

=

∫
R

1

2πiω
(e2πiωx − 1)Û(ω) dω .

Continuing,

. . . =

∫ ∞

0

x−2s−2|
∫
R

1

2πiω
(e2πiωx − 1)Û(ω) dω|2 dx

=

∫ ∞

0

x−2s−2|
∫
R

1

2πit
(e2πit − 1)Û(x−1t) dt|2 dx (change of variable: ωx = t)

≤

[∫
R

(∫ ∞

0

x−2s−2 |e2πit − 1|2

4π2t2
|Û(x−1t)|2 dx

) 1
2

dt

]2
(Integral Minkowski inequality)

=

[∫
R

|e2πit − 1|
2πt

(∫ ∞

0

t−2s−2ω2s+2|Û(ω)|2tω−2 dω

) 1
2

dt

]2
(change of variable: x−1t = ω, dx = −tω−2 dω)

=

[∫
R

|e2πit − 1|
2πt

t−s−
1
2

(∫ ∞

0

ω2s|Û(ω)|2 dω
) 1

2

dt

]2

=

[
1

2π

∫
R

|e2πit − 1|
t

t−2s− 1
2 dt

]2
︸ ︷︷ ︸

finite, of order 1/( 1
2−s)2

∫ ∞

0

ω2s|Û(ω)|2 dω

By Lemma 3.2.1, the Bessel seminorm is equivalent to the Sloboditskij seminorm,∫ ∞

0

ω2s|Û(ω)|2 dω = a−1
µ

∫ ∞

−∞

∫ ∞

−∞

|U(x)− U(y)|2

|x− y|1+2s
dydx ,

and,∫ ∞

−∞

∫ ∞

−∞

|U(x)− U(y)|2

|x− y|1+2s
dydx =

∫ 0

−∞

∫ 0

−∞
. . .+

∫ 0

−∞

∫ ∞

0

. . .+

∫ ∞

0

∫ 0

−∞
. . .+

∫ ∞

0

∫ ∞

0

. . .

≤ 4

∫ ∞

0

∫ ∞

0

|u(x)− u(y)|2

|x− y|1+2s
dydx .

Case: s ∈ ( 12 , 1). We proceed now directly without splitting function u(x).∫ ∞

0

x−2s|u(x)|2 dx =

∫ ∞

0

x−2s|u(x)− u(0)︸︷︷︸
=0

|2 dx =

∫ ∞

0

x−2s|
∫ x

0

u′(t) dt|2 dx .
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We transform now the inner integral,∫ x

0

u′(t) dt =

∫ x

0

∫
R
e2πiωt Û ′(ω)︸ ︷︷ ︸

2πiωÛ(ω)

dω dt

=

∫
R

∫ x

0

e2πiωt dt︸ ︷︷ ︸
e2πiωt

2πiω |x0

2πiω Û(ω) dω (Fubini)

=

∫
R
(e2πiωx − 1)Û(ω) dω

Continuing,∫ ∞

0

x−2s|
∫
R
(e2πiωx − 1)Û(ω) dω|2 dx

=

∫ ∞

0

x−2s−2|
∫
R
(e2πit − 1)Û(x−1t) dt|2 dx (ωx = t, dω = x−1dt)

≤

[∫
R

(∫ ∞

0

x−2s−2|e2πit − 1|2 |Û(x−1t)|2 dx
) 1

2

dt

]2

=

[∫
R
|e2πit − 1|

(∫ ∞

0

t−2s−2ω2s+2|Û(ω)|2 tω−2 dω

) 1
2

dt

]2
(x−1t = ω, dx = −tω−2 dω)

=

[∫
R
|e2πit − 1|t−s− 1

2

(∫ ∞

0

ω2s|Û(ω)|2 dω
) 1

2

dt

]2

=

[∫
R
|e2πit − 1| t−s− 1

2 dt

]2
︸ ︷︷ ︸

=C(s)

∫ ∞

0

ω2s|Û(ω)|2 dω

For t → 0, e2πit − 1 ∼ 2πt and the integrand is of order t t−s−
1
2 = t−s+

1
2 which is integrable for

s < 3
2 . For large t, |e

2πit − 1| ≤ 2 and factor t−s−
1
2 is integrable for s > 1

2 . Note that∫ ∞

1

t−s−
1
2 dt =

1

s− 1
2

,

i.e. the blow up at s→ 1
2+

is the same as for s→ 1
2−.

Recall that d(x, F ) denote the distance of point x from a closed set F ,

d(x, F ) := min
y∈F

d(x, y) ,

where d(x, y) stands for the Euclidean distance. The following lemma is a generalization of Lemma 3.5.4. to

the multidimensional case.

LEMMA 3.5.5

Let Ω ⊂ Rn be a Lipschitz domain, and s ∈ (0, 12 ). There exists a constant C = C(s) such that∫
Ω

d(x,Γ)−2s|u(x)|2 dx ≤ C(s)∥u∥2Hs(Ω) , (3.18)
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for every u ∈ C∞
0 (Ω). The same inequality holds for the range s ∈ ( 12 , 1) under additional assumption

that u = 0 on Γ.

PROOF Case: Ω is a Lipschitz hypograph. Let x ∈ Ω and y ∈ Γ as depicted in Fig. 3.4. We

have:

|ζ(x′)− xn| = |yn − xn + ζ(x′)− ζ(y′)| ≤ |xn − yn|+M |x′ − y′| ≤
√
1 +M2|x− y|

where M is Lipschitz constant for function ζ(x′) defining the boundary. Consequently,

d(x,Γ) ≥ ζ(x′)− xn√
1 +M2

and, therefore,∫
Ω

d(x,Γ)−2s|u(x)|2 dx ≤ (1 +M2)s
∫
xn<ζ(x′)

(ζ(x′)− xn)
−2s |u(x)|2 dx

= (1 +M2)s
∫
Rn−1

∫ ∞

0

t−2s|u(x′, ζ(x′)− t)|2 dt dx′

≤ C

∫
Rn−1

∫ ∞

0

∫ ∞

0

|u(x′, ζ(x′)− t)− u(x′, ζ(x′)− τ)|2

|t− τ |1+2s
dt dτ dx′ (Lemma 3.5.4)

= C

∫
Rn−1

∫
y<ζ(x′)

∫
z<ζ(x′)

|u(x′, y)− u(x′, z)|2

| y − z︸ ︷︷ ︸
=:h

|1+2s
dy dz dx′

≤ C

∫ ∞

−∞

∫
Rn

|U(x′, xn + h)− u(x)|2

|h|1+2s
dx dh (U ∈ C∞

0 (Rn), U |Ω = u)

= C

∫
Rn

|Û(ξ)|2
∫ ∞

−∞

|ei2πξnh − 1|2

|h|1+2s
dh︸ ︷︷ ︸

same integral as in the proof of Lemma 3.2.1

dξ

= C

∫
Rn

|ξn|2s |Û(ξ)|2 dξ ≤ C∥U∥2Hs(Rn)

Taking infimum with respect to extensions U finishes the proof.

ζ(   )x’

x’

x

x’

y’

x

y

n

Figure 3.4
Notation for the proof of Lemma 3.5.5.
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Case: Ω is a Lipschitz domain. Use the partition of unity argument.

Spaces Hs
0(Ω). Let s ∈ R. We define one more Sobolev space:

Hs
0(Ω) := C∞

0 (Ω)
Hs(Ω)

. (3.19)

The space can be viewed as a prototype of energy space for the case of homogeneous (essential) boundary

conditions.

The following theorem is our final characterization of spaces H̃s(Ω) for Lipschitz domains.

THEOREM 3.5.3

Let Ω be a Ck−1,1 domain, and s ∈ [− 1
2 , k]. The following properties hold:

(i) H̃s(Ω) ⊂ Hs
0(Ω), and

(ii) H̃s(Ω) = Hs
0(Ω), except for s = − 1

2 ,
1
2 ,

3
2 , . . . ≤ k. In particular, for s ∈ (− 1

2 ,
1
2 ),

H̃s(Ω) = Hs
0(Ω) = Hs(Ω) .

PROOF (i) follows immediately from definitions and the continuity of the restriction operator:

R : Hs(Rn) ∋ U → U |Ω ∈ Hs(Ω) .

(ii) Case: s = k ∈ N, u ∈ C∞
0 (Ω). Let ũ denote the zero extension of u. We have:

∥u∥2
H̃k(Ω)

= ∥ũ∥2Hk(Rn) ∼
∑
|α|≤k

∥∂αũ∥2L2(Rn) (∂αũ = ∂̃αu)

=
∑
|α|≤k

∥∂αu∥2L2(Ω) = ∥u∥2Wk(Ω) ∼ ∥u∥2Hk(Ω) .

Consequently,

C∞
0 (Ω)

Hs(Rn)
= C∞

0 (Ω)
Hs(Ω)

.

Case: s = k + µ, k ∈ N, µ ∈ (0, 1), µ ̸= 1
2 . Let again u ∈ C∞

0 (Ω).

∥u∥2
H̃s(Ω)

= ∥ũ∥2Hs(Rn) ∼
∑
|α|≤k

∥∂αũ∥2L2(Rn) + a−1
µ

∑
|α|=k

∫
Rn

∫
Rn

|∂αũ(x)− ∂αũ(y)|2

|x− y|2µ+n
dx dy

The double integral can be broken into four parts with the last contribution vanishing:∫
Rn

∫
Rn

. . . =

∫
Ω

∫
Ω

. . .+

∫
Ω

∫
Rn−Ω

. . .+

∫
Rn−Ω

∫
Ω

. . .+

∫
Rn−Ω

∫
Rn−Ω

. . .︸ ︷︷ ︸
=0

.
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The second integral can be reduced to a weighted L2-norm:∫
Ω

∫
Rn−Ω

|∂αu(x)|2

|x− y|2µ+n
dy dx =

∫
Ω

|∂αu(x)|2
∫
Rn−Ω

dy

|x− y|2µ+n︸ ︷︷ ︸
wµ(x)

dx .

It remains to use Lemma 3.5.5 to estimate the weight. Introduce an auxiliary spherical system of

coordinates centered at x. Let x̂ be a point on the unit sphere, and let

r(x̂) := sup{r : [x, x+ rx̂) ⊂ Ω} ,

see Fig. 3.5 for notation.∫
Rn−Ω

dy

|x− y|2µ+n
≤
∫
|x̂|=1

∫ ∞

r(x̂)

1

r2µ+n
rn−1dr︸ ︷︷ ︸

= 1
2µ

1
r(x̂)2µ

dS ≤ |S|
2µ

d(x,Γ)−2µ

where |S| is the measure of the unit sphere. Consequently,

∥u∥s
H̃s(Ω)

≲ ∥u∥2Wk(Ω) +
a−1
µ

µ

∑
|α|=k

∫
Ω

d(x,Γ)−2µ |∂αu(x)|2 ≤ C(µ)∥u∥2Hs(Ω) , (3.20)

for µ ̸= 0. We shall return to a careful analysis of constant C(µ) shortly.

Ω

r(x)
x

x

r

Figure 3.5
Local spherical coordinates used in the proof of Theorem 3.5.3.

Case: s ∈ (− 1
2 , 0]. We will use the duality argument. We have, for s ∈ [0, 12 ),

H̃s(Ω) = Hs
0(Ω) = Hs(Ω) .
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We have already proved the first equality. The second equality follows from Theorem 3.5.2 and Mazur

Separation Theorem ([20], Lemma 5.13.1). Indeed, consider an arbitrary w ∈ (Hs(Ω))′ = H̃−s(Ω)

vanishing on Hs
0(Ω). In particular,

⟨w, ϕ⟩ = 0 ∀ϕ ∈ C∞
0 (Ω) .

Orthogonality of w to test functions implies that supp w ⊂ Γ. By Theorem 3.5.2 then w = 0.

In other words, the orthogonal complement of Hs
0(Ω) = C∞

0 (Ω)
Hs(Ω)

is trivial. Mazur’s Theorem

implies that Hs
0(Ω) must coincide with the whole space Hs(Ω) §.

The final result follows now from duality,

H−s(Ω) = (H̃s(Ω))′ = (Hs(Ω))′ = H̃−s(Ω) ,

and the fact that H̃−s(Ω) ⊂ H−s
0 (Ω) (⊂ H−s(Ω)) by the first part of this theorem.

REMARK 3.5.2 Let the assumptions of Theorem 3.5.3 hold. As, through the restriction

operator, space H̃s(Ω) is isomorphic with H̃s(Rn) = Hs
Ω̄
(Rn), space H̃s(Ω) can be characterized as

a subspace of Hs(Ω) functions admitting zero extensions in Hs(Rn),

H̃s(Ω) = {u ∈ Hs(Ω) : ũ ∈ Hs(Rn)} (3.21)

where ũ denotes the extension of u by zero. For functions u, i.e. for s ≥ 0, the notion of the zero

extension is clear,

ũ(x) :=

{
u(x) x ∈ Ω

0 x ∈ Rn − Ω

The delicate point of the statement above concerns the negative range of s. What do we mean by

the zero extension of a distribution (functional) ? We have,

⟨u, ϕ⟩ = 0 ∀ϕ ∈ C∞
0 (Rn − Ω) ,

We may thus mean by a zero extension of u, any U ∈ Hs(Rn) with the support in Ω such that

U |Ω = u. However, a difference of two such extensions must have a support in Γ = ∂Ω and,

therefore, by Theorem 3.5.2, it must be zero. This makes the zero extension unique.

REMARK 3.5.3 Let us talk about the behavior of embedding constant C(µ) in (3.20) as

µ → 0. Constant a−1
µ /µ present in (3.20) is of order one as µ → 0. However, constant in proof of

Lemma 3.5.5 blows up at µ→ 0. This can be traced all the way to the proof of Lemma 3.5.4 where

we estimate the weighted L2 norm of function v(x) by the Sloboditskij norm. The blow up of C(µ)

at zero is not expected as for µ → 0 we converge to the L2-norm, and we expect the constant to

§Otherwise, there would exist a non-trivial continuous linear functional on Hs(Ω) vanishing on Hs
0(Ω).
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converge to one. Fortunately, the interpolation argument discussed in Corollary 3.6.1 establishes

what we expect, i.e., the embedding constant indeed converges to one as µ → 0. In the end, this

simply points out to a deficiency of argument in the proof of Lemma 3.5.4.

Exercises

Exercise 3.5.1 (Exercise 3.22 in [18]) Consider half space: Rn− := {x ∈ Rn : xn < 0}. Let u be a

restriction of a function from C∞
0 (Rn) to Rn− and let U denote its extension by zero:

U(x) :=

{
u(x) for xn < 0

0 otherwise.

(i) Demonstrate that

|Û(ξ)| ≤ Ck(1 + |ξ′|)−k(1 + |ξn|)−1

for every k > 0.

(ii) Conclude that U ∈ Hs
Rn

−
(Rn) for s < 1

2 .

(iii) Show additionally that

∂knu(x
′, 0) = 0 for 0 ≤ k ≤ j ⇒ U ∈ Hs

Rn
−
(Rn) for s < j +

3

2
.

(15 points)

Exercise 3.5.2 Prove that

(i) u = ln | ln |x|| ∈ H
1
2 (− 1

2 ,
1
2 ).

(ii) u′ = 1
x ln |x| ∈ H− 1

2 (− 1
2 ,

1
2 ).

(iii) u = ln | ln |x|| ∈ H
1
2 (0, 12 ) but it is not in H̃

1
2 (0, 12 ).

(ii) u′ = 1
x ln |x| ∈ H− 1

2 (0, 12 ) but it is not in H̃− 1
2 (0, 12 ).

Hint: Use Exercise 3.2.2, Trace Theorem and Lemma 3.5.5. (10 points)
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3.6 Real Interpolation Method

Let X0, X1 be two normed subspaces of a common vector space X . We say that spaces X0, X1 are compat-

ible. We equip the corresponding spaces X0 ∩X1 and X0 +X1 with the norms:

∥u∥X0∩X1
:= (∥u∥2X0

+ ∥u∥2X1
)1/2 ≈ ∥u∥X0 + ∥u∥X1

∥u∥X0+X1
:= inf{(∥u0∥2X0

+ ∥u1∥2X1
)1/2 : u = u0 + u1, u0 ∈ X0, u1 ∈ X1} .

We have the obvious (continuous) embeddings:

X0 ∩X1 ↪→ Xj ↪→ X0 +X1 j = 1, 2 .

The interpolation problem consists of constructing a family of normed spaces:

Xθ,q = (X0, X1)θ,q 0 < θ < 1, 1 ≤ q ≤ ∞

such that

• We have the embedding:

X0 ∩X1 ↪→ Xθ,q ↪→ X0 +X1 j = 1, 2 . (3.22)

• Space Xθ,q has the following interpolation property: for another compatible spaces Y0, Y1, and com-

patible operators: A0 ∈ L(X0, Y0), A1 ∈ L(X1, Y1), i.e.,

A0u = A1u ∀u ∈ X0 ∩X1 ,

there exists a unique operator Aθ : Xθ,q → Yθ,q such that

Aθ = A0u = A1u ∀u ∈ X0 ∩X1 and

∥Aθ∥ ≤ ∥A0∥1−θ ∥A1∥θ .

3.6.1 Real Interpolation (the K-) Method

We begin by introducing the so-called K-functional. Let t > 0, u ∈ X0 +X1. We define

K(t, u) := inf{(∥u0∥2X0
+ t2∥u1∥2X1

)1/2 : u = u0 + u1, u0 ∈ X0, u1 ∈ X1} .

For a fixed t > 0, the K-functional is an equivalent norm on X0 +X1,

min{1, t}∥u∥X0+X1
≤ K(t, u) ≤ max{1, t}∥u∥X0+X1

.

For a fixed u, K(t, u) is (weakly) increasing in t. Moreover, see Exercise 3.6.1,

min{1, t
s
}K(s, u) ≤ K(t, u) ≤ max{1, t

s
}K(s, u) .
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For a class of functions f(t), t > 0, we introduce now a weighted Lq-norm,

∥f∥θ,q :=


(∫ ∞

0

|t−θf(t)|q dt
t

)1/q

1 ≤ q <∞

ess supt>0|t−θf(t)| q = ∞ .

(3.23)

Note that the weighted norm satisfies the dilatation property:

∥t→ f(at)∥θ,q = aθ∥f∥θ,q .

Finally, we define the normed space,

Kθ,q(X) := {u ∈ X0 +X1 : ∥K(·, u)∥θ,q <∞} (3.24)

with the norm,

∥u∥Kθ,q(X) = Nθ,q ∥K(·, u)∥θ,q

where Nθ,q is a normalizing factor to be specified later.

THEOREM 3.6.1

The following inequalities hold:

(i) X0 ∩X1 ⊂ Kθ,q(X), and

∥u∥Kθ,q(X) ≤ ∥u∥1−θX0
∥u∥θX1

≤ ∥u∥X0∩X1 u ∈ X0 ∩X1 .

(ii) Kθ,q(X) ⊂ X0 +X1, and

K(t, u) ≤ tθ∥u∥Kθ,q(X) and, in particular, ∥u∥X0+X1 ≤ ∥u∥Kθ,q(X) u ∈ Kθ,q(X) ,

provided we use the normalizing factor:

Nθ,q = ∥min{1, ·}∥−1
θ,q =

{
[qθ(1− θ)]

1
q 1 ≤ q <∞ ,

1 q = ∞ .
(3.25)

PROOF For u = 0 both results are clear. Assume u ̸= 0.

(i) We have:

K(t, u) ≤ min{∥u∥X0 , t∥u∥X1} = ∥u∥X0 min{1, at}

with a := ∥u∥X1/∥u∥X0 . Consequently,

∥K(·, u)∥θ,q ≤ ∥u∥X0
aθ∥min{1, ·}∥θ,q = ∥u∥1−θX0

∥u∥θX1
/Nθ,q

because of the dilatation property. This implies the first inequality:

∥u∥Kθ,q(X) ≤ ∥u∥1−θX0
∥u∥θX1

.
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Take now p = (1− θ)−1. The Young’s inequality implies:

∥u∥1−θX0
∥u∥θX1

≤ 1

p

(
∥u∥1−θX0

)p
+

1

p∗
(
∥u∥θX1

)p∗
= (1− θ)∥u∥X0

+ θ∥u∥X1

≤ [(1− θ)2 + θ2]
1
2 ∥u∥X0∩X1 ≤ ∥u∥X0∩X1 .

(ii) It follows from the inequality: min{1, st }K(t, u) ≤ K(s, u) (see Exercise 3.6.1) and the dilatation

property that :

t−θ∥min{1, ·}∥θ,qK(t, u) ≤ ∥K(·, u∥θ,q

which in turn implies K(t, u) ≤ tθ∥u∥Xθ,q
. The last inequality corresponds to t = 1.

REMARK 3.6.1 With the normalizing factor used in Theorem 3.6.1, embeddings in (3.22) enjoy

unit continuity constants. As we do not need the embedding constants to be equal one, any other

normalizing factor will do the job as well. We will shortly discuss the interpolation of weighted

L2-spaces where another normalizing factor turns out to be more natural. The two normalizing

factors do not bound each other uniformly in θ. Consequently, in general, we do not claim uniform

bounds for the embedding constants in (3.22) as well.

THEOREM 3.6.2

Let A0 : X0 → Y0 and A1 : X1 → Y1 be two compatible continuous operators.

There exists then a unique continuous operator Aθ : Kθ,q(X) → Kθ,q(Y ) such that

Aθ = A0 on X0 and Aθ = A1 on X1 .

Moreover, if ∥Aju∥Yj
≤Mj∥u∥Xj

, j = 0, 1, then

∥Aθu∥Kθ,q(Y ) ≤M1−θ
0 Mθ

1 ∥u∥Kθ,q(X) u ∈ Kθ,q(X) .

PROOF Let u ∈ X0 +X1. Compatibility of the two operators implies

Aθu = Aθ(u0 + u1) = Aθu0 +Aθu1 = A0u0 +A1u1

and the value is independent of the decomposition u = u0 + u1. Indeed, all decompositions of u are

of the form:

u = u0 + v︸ ︷︷ ︸
∈X0

+u1 − v︸ ︷︷ ︸
∈X1

v ∈ X0 ∩X1 .

But A0v = A1v and, therefore, the value defining Aθu is independent of v. Let now u ∈ Kθ,q(X).

We have:
K(t, Aθu;Y ) ≤ (∥A0u0∥2Y0

+ t2∥A1u1∥2Y1
)

1
2

≤ (M2
0 ∥u0∥2X0

+ t2M2
1 ∥u1∥2X1

)
1
2

≤M0(∥u0∥2X0
+ (at)2∥u1∥2X1

)
1
2
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where a =M1/M0. Consequently, K(t, Au, ;Y ) ≤M0K(at, u;X) and, by the dilatation property,

∥Aθu∥Kθ,q(Y ) ≤M0a
θ∥u∥Kθ,q(X) =M1−θ

0 Mθ
1 ∥u∥Kθ,q(X) .

This proves, in particular, that Aθ takes Kθ,q(X) into Kθ,q(Y ).

Note that in Theorem 3.6.2, we can use any normalization factors as long as they are used for both spaces

X and Y .

3.6.2 Interpolation of Weighted L2 Spaces

TheK-method can be used to interpolate between weightedL2 spaces. The result will be useful in controlling

the equivalence constants between spaces Hs(Ω) and H̃s(Ω) for s ∈ (− 1
2 ,

1
2 ). The results in this section

are reproduced from [2], pp. 114-116. In the rest of this section we work with the Hilbert spaces only using

q = 2, and drop symbol q from notation.

Let Ω ∈ Rn be a Lipschitz domain, and w0(x), w1(x) denote two positive weights defined on Ω.

THEOREM 3.6.3

Let θ ∈ (0, 1). Let L2
w0

(Ω) and L2
w1

(Ω) denote weighted L2-spaces with weights w0, w1. Interpolation

between the two weighted spaces yields a weighted space,

(L2
w0

(Ω), L2
w1

(Ω))θ = L2
wθ

(Ω) ,

with weight wθ given by:

wθ = w1−θ
0 wθ1 .

The norm resulting from the interpolation is the weighted norm,

∥f∥2θ = cθ

∫
Ω

|f(x)|2wθ(x) dx

scaled with factor

cθ =
π

2 sinπθ
.

PROOF Let f ∈ L2
w0

(Ω) +L2
w1

(Ω), i.e., f = f0 + f1, f0 ∈ L2
w0

(Ω), f1 ∈ L2
w1

(Ω). Let t ∈ (0,∞).

We have,

K2(t, f) := inf
ϕ0+ϕ1=f

(∫
Ω

|ϕ0(x)|2w0(x) dx+ t2
∫
Ω

|ϕ1(x)|2w1(x) dx

)
=

∫
Ω

inf
z0+z1=f(x)

(|z0|2w0(x) + t2|z1|2w1(x)) dx

=

∫
Ω

|f(x)|2w0(x) inf
z0+z1=1

(|z0|2 + t2
w1

w0
|z1|2) dx

=

∫
Ω

|f(x)|2w0(x)F (t
2w1

w0
) dx
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where

F (s) := inf
z0+z1=1

(|z0|2 + s|z1|2) =
s

1 + s
,

see Exercise 3.6.2. Switching the order of taking the infimum and integration is legal since the

ultimate (after the switch) integrand is measurable, see Exercise 3.6.3. Consequently,

K2(t, f) =

∫
Ω

|f(x)|2 t2w0(x)w1(x)

w0(x) + t2w1(x)︸ ︷︷ ︸
=:wt(x)

dx .

We can compute now the norm of the interpolant,

∥f∥2θ =
∫ ∞

0

t−2θ

∫
Ω

|f |2wt dx
dt

t

=

∫
Ω

|f |2
∫ ∞

0

t−1−2θw0F (t
2w1

w0
) dt dx

=

∫
Ω

|f |2w1−θ
0 wθ1

∫ ∞

0

s−1−2θF (s2) ds dx (change of variable t2w1

w0
= s2)

= cθ

∫
Ω

|f |2w1−θ
0 wθ1 dx

where

cθ :=

∫ ∞

0

s−1−2θF (s2) ds =

∫ ∞

0

s1−2θ

1 + s2
ds =

π

2 sinπθ
,

see Exercise 3.6.4.

3.6.3 Interpolation of Sobolev Spaces

This section is reproduced from [18], pp.329-330.

THEOREM 3.6.4

Let s0, s1 be arbitrary real numbers, and θ ∈ (0, 1). We have:

(Hs0(Rn), Hs1(Rn))θ = Hs(Rn) with s = (1− θ)s0 + θs1 .

The Kθ norm equals the Sobolev norm if we use the normalization factor:

Nθ =

(
2 sinπθ

π

)1/2

.

PROOF The proof follows exactly the same lines as in proof of Theorem 3.6.3. We are again

dealing with weighted spaces but, this time, in the frequency domain. Let f = f0 + f1, f0 ∈
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Hs0(Rn), f1 ∈ Hs1(Rn). Let t ∈ (0,∞). We have,

K2
2 (t, f) := inf

ϕ0+ϕ1=f

∫
Rn

[(1 + |ξ|2)s0 |ϕ̂0(ξ)|2 + t2(1 + |ξ|2)s1 |ϕ̂1(ξ)|2] dξ

=

∫
Rn

|f̂(ξ)|2(1 + |ξ|2)s0F (t2(1 + |ξ|2)s1−s0) dξ

=

∫
Rn

|f̂(ξ)|2 t2(1 + |ξ|2)s0+s1
(1 + |ξ|2)s0 + t2(1 + |ξ|2)s1

dξ

Upon integrating in t, we obtain the final result,

∥f∥2θ = cθ

∫
Rn

|f̂(ξ)|2(1 + |ξ|2)(1−θ)s0+θs1 dξ .

where cθ is the same constant as in Theorem 3.6.3.

Having established the interpolation result for the Sobolev spaces in Rn, we proceed with spaces Hs(Ω).

Let u ∈ Hs(Ω), and let U ∈ Hs(Rn) denote the minimum energy extension of u. Let U = U0 + U1 where

Uj ∈ Hsj (Rn), j = 0, 1. Set uj = Uj |Ω, j = 0, 1. We have an obvious inequality,

K2(t, u;Hs0(Ω), Hs1(Ω)) ≤ ∥u0∥2Hs0 (Ω) + t2∥u1∥2Hs1 (Ω)

≤ ∥U0∥2Hs0 (Rn) + t2∥U1∥2Hs1 (Rn) .

Passing to infimum with respect to U0, U1, U0 + U1 = U on the right-hand side, we obtain,

K2(t, u;Hs0(Ω), Hs1(Ω)) ≤ K2(t, U ;Hs0(Rn), Hs1(Rn)) .

Consequently,

∥u∥K(θ,2;Hs0 (Ω),Hs1 (Ω)) ≤ ∥U∥K(θ,2;Hs0 (Rn),Hs1 (Rn))

= ∥U∥Hs(Rn) (Theorem 3.6.4)

= ∥u∥Hs(Ω) .

We have arrived at the interpolation result for Sobolev spaces defined on a domain Ω.

THEOREM 3.6.5

Let s0, s1 be arbitrary real numbers, and θ ∈ (0, 1). We have:

Hs(Ω) ↪→ (Hs0(Ω), Hs1(Ω))θ with s = (1− θ)s0 + θs1 .

The Kθ norm is bounded by the Sobolev norm provided we use the normalization factor:

Nθ =

(
2 sinπθ

π

)1/2

.

COROLLARY 3.6.1

Let µ ∈ (0, 12 ). We know that, for a Lipschitz domain Ω, Sobolev space Hµ(Ω) is embedded in

the weighted space L2
w(Ω) where weight w = d−2µ with d denoting distance from boundary ∂Ω. Let
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Cµ denote the embedding constant. The result trivially holds for µ = 0 with the corresponding

embedding constant C0 = 1. Let 0 < s < µ. By Theorem 3.6.5, Interpolation of Sobolev spaces

yields a superspace of Hs(Ω) and, by Theorem 3.6.3, interpolation of the weighted spaces yields

the weighted L2
w space with weight w = d−2s. Note that both theorems use the same normalizing

factor. Consequently, space Hs(Ω) is embedded in the weighted L2
w space with the embedding constant

estimated by:

Cθµ = Cs/µµ .

The constant converges to one as s→ 0.

Exercises

Exercise 3.6.1 Prove the inequality:

min{1, t
s
}K(s, u) ≤ K(t, u) ≤ max{1, t

s
}K(s, u) .

(2 points)

Exercise 3.6.2 Let s > 0. Prove that

inf
z0+z1=1

(|z0|2 + s|z1|2) =
s

1 + s

where z0, z1 are complex numbers. (3 points)

Exercise 3.6.3 Explain in detail why switching the order of taking the infimum over functions ϕ0, ϕ1 and

integration over Ω in the proof of Theorem 3.6.3 is legal. (3 points)

Exercise 3.6.4 [18], Exercise B.5. Use contour integration to show that ,∫ ∞

0

s1−2θ

1 + s2
ds =

π

2 sinπθ
.

Hint: Use contour shown in Fig.3.6. (10 points)
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Figure 3.6
Contour for integration of z

1−2θ

1+z2 .

3.7 Embedding Theorems

There are many embedding results for Sobolev spaces, see [1] for a comprehensive review. Following [18],

we reproduce perhaps the two most important results. The first one identifies minimal conditions for which el-

ements of Sobolev space represent continuous functions. Remember that elements of Lp spaces and Sobolev

spaces in particular, are equivalence classes of functions that are equal to each other a.e.. The embedding

theorem states that, under appropriate conditions, there exists a representative that is a Hölder continuous

function and Hölder’s exponent is controlled by the Sobolev norm. The second theorem reproduced in this

section is the famous result of Rellich showing that, for a bounded domain, Sobolev space Hs1(Ω) is com-

pactly embedded in space Hs2(Ω) where s2 < s1. The result is crucial for studying PDEs and Mikhlin

compact perturbation argument in discrete stability analysis.

THEOREM 3.7.1 (Sobolev Embedding Theorem)

Let µ ∈ (0, 1) and u ∈ H
n
2 +µ(Rn). There exists a Hölder continuous representative of u, denoted

with the same symbol, such that

|u(x)| ≤ C∥u∥
H

n
2

+µ(Rn)
∀x ∈ Rn

|u(x)− u(y)| ≤ C∥u∥
H

n
2

+µ(Rn)
|x− y| ∀x, y ∈ Rn

with constant C independent of u.

PROOF Step 1: u ∈ S(Rn). We have,

|u(x)| = |
∫
Rn

û(ξ)ei2πxξ dξ| ≤
∫
Rn

|û(ξ)| dξ

=

∫
Rn

(1 + |ξ|2)− 1
2 (

n
2 +µ) (1 + |ξ|2) 1

2 (
n
2 +µ) |û(ξ)| dξ

≤
(∫

Rn

(1 + |ξ|2)−(n
2 +µ)

) 1
2

︸ ︷︷ ︸
=:C

∥u∥
H

n
2

+µ(Rn)
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with

C2 = |S|
∫ ∞

0

(1 + r2)−(n
2 +µ) rn−1dr <∞

where |S| denotes the measure of unit sphere S in Rn.

Step 2: u ∈ H
n
2 +µ(Rn). By the density of S(Rn) in H

n
2 +µ(Rn), there exists a sequence uj ∈

S(Rn) converging to u in H
n
2 +µ(Rn). By Step 1 result,

|uj(x)− uk(x)| ≤ C∥uj − uk∥H n
2

+µ(Rn)

which implies that uj(x) is Cauchy in R. Let U(x) := limj→∞ uj(x). The estimate:

|U(x)− U(y)| ≤ |U(x)− uj(x)|+ |uj(x)− uj(y)|+ |uj(y)− U(y)|

and the inequality above imply that U(x) is uniformly continuous in Rn. Let ϕ ∈ D(Rn).∫
Rn

Uϕ = lim
j→∞

∫
Rn

ujϕ =

∫
Rn

uϕ

and Lemma 2.4.1 imply that u = U a.e. in Rn and

|U(x)| = lim
j→∞

|uj(x)| ≤ C lim
j→∞

∥uj∥H n
2

+µ(Rn)
= C∥u∥

H
n
2

+µ(Rn)
.

Step 3: Consider δhu(x) := u(x+ h)− u(x). We have,

|u(x+ h)− u(x)| ≤
∫
Rn

|δ̂hu(ξ)| dξ ≤
(∫

Rn

(1 + |ξ|2)−n
2 −µ|ei2πξh − 1|2 dξ

) 1
2

︸ ︷︷ ︸
=:Mµ(h)

∥u∥
H

n
2

+µ(Rn)
.

Mµ(h) is bounded uniformly in h, see calculations ins Step 1. For |h| ≥ 1, the

Let now 0 < |h| < 1. By the Mean-Value Theorem, |ei2πξh − 1| ≤ 2π|ξ · h| and, therefore,

M2
µ(h) ≤ 4π2

∫
|ξ|< 1

|h|

(1 + |ξ|2)−n
2 −µ|ξ · h|2 dξ +

∫
|ξ|> 1

|h|

(1 + |ξ)−n
2 −µ dξ

≤ 4π2|h|2
∫
|ω|=1

∫ 1
|h|

0

(1 + r2)−
n
2 −µ r2rn−1dr dω + 4

∫
|ω|=1

∫ ∞

1
|h|

(1 + r2)−
n
2 −µ rn−1dr dω

≤ 4π2|h|2|S|

∫ 1

0

(1 + r2︸ ︷︷ ︸
≥1

)−
n
2 −µ rn+1dr +

∫ 1
|h|

1

(1 + r2︸ ︷︷ ︸
≥r2

)−
n
2 −µ rn+1dr

+ 4|S|
∫ ∞

1
|h|

(1 + r2︸ ︷︷ ︸
≥r2

)−
n
2 −µ rn−1dr

≤ 4π2|h|2|S|
[
rn+2

n+ 2
|10 +

r−2µ+2

2(1− µ)
|

1
|h|
1

]
+ 4|S|r

−2µ

−2µ
|∞1
|h|

≤ C|h|2[1 + |h|2µ−2

2(1− µ)
] + C

1

µ
|h|2µ

≤ C|h|2µ

where the ultimate constant C blows up (linearly) for µ→ 0, 1.
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Let X,Y be normed spaces. Recall that a linear map T : X → Y is compact iff it maps bounded sets into

precompact sets, i.e.,

D bounded in X ⇒ T (D) compact in Y .

If X,Y are Banach, X is reflexive, and T is linear then the condition above is equivalent to

xn ⇀ x ⇒ Axn → Ax ,

i.e., weak convergence in X implies strong convergence in Y , see Prop. 5.15.1 in [20]. Finally, we say that

an embedding X ↪→ Y is compact, denoted X
c
↪→ Y , if the identity map is compact.

THEOREM 3.7.2 (Rellich Theorem)

Let −∞ < s < t <∞. The following compact embeddings hold:

(i) for any compact set K ⊂ Rn,
Ht
K(Rn) c

↪→ Hs
K(Rn) ,

(ii) for any bounded domain Ω ⊂ Rn,
Ht(Ω)

c
↪→ Hs(Ω) .

PROOF (i) Recall the Bolzano-Weiestrass Theorem stating that, in a metric space, a set is

compact iff it is sequentially compact. It is sufficient thus to show that from any bounded sequence

uj ∈ Ht
K(Rn), we can extract a subsequence converging in Ht

K(Rn).

Step 1: Choose a cutoff function χ ∈ D(Rn) such that χ = 1 on set K. We have:

ûj(ξ) = χ̂uj(ξ) =

∫
Rn

χ̂(ξ − η)ûj(η) dη .

Applying Peetre’s inequaity (Exercise 3.7.1), we obtain,

(1 + |ξ|2) 1
2 ≤

∫
Rn

(1 + |ξ|2) 1
2 |χ̂(ξ − η)| |ûj(η)| dη ≤ 2

|t|
2

∫
Rn

(1 + |ξη|2)
|t|
2 (1 + |η|2) t

2 |χ̂(ξη)| |ûj(η)| dη .

In turn, Cachy-Schwarz inequality leads to:

(1 + |ξ|2)t |ûj(ξ)|2 ≤ 2|t|
∫
Rn

(1 + |ξ − η|2)|t| |χ̂(ξ − η)|2 dη
∫
Rn

(1 + |η|2)t |ûj(η)|2 dη

= 2|t| ∥χ∥2H|t|(Rn) ∥uj∥
2
Ht(Rn) .

Step 2: By standard properties of Fourier transform,

∂αûj = ∂α(χ̂uj) = (∂αχ̂) ∗ ûj = χ̂α ∗ ûh

where χ̂α(x)(−i2πx)αχ(x). The above and Step 1 resullt imply then:

(1 + |ξ|2)t |∂αûj(ξ)|2 ≤ 2|t|∥χα∥2H|t|(Rn) ∥uj∥
2
Ht(Rn) .
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Control of the derivatives implies that ûj are uniformly bounded and equicontinuous over any com-

pact subset of Rn. Take now any sequence of compact sets

K1 ⊂ K2 ⊂ . . . ,
⋃
j

Kj = Rn .

Arzelà-Ascoli Theorem ([20], Theorem 4.9.3) and the diagonal choice method lead to the conclusion

that we can extract a subsequence of ûj , denoted with the same symbol, such that ûj converges

uniformly on any compact subset of Rn.

Step 3: We claim now that uj is Cauchy in Hs
K(Rn). Take an arbitrary ϵ > 0. Next, choose a

sufficientlty large R such that∫
|ξ|>R

(1 + |ξ|2)s |ûj(ξ)− ûk(ξ)|2 dξ ≤ (1 +R2)s−t
∫
|ξ|>R

(1 + |ξ|2)t |ûj(ξ)− ûk(ξ)|2 dξ

≤ (1 +R2)s−t
∫
Rn

(1 + |ξ|2)t |ûj(ξ)− ûk(ξ)|2 dξ

≤
2(∥uj∥2Ht(Rn) + ∥uk∥Ht(Rn))

(1 +R2)t−s
<
ϵ

2
.

Use Step 2 result to choose sufficiently large N such that:∫
|ξ|≤R

(1 + |ξ|2)s |ûj(ξ)− ûk(ξ)|2 dξ <
ϵ

2

for every j, k ≥ N .

(ii) Let uj ∈ Ht(Ω) be a bounded sequence. Let Uj ∈ Ht(Rn) be the corresponding minimum

energy extensions, i.e. ∥uj∥Ht(Ω) = ∥Uj∥Ht(Rn). Lemma 3.5.2 implies that sequence χUj is bounded

in Ht
K(Rn) where K = suppχ. By part(i) of this theorem, there exists a subsequence χUj converging

to some U ∈ Hs
K(Rn). This in turn implies that

uj = (χUj)|Ω → U |Ω in Hs(Ω) .

Exercises

Exercise 3.7.1 Prove Peetre’s inequality:

(1 + |ξ|2)s ≤ 2|s|(1 + |ξ − η|)|s| (1 + |η|2)s ,

for any s ∈ R and ξ ∈ Rn. Hint: Proceed in the order: s = 0, s = 1, s > 0, s < 0. (3 points)





4
Trace Theorems

4.1 Trace Theorems

4.1.1 3D Differential Complex and Exact Sequence.

We are finally ready to discuss the energy spaces introduced in our opening Section 1.1. We start by recalling

the definitions. Let Ω ⊂ R3 be an arbitrary domain. We have

Hs(grad,Ω) := {u ∈ (Hs(Ω))3 : ∇u ∈ (Hs(Ω))3} ∥u∥2Hs(grad,Ω) := ∥u∥2Hs(Ω) + ∥∇u∥2Hs(Ω)

Hs(curl,Ω) := {E ∈ (Hs(Ω))3 : ∇× E ∈ (Hs(Ω))3} ∥E∥2Hs(curl,Ω) := ∥E∥2Hs(Ω) + ∥∇× E∥2Hs(Ω)

Hs(div,Ω) := {v ∈ (Hs(Ω))3 : ∇ · v ∈ Hs(Ω)} ∥v∥2Hs(div,Ω) := ∥v∥2Hs(Ω) + ∥∇ · v∥2Hs(Ω)

where, as usual, the derivatives are understood in the sense of distributions. From the practical point of view,

we are interested in Lipschitz and polyhedral domains only. This will limit the range for regularity parameter

s to (− 1
2 ,

1
2 ).

Spaces Hs(grad,Ω), Hs(curl,Ω), Hs(div,Ω) and Hs(Ω), along with operators of grad, curl and div, form

the so-called differential complex:

R(C) id−→ Hs(grad,Ω) ∇−→ Hs(curl,Ω) ∇×−→ Hs(div,Ω) ∇·−→ Hs(Ω)
0−→ {0} (4.1)

which means that the range of every involved operator is contained in the null space of the next operator in

the sequence. In simple terms, gradient of a constant, curl of a gradient, and div of a curl, are all equal zero.

Notice that all operators are well defined.

REMARK 4.1.1 For Lipschitz domains,

Hs(grad,Ω) := {u ∈ Hs(Ω) : ∇u ∈ (Hs(Ω))n} = H1+s(Ω) . (4.2)

The result is immediate for Rn, see Exercise 4.1.1. For a general Lipschitz domain, it is a consequence

of the existence of a bounded extension operator fromHs(grad,Ω) toHs(grad,Rn), see [17] and comp.

Theorem 3.2.1. For s ≥ 0, both spaces coincide with W 1+s(Ω).

For a bounded domain Ω “without holes”∗ we arrive at the structure of an exact sequence, i.e. the range of

∗Topologically equivalent to a ball.

107
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each operator in the sequence, is equal to the null space of the next one. In other words,

u ∈ Hs(grad,Ω) , ∇u = 0 ⇔ ∃c ∈ R(C) : u = c

E ∈ Hs(curl,Ω) , ∇× E = 0 ⇔ ∃u ∈ Hs(grad,Ω) : E = ∇u

v ∈ Hs(div,Ω) , ∇ · v = 0 ⇔ ∃E ∈ Hs(curl,Ω) : v = ∇× E

q ∈ Hs(Ω) ⇔ ∃v ∈ Hs(div,Ω) : q = ∇ · v

Usually, we simplify the notation and cut off the first and the last elements of the sequence,

Hs(grad,Ω) ∇−→ Hs(curl,Ω) ∇×−→ Hs(div,Ω) ∇·−→ Hs(Ω)

remembering that the div operator is a surjection and the nullspace of grad operator are constants.

2D differential complexes and exact sequences. The 3D differential complex (exact sequence) gives rise

to a couple of two-dimensional sequences:

Hs(grad,Ω) ∇−→ Hs(curl,Ω) curl−→ Hs(Ω)

and,

Hs(grad,Ω) ∇×−→ Hs(curl,Ω) div−→ Hs(Ω)

where

curl E := E2,1 − E1,2 and ∇× u := (u,2,−u,1, ) .

The 2D sequences are easily obtained from the 3D sequence by considering functions E = (E1, E2, 0) (first

sequence) or E = (0, 0, u) (second sequence) with all components depending upon x1, x2 only.

Traces for energy spaces Hs(Ω) and Hs(div,Ω) will be discussed in n space dimensions. Traces for

Hs(curl,Ω) will be discussed in three space dimensions, and we will comment on the two-dimensional case.

We will proceed in three steps. In the first step, we define the trace spaces and establish the trace theorems

for the half-space domain,

Rn− := {x = (x1, . . . , xn−1︸ ︷︷ ︸
=:x′

, xn) ∈ Rn : xn < 0} .

In the second step, we generalize the definitions and prove the trace theorems for a piecewice smooth hypo-

graph, see Fig. 4.1,

Ω := {x = (x′, xn) ∈ Rn : xn < ζ(x′)}

where ζ(x′), x′ ∈ Rn−1, is a continuous, piece-wise smooth function. Finally, in the last step, we generalize

the results to an arbitrary (curvilinear) polyhedron using the partition of unity technique.
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n

’xζ(  )

’x

x

Ω

Figure 4.1
Piece-wise smooth hypograph

4.1.2 Density of Test Functions in the Energy Spaces

Critical in the proofs presented in this chapter is the density of test functions C∞
0 (Ω) in all energy spaces

forming the differential complex. We showed in Section 3.1 that test functions D(Rn) are dense in Hs(Rn),
for any s ∈ R. As restrictions of functions (distributions) fromHs(Rn) to domain Ω constitute spaceHs(Ω),

restrictions of test functions D(Rn) to Ω are automatically dense in Hs(Ω). The result is also true for the

remaining energy spaces, and we will show now an alternate reasoning that applies to all of them.

Consider first the case of the whole space, Ω = Rn. Let ψϵ be the function used in Theorem 2.3.2. We

begin with a generalization of Theorem 2.3.2.

LEMMA 4.1.1

Let u ∈ Hs(Rn), s ∈ R. Then

∥ψϵ ∗ u− u∥Hs(Rn) → 0 as ϵ→ 0 .

PROOF We have:

∫
Rn

(1 + |ξ|2)s| ̂ψϵ ∗ u− u|2 dξ =
∫
Rn

(1 + |ξ|2)s|ψ̂ϵ − 1|2 |û(ξ)|2 dξ

where

ψ̂ϵ(ξ) =

∫
Rn

e−i2πξxϵ−nψ(ϵ−1x) dx =

∫
Rn

e−2πϵξyψ(y) dy = ψ̂(ϵξ) .

As ψ̂(0) = 1, factor ψ̂ϵ − 1 converges pointwise to 0. It is also bounded by 2. Function 2(1 +

|ξ|2)s|û(ξ)|2 provides thus an integrable dominating function and, by the Lebesgue Dominated Con-

vergence Theorem, the integral converges to zero.
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LEMMA 4.1.2

We have,
∥grad(ψϵ ∗ u− u)∥Hs(Rn) → 0 as ϵ→ 0 ,

∥div(ψϵ ∗ v − v)∥Hs(Rn) → 0 as ϵ→ 0 ,

∥curl(ψϵ ∗ E − E)∥Hs(R3) → 0 as ϵ→ 0 ,

for any u ∈ Hs(grad,Rn), v ∈ Hs(div,Rn), and E ∈ Hs(curl,R3).

PROOF It is sufficient to show that

grad (ψϵ ∗ u) = ψϵ ∗ grad u ,

div (ψϵ ∗ v) = ψϵ ∗ div v ,

curl (ψϵ ∗ E) = ψϵ ∗ curl E .

The result follows then from Lemma 4.1.1. For example, we have for the div operator,

⟨div (ψϵ ∗ v), ϕ⟩ = −⟨ψϵ ∗ v,∇ϕ⟩ (definition of distributional divergence)

= −⟨v, ψ̌ϵ ∗∇ϕ⟩ (definition of convolution of a distribution with a smooth test function)

= −⟨v,∇(ψ̌ϵ ∗ ϕ)⟩ (Theorem 2.3.1)

= ⟨div v, ψ̌ϵ ∗ ϕ⟩ (definition of distributional divergence)

= ⟨ψϵ ∗ div v, ϕ⟩ (definition of convolution of a distribution with a smooth test function) .

The smoothing by convolution provides thus a constructive way to approximate functions from energy

spaces with C∞ functions. Let χϵj be the approximation of indicator function χj of ball B̄(0, j) from The-

orem 2.3.3, and let v ∈ Hs(div,Rn). By Lemma 3.2.2, χϵjv → v in Hs(Rn) as j → ∞. Similarly, we

have,

div (χϵjv) = (∇χϵj) · v + χϵj div v .

By Lemma 3.2.2 again, term χϵj div v converges to div v inHs(Rn) with j → ∞, and the first term converges

to zero, comp. Remark 3.2.1. By the same argument, identity:

curl (χϵjE) = (∇χϵj)× E + χϵj curlE ,

implies that, for any E ∈ Hs(curl,Rn), χϵjE converges to E in Hs(curl,Rn) norm. The same argument

holds for space Hs(grad,Rn).

Combining the truncation results with Lemma 4.1.2, we obtain the final density results:

(D(Rn))n
Hs(grad,Rn)

= Hs(grad,Rn) and (D(Rn))n
Hs(div,Rn)

= Hs(div,Rn) ,

(D(R3))3
Hs(curl,R3)

= Hs(curl,R3) .
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REMARK 4.1.2 Note that, for functions u, v, E with a compact support, the convolution

provides directly a C∞
0 approximation with a support being arbitrary closed to the support of the

original function, comp. Exercise 3.3.1.

We are ready now to discuss the case of an arbitrary domain Ω. The next result builds upon the reasoning

similar to that in proof of Lemma 3.3.3.

LEMMA 4.1.3

Let Ω ⊂ Rn be an arbitrary open set, and s ∈ R. Then

Hs(grad,Ω) ∩ C∞(Ω) is dense in Hs(grad,Ω) ,

Hs(div,Ω) ∩ (C∞(Ω))n is dense in Hs(div,Ω) , and

Hs(curl,Ω) ∩ (C∞(Ω))3 is dense in Hs(curl,Ω) .

PROOF We will prove the result for theHs(div,Ω). The remaining two cases are fully analogous.

Let

Gj := {x ∈ Ω : d(x,Γ) >
1

j
, |x| < j} j = 1, 2, . . .

be an infinite open cover of Ω and ψj a C∞ partition of unity subordinate to Gj . Let u ∈ Hs(Ω),

and U ∈ D′(Rn) be any extension of u, i.e. U |Ω = u. Consider the zero extension ψ̃ju defined by

ψ̃ju := ψ̃jU

where ψ̃j is the zero extension of partition of unity function ψj . It is easy to check that ψ̃ju is

independent of extension U . In particular, we can take an extension U ∈ Hs(Rn) to obtain:

∥ψ̃ju∥Hs(Rn) = ∥ψ̃jU∥Hs(Rn) ≤ C(ψj)∥U∥Hs(Rn) .

Taking minimum with respect to all extensions U ∈ Hs(Rn) on the right-hand side, we get

∥ψ̃ju∥Hs(Rn) ≤ C(ψj)∥u∥Hs(Ω) .

Let now v ∈ Hs(div,Ω), and let V ∈ (Hs(Rn))n be an extension of v, and W ∈ Hs(Rn) be an

extension of div v. Let ϕ ∈ D(Rn). We have,

⟨∂iψ̃jvi, ϕ⟩ = −⟨ψ̃jvi, ∂iϕ⟩ = −⟨ψ̃jVi, ∂iϕ⟩

= −⟨Vi, ψ̃j∂iϕ︸ ︷︷ ︸
∂i(ψ̃jϕ)−∂iψ̃jϕ

⟩

= ⟨∂iVi, ψ̃jϕ⟩+ ⟨∂iψ̃jVi, ϕ⟩

= ⟨W, ψ̃jϕ⟩+ ⟨∂iψ̃jVi, ϕ⟩ (Both ∂iViand W are extensions of div u)

= ⟨ψ̃jW,ϕ⟩+ ⟨∂̃iψjVi, ϕ⟩ ,
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i.e.,

∂i(ψ̃jvi) = ˜ψj(div v) + ˜(∂iψj)vi .

This implies that ∂i(ψ̃jvi) ∈ Hs(Rn) and,

∥∂i(ψ̃jvi)∥Hs(Rn) ≤ C(ψj)∥div v∥Hs(Ω) + C(∂iψj)∥v∥(Hs(Ω))n .

Take now an arbitrary ϵ > 0. Let W j ∈ (D(Rn))n be such that (comp. Remark 4.1.2)

∥ψ̃jv −W j∥Hs(div,Rn) ≤
ϵ

2j
and supp W j ⊂ 1

j
neighborhood of supp ψ̃jv .

Let w = (
∑
jW

j)|Ω. By the same reasoning as in the proof of Lemma 3.3.3, the sum in j is locally

finite in Ω which implies that w is a C∞ function. Finally,

∥v − w∥H(div,Ω) = ∥
∑
j

ψjv −
∑
j

W j |Ω∥H(div,Ω) ≤
∑
j

∥ψ̃jv −W j∥H(div,Rn) ≤ ϵ .

The proof of our final result is essentially a reproduction of arguments from Theorem 3.3.2.

THEOREM 4.1.1

Let Ω ⊂ Rn be a C0 domain†. Then

C∞
0 (Ω) is dense in Hs(grad,Ω) ,

(C∞
0 (Ω))n is dense in Hs(div,Ω) , and,

(C∞
0 (Ω))3 is dense in Hs(curl,Ω) .

PROOF We will again prove the result only for the H(div) case. The other two proofs are fully

analogous.

Case: Ω is a C0 hypograph.

Let v ∈ Hs(div,Ω). By Lemma 4.1.3, we can assume additionally that v is a C∞(Ω) function.

For any δ > 0, let vδ be the shifted function

vδ(x) := v(x′, xn − δ), x ∈ Ωδ := {x ∈ Rn : xn < ζ(x′) + δ} .

The operations of shifting and divergence commute,

div vδ = (div v)δ .

†n = 3 in the last case.
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Let ϵ > 0. Let V ∈ (Hs(Rn))n be an extension of v and W ∈ (C∞
0 (Rn))n such a function that

∥V −W∥(Hs(Rn))n <
ϵ
6 . Then,

∥v −W |Ω∥(Hs(Ω))n ≤ ∥V −W∥(Hs(Rn))n <
ϵ

6
and

∥vδ − (W |Ω)δ∥(Hs(Ω))n ≤ ∥V δ −W δ∥(Hs(Rn))n = ∥V −W∥(Hs(Rn))n <
ϵ

6
.

At the same time,

∥W |Ω − (W |Ω)δ∥(Hs(Ω))n ≤ ∥W −W δ∥(Hs(Rn))n <
ϵ

6

for sufficiently small δ. Indeed, by the Lebesgue Dominated Convergence Theorem,

∥W −W δ∥2(Hs(Rn))n =

∫
Rn

(1 + |ξ|2)s|e−i2πξnδ − 1|2 |Ŵ (ξ)|2 dξ → 0 as δ → 0 .

By triangle inequality,

∥v − vδ∥(Hs(Ω))n <
ϵ

2
.

Exactly the same reasoning‡ for div v implies that

∥div vδ − div v∥Hs(Ω) = ∥(div v)δ − div v∥Hs(Ω) <
ϵ

2

so, finally,

∥v − vδ∥(Hs(Ω))n + ∥div vδ − div v∥Hs(Ω) < ϵ .

Once we have established the convergence of the shifted function vδ to v, the rest of the proof is

identical with the proof of Theorem 3.3.2. We truncate vδ ∈ Hs(div,Ωδ) with a cut-off function χ,

χ =

{
1 on Ω

0 on Rn − Ωδ/2 ,

to obtain χvδ ∈ Hs(div,Rn), and use the density result for Hs(div,Rn) to establish existence of

an approximating test function W on Rn. Restriction w = W |Ω provides the final approximating

(C∞
0 (Ω))n function in Hs(div,Ω).

Case: An arbitrary Lipschitz domain Ω.

Use the standard partition of unity argument.

4.1.3 The Case of Half-Space

We begin by recalling the classical results for standard Sobolev spaces.

THEOREM 4.1.2 Trace Theorem

Let s > 1
2 . Define the trace operator:

γ : D(Rn) → D(Rn−1), (γu)(x′) := u(x′, 0) .

‡Notice that an analogue Z of function W need not to be related to W , i.e., we do not need div W = Z.
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There exists a unique continuous extension of operator γ, denoted with the same symbol, to

γ : Hs(Rn) → Hs− 1
2 (Rn−1) .

PROOF It is sufficient to prove that the original operator γ is continuous in the Sobolev norms.

We have:

(γu)(x′) =

∫
Rn

û(ξ)ei2π(ξ
′·x′+ξn0) dξ

=

∫
Rn−1

(∫ ∞

−∞
û(ξ′, ξn) dξn

)
ei2πξ

′x′
dξ′ .

Applying the two-dimensional Fourier transform to both sides of the equality, we get,

γ̂u(ξ′) =

∫ ∞

−∞
û(ξ′, ξn) dξn =

∫ ∞

−∞
(1 + |ξ|2)− s

2 (1 + |ξ|2) s
2 û(ξ′, ξn) dξn .

Cauchy-Schwarz inequality implies now,

|γ̂u(ξ′)|2 ≤
∫ ∞

∞

dξn
(1 + |ξ′|2 + |ξn|2)s︸ ︷︷ ︸

=:Ms(ξ′)

∫ ∞

−∞
(1 + |ξ|2)s |û(ξ′, ξn)|2 dξn .

Use substitution ξn = (1 + |ξ′|2)1/2t, to obtain,

Ms(ξ
′) =

1

(1 + |ξ′|2)s− 1
2

∫ ∞

−∞

dt

(1 + t2)s︸ ︷︷ ︸
<∞ for s>1/2

and, consequently,

(1 + |ξ′|2)s− 1
2 |γ̂u(ξ′)|2 ≤ C

∫ ∞

−∞
(1 + |ξ|2)s |û(ξ)|2 dξn .

Finally, integrate wrt ξ′ ∈ Rn−1 to obtain,

∥γu∥2
Hs− 1

2 (Rn−1)
≤ C∥u∥2Hs(Rn) .

REMARK 4.1.3 If s = 1
2 + ϵ then the integral in Ms(ξ

′) is of order O(1/ϵ). This gives the final

blow up in the continuity constant for the trace operator (we need to take the square root in the

inequality above) of order O(1/ϵ
1
2 ).

Construction of the extension operator has already been given in Lemma 3.5.1 (operator η0). An alternate

construction can be based on the solution of the Dirichlet problem:{
−∆U + U = 0 in Rn−

U = u on Rn−1 .
(4.3)
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In order to derive an explicit formula for U (to investigate the continuity in fractional spaces), we first Fourier

transform boundary-value problem (4.3) in x′ and obtain the following ODE problem in xn.

(4π2|ξ′|2 + 1) Û − ∂2Û

∂x2n
= 0 Û(0) = û .

Selecting the exponentially decaying solution for xn → −∞, we get,

Û(ξ′;xn) = Ce(1+4π2|ξ′|2)1/2xn

and, upon utilizing the boundary condition, we obtain,

Û(ξ′;xn) = û(ξ′)e(1+4π2|ξ′|2)1/2xn xn < 0 .

Let ψ ∈ S(R) be now any extension of exponential ex, x ∈ (−∞, 0] to the whole real line. We use it to

extend the minimum energy extension above to the whole space:

Û(ξ′;xn) = û(ξ′)ψ((1 + 4π2|ξ′|2)1/2xn) xn ∈ R .

Fourier transforming in xn, we get:

Û(ξ) =

∫ ∞

i∞
û(ξ′)ψ((1 + 4π2|ξ′|2) 1

2xn︸ ︷︷ ︸
=t

)e−i2πξnxn dxn

= û(ξ′)(1 + 4π2|ξ′|2)− 1
2

∫ ∞

−∞
ψ(t)e

−i2π ξn

(1+4π2|ξ′|2)
1
2

t

dt︸ ︷︷ ︸
ψ̂( ξn

(1+4π2|ξ′|2)
1
2

)

. (4.4)

THEOREM 4.1.3 Extension Theorem

Let u ∈ Hs− 1
2 (Rn−1), s ∈ R. Let U(x) = Fξ→xÛ(ξ) with Û(ξ) given by (4.4). Extension operator:

Hs− 1
2 (Rn−1) ∋ u→ U ∈ Hs(Rn) (4.5)

is well-defined and continuous.

PROOF The estimate uses the same integration techniques as in the proof of the trace theorem.

We have,

∥U∥2Hs(Rn) =

∫
Rn

(1 + |ξ|2)s|Û(ξ)|2 dξ

=

∫
Rn−1

|û(ξ′)|2 (1 + 4π2|ξ′|2)−1

∫ ∞

−∞
(1 + |ξ|2)s|ψ̂( ξn

(1 + 4π2|ξ′|2) 1
2

)|2 dξn dξ′

≈
∫
Rn−1

|û(ξ′)|2 (1 + 4π2|ξ′|2)−1

∫ ∞

−∞
(1 + 4π2|ξ′|2 + ξ2n)

s|ψ̂( ξn

(1 + 4π2|ξ′|2) 1
2︸ ︷︷ ︸

=t

)|2 dξn dξ′

=

∫
Rn−1

(1 + 4π2|ξ′|2)s− 1
2 |û(ξ′)|2 dξ′

∫ ∞

−∞
(1 + t2)s|ψ̂(t)|2 dt

≈
∫
Rn−1

(1 + |ξ′|2)s− 1
2 |û(ξ′)|2 dξ′

∫ ∞

−∞
(1 + t2)s|ψ̂(t)|2 dt︸ ︷︷ ︸
<∞ for any s

.
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LEMMA 4.1.4

Let w ∈ C, ξ ∈ R be arbitrary numbers. The following inequality holds:

|z|2 + |ξz + w|2 ≥ |w|2

1 + ξ2
∀z ∈ C . (4.6)

PROOF An elementary calculation shows that

min
x

{x2 + (ξx+ b)2} =
b2

1 + ξ2

for b ∈ R and real argument x. Applying the inequality to x = ℜz,ℑz and b = ℜw,ℑw and summing

them up, gives the result.

LEMMA 4.1.5

Let ξ1, . . . , ξn ∈ R, v̂n ∈ C. The following inequality holds:

|v̂1|2 + . . .+ |v̂n|2 + |ξ1v̂1 + . . .+ ξnv̂n|2 ≥ 1 + |ξ|2

1 + |ξ′|2
|v̂n|2 (4.7)

for all v̂1, . . . , v̂n−1 ∈ C.

PROOF We use induction in n. For n = 1, inequality (4.7) turns into identity. Assume that the

inequality holds for n− 1. We have,

| v̂1︸︷︷︸
z

|2+ |v̂2|2 + . . .+ |v̂n|2 + |ξ1v̂1 + ξ2v̂2 + . . .+ ξnv̂n︸ ︷︷ ︸
w

|2

≥ |v̂2|2 + . . .+ |v̂n|2 + |ξ2v̂2+...+ξnv̂n|2
1+ξ21

(Lemma 4.1.4)

= |v̂2|2 + . . .+ |v̂n|2 + | ξ2
(1+ξ21)

1/2 v̂2 + . . .+ ξn
(1+ξ21)

1/2 v̂n|2

≥
1+

ξ22
1+ξ21

+...+
ξ2n

1+ξ21

1+
ξ22

1+ξ21
+...+

ξ2
n−1

1+ξ21

|v̂n|2 (induction assumption)

= 1+|ξ|2
1+|ξ′|2 |v̂n|

2 .

THEOREM 4.1.4 Normal Trace Theorem

Let s > − 1
2 . Define the normal trace operator:

γn : (D(Rn))n → D(Rn−1), (γnv)(x
′) = vn(x

′, 0) .
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There exists a unique continuous extension of operator γn, denoted with the same symbol, to

γn : Hs(div,Rn) → Hs− 1
2 (Rn−1) .

PROOF We use the same starting point as in the proof of Trace Theorem:

γ̂nv(ξ
′) =

∫ ∞

−∞
v̂n(ξ

′, ξn) dξn .

We insert now factor ( (1+|ξ|2)s+1

(1+|ξ′|2) )
1
2 and apply the Cauchy-Schwarz inequality,

|γ̂nv(ξ′)|2 ≤
∫ ∞

−∞

1 + |ξ′|2

(1 + |ξ|2)s+1
dξn︸ ︷︷ ︸

=:Ms(ξ′)

∫ ∞

−∞

(1 + |ξ|2)s+1

1 + |ξ′|2
|v̂n(ξ′, ξn)|2 dξn .

We use the same substitution, ξn = (1 + |ξ′|2)1/2t, to estimate term Ms(ξ
′),

Ms(ξ
′) = (1 + |ξ′|2)−(s− 1

2 )

∫ ∞

∞

dt

(1 + t2)s+1︸ ︷︷ ︸
<∞ for s>− 1

2

.

We multiply both sides by factor (1+ |ξ′|2)s− 1
2 , integrate over Rn−1, and use Lemma 4.1.5 to obtain

∥γnv∥2
Hs− 1

2 (Rn−1)
≤
∫ ∞

−∞

dt

(1 + t2)s+1

∫
Rn

(1 + |ξ|2)s 1 + |ξ|2

1 + |ξ′|2
|v̂n|2 dξn dξ′

≤
∫ ∞

−∞

dt

(1 + t2)s+1

∫
Rn

(1 + |ξ|2)s(|v̂1|2 + . . .+ |v̂n|2 + |ξ1v̂1 + . . .+ ξnv̂n|2) dξn dξ′

=

∫ ∞

−∞

dt

(1 + t2)s+1
∥v∥2Hs(div,Rn) .

Given our experience with the construction of the right inverse of trace operator γ, we base the construction

of the right inverse for the normal trace on the minimum energy extension problem as well:{
−∇(div V ) + V = 0 in Rn−

Vn = v on Rn−1 .
(4.8)

Taking the divergence of (4.8)1, we learn that V satisfies the problem above iff U = div V satisfies the

Neumann problem: 
−∆U + U = 0 in Rn−

∂U

∂xn
= v on Rn−1 .

(4.9)

The gradient V = ∇U is thus the desired extension of v. As before, in order to derive an explicit formula

for U , we first Fourier transform boundary-value problem (4.9) in x′ and obtain the following ODE problem

in xn.

(4π2|ξ′|2 + 1) Û − ∂2Û

∂x2n
= 0

∂Û

∂xn
(0) = v̂ .
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Selecting the exponentially decaying solution for xn → −∞, we get,

Û(ξ′;xn) = Ce(1+4π2|ξ′|2)1/2xn

and, upon utilizing the boundary condition, we obtain,

Û(ξ′;xn) = v̂(ξ′)(1 + 4π2|ξ′|2)−1/2e(1+4π2|ξ′|2)1/2xn xn < 0 .

Similarly to the technique used to arrive at extension (4.4), we extend the function to whole Rn with:

Û(ξ′;xn) = v̂(ξ′)(1 + 4π2|ξ′|2)−1/2ψ((1 + 4π2|ξ′|2)1/2xn) xn ∈ R

whereψ ∈ S(R) is an extension of the exponential. Notice the regularizing effect of factor (1+4π2|ξ′|2)−1/2.

If v ∈ Hs− 1
2 (Rn−1) then the inverse Fourier transform of v̂(ξ′)(1 + 4π2|ξ′|2)−1/2 lives in Hs+ 1

2 (Rn−1).

Fourier transforming in xn, we obtain the formula for the extension in the Fourier space,

Û(ξ) = v̂(ξ′)(1 + 4π2|ξ′|2)−1ψ̂

(
ξn

(1 + 4π2|ξ′|2) 1
2

)
. (4.10)

The only difference between (4.10) and (4.4) is the different value of exponent for the (1 + 4π2|ξ′|2) factor.

THEOREM 4.1.5 Extension Theorem for Normal Trace Space

Let s ∈ R and v ∈ Hs− 1
2 (Rn−1). Define V = ∇U where Fourier transform of U is given by

formula (4.10). Extension operator:

Hs− 1
2 (Rn−1) ∋ v → V ∈ Hs(div,Rn−)

is well-defined and continuous.

PROOF It is sufficient to notice that operator:

Hs− 1
2 (Rn−1) ∋ v → U ∈ Hs+1(Rn)

is continuous. Indeed, the gradient operator takes Hs+1(Rn) into (Hs(Rn))n and, in Rn−, div ∇U =

∆U = U ∈ Hs+1(Rn−) (better than needed). Note that the extension above is defined in the whole

Rn but the relation between the Laplacian ∆U and function U can be claimed only in the half space.

We now restrict ourselves to three dimensions, n = 3.

THEOREM 4.1.6 Tangential Trace

Let s > − 1
2 . Define the tangential trace operator:

γt : (D(R3))3 → (D(R2))2, (γtE)(x′) = (E1(x
′, 0), E2(x

′, 0)) .
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There exists a unique continuous extension of operator γt, denoted with the same symbol, to

Hs(curl,R3) → Hs− 1
2 (curl,R2) . (4.11)

PROOF Consider V = ∇× E. Then div V = 0 and, by the Normal Trace Theorem,

∥curl (γtE)∥
Hs− 1

2 (R2)
= ∥γn(∇× E)∥

Hs− 1
2 (R2)

= ∥γnV ∥
Hs− 1

2 (R2)

≲ ∥V ∥Hs(div ,R3) = ∥V ∥Hs(R3) = ∥∇× E∥Hs(R3) ≤ ∥E∥Hs(curl,R3) .

Next, by Lemma 4.1.4, and an elementary algebraic argument,

|Ê1|2 + |Ê3|2 + |ξ3Ê1 − ξ1Ê3|2 ≥ ξ23
1+ξ21

|Ê1|2 + |Ê1|2 =
1+ξ21+ξ

2
3

1+ξ21
|Ê1|2

≥ 1+ξ21+ξ
2
2+ξ

2
3

1+ξ21+ξ
2
2

|Ê1|2 (ab ≥ a+c
b+c for a > b, c > 0)

= 1+|ξ|2
1+|ξ′|2 |Ê1|2 .

By the same argument,

|Ê2|2 + |Ê3|+ |ξ2Ê3 − ξ3Ê2|2 ≥ 1 + |ξ|2

1 + |ξ′|2
|Ê2|2 .

Consequently,

1 + |ξ|2

1 + |ξ′|2
(|Ê1|2 + |Ê2|2) ≲ |Ê1|2 + |Ê2|2 + |Ê3|2 + |ξ3Ê1 − ξ1Ê3|2 + |ξ2Ê3 − ξ3Ê2|2 + |ξ1Ê2 − ξ2Ê1|2 .

Note that the last term on the right-hand side is redundant here but it was used in the estimate of

curl γtE. The rest of the proof follows the same lines as in the proof of the Normal Trace Theorem.

Extension theorem for tangential traces. We start with a heuristics similar to that for the standard and

normal traces. Let e ∈ Hs− 1
2 (curl,R2). As in the previous two cases, we would like to work with the

minimum energy extension E that satisfies the equation:

∇× (∇× E) + E = 0 , (4.12)

with boundary conditions on the tangential traces,

Ei(x
′, 0) = ei(x

′) , x′ ∈ R2, i = 1, 2 .

We cannot work directly with equations (4.12). After the Fourier transform in x′, we obtain a system of three

second order equations hard to analyze. Instead, we notice that by taking divergence of (4.12), we learn that

div E = 0. Recalling that

−∆E = ∇× (∇× E)−∇(div E) ,

we realize that solution of (4.12) must also satisfy the system of decoupled equations:

−∆E + E = 0 . (4.13)
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Conversely, taking divergence of (4.13), we learn that

−∆(div E) + div E = 0

To be able to conclude that solution of (4.13) is also divergence-free (equations (4.12) and (4.13) are then

equivalent), we need to impose a boundary condition for divergence,

div E(x′, 0) = 0 x′ ∈ R2 .

This leads to a Neumann boundary condition for E3. After the Fourier transform in x′, we get:

∂Ê3

∂x3
(ξ′; 0) = −i2π(ξ1ê1 + ξ2ê2) .

In the end, we end up with the following candidates for the extension:

Êi(ξ
′;x3) = êi(ξ

′)e(1+4π2|ξ′|2)
1
2 x3 , i = 1, 2

Ê3(ξ
′;x3) = −i2π(ξ1ê1 + ξ2ê2) (1 + 4π2|ξ′|2)− 1

2 e(1+4π2|ξ′|2)
1
2 x3 .

After extension to whole space we get,

Êi(ξ
′;x3) = êi(ξ

′)ψ((1 + 4π2|ξ′|2) 1
2x3) , i = 1, 2

Ê3(ξ
′;x3) = −i2π(ξ1ê1 + ξ2ê2) (1 + 4π2|ξ′|2)− 1

2ψ((1 + 4π2|ξ′|2) 1
2x3)

(4.14)

where ψ ∈ S(R) is an extension of the exponential. Given our experience from Theorem 4.1.3, this is

probably the most convenient form to analyze continuity properties of the extension operator. With ei ∈
Hs− 1

2 (R2), extensions Ei are clearly in Hs(R3). Concerning the third component, it is sufficient to notice

that factor

−i2π(ξ1ê1 + ξ2ê2) (1 + 4π2|ξ′|2)− 1
2

in Ê3 represents Fourier transform of a boundary data that lives also in Hs− 1
2 (R2).

The third component of ∇× E is given by the formula:

̂(∇× E)3(ξ
′;x3) = i2π[ξ1ê2(ξ

′)− ξ2ê1(ξ
′)]ψ((1 + 4π2|ξ′|2) 1

2x3)

with boundary data representing the two-dimensional curl that lives again in Hs− 1
2 (R2). The only tricky part

perhaps is with the remaining two components of ∇ × E. Computing the second component of ∇ × E in

the lower half space, we get:

∂Ê1

∂x3
− i2πξ1Ê3 =

[
ê1(1 + 4π2(ξ21 + ξ22))− 4π2ξ1(ξ1ê1 + ξ2ê2)

]
(1+ 4π2|ξ′|2)− 1

2ψ((1+ 4π2|ξ′|2) 1
2x3) .

(4.15)

The term in the square brackets must represent a boundary data§ in Hs− 3
2 (R2) which permits only the first

powers of ξi. Clearly, there must be some cancellations here to have a success story. This is where the

assumption on the boundary curl comes in again. We have

ĉurl e = i2π(ξ1ê2 − ξ2ê1) .

§We have the regularizing factor (1 + 4π2|ξ′|2)−
1
2 .
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Hence,

ξ1ξ2ê2 = ξ22 ê1 −
iξ2
2π

ĉurl e .

Substituting into the bracket, we get:

[· · · ] = [ê1 + i2πξ2ĉurl e]

which represents the expected regularity of boundary data. Consequently, the Hs norm of (4.15) is bounded

by the Hs− 1
2 (curl,R2) norm of the boundary data. Note that (4.15) represents the curl of the extension only

in the lower half-space. Identical reasoning works for the first component of ∇ × E. We have proved the

following result.

THEOREM 4.1.7 Extension Theorem for Tangential Trace Space

Let s ∈ R and e ∈ Hs− 1
2 (curl,R2). Define E = Fξ→xÊ where partial Fourier transform Ê is given

by formulas (4.14). Extension operator:

Hs− 1
2 (curl,R2) ∋ e→ E ∈ Hs(curl,R3

−)

is well-defined and continuous.

We summarize now our findings in three space dimensions.

THEOREM 4.1.8

Let s > − 1
2 . There exist three continuous trace operators mapping the differential complex energy

spaces onto the corresponding trace energy spaces defined on the boundary forming a two-dimensional

differential complex, with the following commuting diagram.

Hs+1(R3
−)

∇−→ Hs(curl,R3
−)

∇×−→ Hs(div,R3
−)

↓ γ ↓ γt ↓ γn

Hs+ 1
2 (R2)

∇−→ Hs− 1
2 (curl,R2)

curl−→ Hs− 1
2 (R2)

PROOF

Commutativity follows from the construction of the trace operators. The boundary sequence is

the 2D differential complex with regularity shifted by 1
2 .

REMARK 4.1.4 Notice that the theorem has been formulated using the language of the dif-

ferential complex only. This is for a reason, the discussed spaces do not form an exact sequence in

Rn, n = 1, 2, 3. Let us discuss for instance the 3D sequence. Fourier transforming the curl, we learn
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that

∇̂× E = 0 ⇔ Ê1

ξ1
=
Ê2

ξ2
=
Ê3

ξ3
.

The common value above is identified as the (Fourier transform of) scalar potential u,

i2πû =
Ê1

ξ1
=
Ê2

ξ2
=
Ê3

ξ3
.

First of all, contrary to a bounded domain where the scalar potential is always determined only up

to an additive constant, in the case of R3, the scalar potential is unique. Fourier transform of unity

is Dirac’s delta that is not a function, hence constants do not live in any Sobolev space. Does u live

in Hs(grad,R3) if ∇u is an element of (Hs(R3)3 ? It is easy to construct counterexamples showing

that, in general, the answer is negative, comp. Exercise 4.1.2. The only way out is thus to build

additional assumptions into the definition of the H(curl) space, to secure that the potential is in

the starting space H1+s(R3) ∼ Hs(grad,R3). The modified definition of the energy space reads as

follows:

{E ∈ Hs(curl,R3) :

∫
R3

(1 + |ξ|2)s 1 + |ξ|2

ξ2i
|Êi|2 dξ <∞ , i = 1, 2, 3} . (4.16)

Presence of the additional, singular factor 1+|ξ|2
ξ2i

secures that the potential is in the right energy

space. In particular, continuous Fourier transforms Êi must vanish at zero, see Exercise 4.1.3. This

says that, in a certain sense, components Ei have zero average. If we still insist on having an exact

sequence, the extra conditions for the H(curl) energy space propagate into extra, more complicated,

conditions for the H(div) space and so on. The moral of the story is to avoid the exact sequence

arguments when working in the whole space and stick with differential complexes only.

4.1.4 The Case of a Piecewise Smooth Hypograph

REMARK 4.1.5 We have a terrible notational conflict in what follows. The “hat” symbol û

and argument ξ have been so far exclusively reserved for the Fourier transform of function u and

its argument from the Fourier (frequency) domain. Unfortunately, exactly the same two symbols

have been used for parametric finite elements and Piola transforms known also as pullback maps. I

have decided to use the symbols nevertheless. I hope, you can survive it. Please review elementary

facts about curvilinear systems of coordinates ([14], Appendix 1) and derivation of Piola transforms

before reading this section.

We shall consider the standard map from the half-space onto the hypograph of a globally continuous and

piecewise smooth function ζ,

T : R3
− ∋ ξ = (ξ1, ξ2︸ ︷︷ ︸

=:ξ′

, ξ3) → x = (x1, x2︸ ︷︷ ︸
=:x′

, x3) ∈ Ω ⊂ R3
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defined as:

x′ = ξ′, x3 = ξ3 + ζ(ξ′) (4.17)

For ξ3 = 0, the map implies a parametrization of the boundary Γ of hypograph Ω. We shall make precise

assumptions about function ζ shortly.

If we consider the map to be a parametrization for Ω, we have the following formulas for the basis and

cobasis vectors.

a1 = ∂x
∂ξ1

= (1, 0, ζ,1) a2 = ∂x
∂ξ2

= (0, 1, ζ,2) a3 = ∂x
∂ξ3

= (0, 0, 1)

a1 = (1, 0, 0) a2 = (0, 1, 0) a3 = (−ζ,1,−ζ,2, 1)

Determinant of the Jacobian matrix ∂xi

∂ξj
, the jacobian [a1, a2, a3] := (a1 × a2) · a3 = 1. Normal to the

boundary equals the unit vector of a3,

n =

(
− ζ,1√

1+ζ2,1+ζ
2
,2

,− ζ,2√
1+ζ2,1+ζ

2
,2

, 1√
1+ζ2,1+ζ

2
,2

)
and the boundary cobasis vectors aαΓ = aα − (aα · n)n are given by:

a1Γ =
(

1+ζ2,2
1+ζ2,1+ζ

2
,2
,− ζ,1ζ,2

1+ζ2,1+ζ
2
,2
,

ζ,1
1+ζ2,1+ζ

2
,2

)
a2Γ =

(
− ζ,1ζ,2

1+ζ2,1+ζ
2
,2
,

1+ζ2,1
1+ζ2,1+ζ

2
,2
,

ζ,2
1+ζ2,1+ζ

2
,2

)
We employ now the usual pullback maps (Piola transforms) with unit jacobian,

û = u, Êi = Ej
∂xj

∂ξi
, v̂i =

∂ξi
∂xj

vj , f̂ = f

u = û, Ei = Êj
∂ξj
∂xi

, vi =
∂xi

∂ξj
v̂j , f = f̂

or, more explicitly,

E1 = Ê1 − ζ,1Ê3, E2 = Ê2 − ζ,2Ê3, E3 = Ê3

v1 = v̂1 v2 = v̂2 v3 = ζ,1v̂1 + ζ,2v̂2 + v̂3

Let ei denote the Cartesian unit vectors in Ω. From

E = Eiei = Êj
∂ξj
∂xi

ei︸ ︷︷ ︸
=aj

, v = viei =
∂xi
∂ξj

v̂jei = v̂j
∂xi
∂ξj

ei︸ ︷︷ ︸
=aj

(4.18)

follows that Êi can be interpreted as the covariant components ofE, and v̂i are the contravariant components

of v in the curvilinear system of coordinates implied by the parametrization T . As usual, we do not show the

compositions with parametrization T or its inverse, e.g. the inequality û = u assumes that either u stands for

u ◦ T or û means û ◦ T−1.

We make now precise assumptions about function ζ(ξ′).

R2 =
⋃m
j=1Gj , Gj are open and pairwise disjoint, j = 1, . . . ,m

ζ|Gj ∈ C1(Gj), j = 1, . . . ,m ,

ζ is globally continuous.

(4.19)
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Partition of R2 into sets Gj , j = 1, . . . ,m, implies a partition of Ω̂ := R3
− into sets Ω̂j := Gj × (−∞, 0).

Consequently, parametrization (4.17) of the hypograph domain is also piecewise smooth, see Fig. 4.2 for

illustration.

x

x
nξ

n

ξ’
G1 G2

Ω^
1

Ω^
2

x’

Ω

ξ

Figure 4.2
Parametrization of the hypograph domain.

The strategy for constructing traces for a piecewise smooth hypograph consists of three steps.

1. Given a function in one of the energy spaces defined on the hypograph domain Ω, we first pull it back

to the parametric domain (half-space) Ω̂ = R3
−. We will show that, with the assumed regularity on map

ζ(ξ′) and range s ∈ (− 1
2 ,

1
2 ), the Piola transforms map the energy spaces on Ω into their counterparts

defined on Ω̂.

2. We trace the pullbacked functions to the boundary of Ω̂ - the hyperplane.

3. We push forward the trace to boundary Γ of the hypograph domain Ω.

The first step is a consequence of Lemma 3.5.2 and Lemma 3.5.3 where we have studied invariance of Sobolev

spaces under multiplication and change of variables. In the second step we utilize the just proved results on

traces for the half-space domain. Finally, the preservation of boundary energy spaces necessary in the last

step will simply be a consequence of definitions; the trace spaces on ∂Ω will be defined as the images of the

corresponding trace spaces on the hyperplane under the boundary push forward maps.

We start by demonstrating that Piola transforms map the exact energy spaces defined on the hypograph Ω

onto the energy spaces defined on the half-space R3
−. Notice the commutativity properties of the pullback

maps:

∇̂û = ∇̂u, ∇̂× Ê = ∇̂× E, ∇̂ · v̂ = ∇̂ · v .

In fact, it is exactly these commutativity properties that have led to the definition of Piola transforms. Due

to the commutativity properties, it is sufficient to show only that all pullback maps preserve Hs spaces. Let
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s ∈ (− 1
2 ,

1
2 ). The first case is easy. Lemma 3.5.3 (k = 1) directly implies that

∥û∥Hs(Rn
−) ≲ ∥u∥Hs(Ω) .

For the Hs(curl) case, the Piola transform involves both change of variables and multiplication with the

Jacobian matrix,

Êi(ξ) = Ej(x(ξ))
∂xj
∂ξi

(x(ξ)) .

While there is no problem with the change of variable (same situation as in the Hs case), the multiplication

is a challenge. Jacobian is only piecewise continuous and Lemma 3.5.2 implies the result only for the trivial

case of s = 0. This is where the tilde spaces come in. Let E be a function defined on Ω and Ê be the

corresponding pullback function defined on Ω̂. Let Êj denote the restriction of Ê to subdomain Ω̂j , and ˜̂
Ej

its extension by zero to the whole space. Obviously, E =
∑
j
˜̂
Ej in Ω̂. Recall that

∥ ˜̂Ej∥Hs(R3) = ∥Êj∥H̃s(Ω̂j)
.

Therefore, we have,

∥Ê∥2
Hs(Ω̂)

≲
m∑
j=0

∥Ê∥2
H̃s(Ω̂j)

(triangle inequality)

≲
m∑
j=0

∥Ê∥2
Hs(Ω̂j)

(H̃s(Ω̂j) ∼ Hs(Ω̂j) for s ∈ (− 1
2 ,

1
2 ))

≲
m∑
j=0

∥E∥2Hs(Ωj)
(piecewise smooth parametrization)

≲ ∥E∥2Hs(Ω)

Note that, for the negative range of parameter s, Piola transforms involve multiplication of functionals with

elements of the Jacobian matrix. The same result holds for the inverse transformation Ê → E and the

remaining Piola transforms. Consequently, for s ∈ (− 1
2 ,

1
2 ),

∥û∥H1+s(R3
−) ≲ ∥u∥H1+s(Ω)

∥Ê∥Hs(curl,R3
−) ≲ ∥E∥Hs(curl,Ω)

∥v̂∥Hs(div,R3
−) ≲ ∥v∥Hs(div,Ω)

∥f̂∥Hs(R3
−) ≲ ∥f∥Hs(Ω)

with same inequalities valid for the inverse transforms as well. Of course, all equivalence constants depend

upon map ζ.

Traces on boundary of the hypograph. Extension of trace theorems for a half space to the hypograph

domain Ω is a direct consequence of definition of trace spaces on boundary Γ of domain Ω. We will use the

following notation for the boundary jacobian:

jacΓ(ξ
′) := (1 + ζ2,1 + ζ2,2)

1/2 .
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We derive first (formally) formulas for the pullbacks of all three traces defined on hypograph boundary Γ.

Given a function u : Γ → C, we denote the corresponding pullback on reference boundary by :

ûζ : R2 → C, ûζ(ξ
′) = u(ξ′, ζ(ξ′)) . (4.20)

It follows from (4.18) that the normal trace on Γ is given by:

vn = v̂jaj · n =
v̂3

jacΓ
.

This implies that the pullback of the normal trace is given by:

(v̂3)ζ := vn(ξ
′, ζ(ξ′)) jacΓ(ξ

′) . (4.21)

It follows again from (4.18) that the tangential trace on Γ is given by:

Et = Êαa
α
Γ .

Consequently, the pullback of the tangential trace is given by:

(Êα)ζ = Et(ξ
′, ζ(ξ′)) · aα , α = 1, 2 . (4.22)

The main idea is now to identify the trace spaces on hypograph boundary Γ by requesting the corresponding

pullbacks to be in the corresponding trace spaces for the half-space domain. Let s ∈ (0, 1). We define:

Hs(Γ) := {u : Γ → C : ûζ ∈ Hs(Rn−1)} (4.23)

with the norm,

∥u∥Hs(Γ) := ∥ûζ∥Hs(Rn−1) .

By construction, spaces Hs(Γ) and Hs(Rn−1) are isometric, and the pullback map is an isometric isomor-

phism.

Before we define the normal trace spaces, we need to extend the definition (4.21) to functionals. We do it

by using the duality. Notice that∫
Rn−1

(v̂3)ζ ϕ̂ζ dξ
′ =

∫
Rn−1

vn(ξ
′, ζ(ξ′))ϕ̂ζ(ξ

′) jacΓ(ξ
′)dξ′ =

∫
Γ

vnϕdΓ .

Let w be now any linear functional defined on just defined Hs(Γ). Let ϕ ∈ Hs(Γ). We define the pullback

ŵζ of w by:

⟨ŵζ , ϕ̂ζ⟩Rn−1 := ⟨w, ϕ⟩Γ .

This identifies the normal trace space as the topological dual of space Hs(Γ):

H−s(Γ) := {w ∈ (Hs(Γ))∗ : ŵζ ∈ H−s(Rn−1)} = (Hs(Γ))′ . (4.24)

with the norm:

∥w∥H−s(Γ) = sup
v∈Hs(Γ)

|⟨w, v⟩|
∥v∥Hs(Γ)

= ∥ŵζ∥H−s(Rn−1) .
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Again, by construction, spaces H−s(Γ) and H−s(Rn−1) are isometric, and the pullback map is an isometric

isomorphism.

We show now how the trace theorems for Hs and Hs(div) spaces in the reference domain imply automat-

ically their counterparts in the hypograph domain. Let u ∈ H1+s(Ω). Then û ∈ H1+s(Rn−). Consequently,

by Theorem 4.1.2, we have trace γ̂û ∈ H
1
2+s(Rn−1). We define trace γu ∈ H

1
2+s(Γ) by requesting that the

trace of the domain pullback matches the boundary pullback of the trace,

(̂γu)Γ = γ̂û .

For sufficiently regular functions u this simply means that

(γu)(x) := (γ̂û)(ξ′) where x = (ξ′, ζ(ξ′)) ∈ Γ .

Continuity of trace operator γ follows immediately from continuity of trace operator γ̂ and definition of trace

space on Γ,

∥γu∥H1/2+s(Γ) = ∥γ̂û∥H1/2+s(Rn−1) ≲ ∥û∥H1+s(Rn
−) ≲ ∥u∥H1+s(Ω) .

Note that, by construction, surjectivity of γ̂ implies the surjectivity of γ.

We have the same reasoning for normal traces. Let v ∈ Hs(div,Ω), s ∈ (− 1
2 ,

1
2 ). Then v̂ ∈ Hs(d̂iv,Rn−)

and, by Theorem 4.1.4, we have the normal trace γ̂nv̂ ∈ Hs−1/2(Rn−1). Trace γnv ∈ Hs−1/2(Γ) is

identified as the unique functional that satisfies:

(̂γnv)ζ = γ̂n v̂ .

Continuity and surjectivity of the normal trace follows in the same way as above.

Traces for spaceHs(curl,Ω) are defined in three dimensions only. Let s ∈ (0, 1). We begin by introducing

the space of tangential test vector fields:

Hs
t (Γ) := {F t : Γ → R3 : F̂ tζ ∈ (Hs(R2))2} (4.25)

where the boundary pullback is defined as:

Hs
t (Γ) ∋ F t → F̂ tζ := (F̂ 1

ζ , F̂
2
ζ ) ∈ (Hs(R2))2, such that F̂ βζ aβ jac−1

Γ = F t

Note that, ∫
Γ

EtF
t dS =

∫
R2

((Êα)ζa
α
Γ) · (F̂

β
ζ aβ) dξ

′ =

∫
R2

(Êα)ζF̂
α
ζ dξ

′ .

This suggests to define the pullback (Êt)ζ for any Et ∈ (Hs
t (Γ))

∗ by duality as:

⟨(Êt)ζ , F̂ tζ ⟩R2 = ⟨Et, F t⟩Γ ∀F t ∈ Hs
t (Γ) .

The trace space is now defined as:

H−s(curlΓ,Γ) := {Et ∈ (Hs
t (Γ))

∗ : (Êt)ζ ∈ H−s(curl,R2)}. (4.26)
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equipped with the norm:

∥Et∥H−s(curlΓ,Γ) := ∥(Êt)ζ∥H−s(curl,R2) .

Note that, again, spaces H−s(curlΓ,Γ) and H−s(curl,R2) are isometrically isomorphic by construction.

Now, let E ∈ Hs(curl,Ω), s ∈ (− 1
2 ,

1
2 ). As a consequence of regularity assumptions on function ζ defining

the boundary, the pullback function Ê ∈ Hs(curl,R3
−). Let γ̂tÊ ∈ Hs−1/2(curl,R2) be the corresponding

tangential trace on reference boundary R2. We define tangential trace γtE for the hypograph domain as the

unique functional in Hs− 1
2 (curlΓ,Γ) such that

(̂γtE)ζ = γ̂tÊ .

The continuity of the trace on Γ is once again a direct consequence of the definitions,

∥γtE∥Hs−1/2(curlΓ,Γ) = ∥γ̂tÊ∥Hs−1/2(curl,R2) ≲ ∥Ê∥Hs(curl,R3
−) ≲ ∥E∥Hs(curl,Ω) .

As before, surjectivity of γt follows from the surjectivity of γ̂t.

REMARK 4.1.6 Note that we are not concerned with the topology of test space Hs
t (Γ). The

only reason for introducing the space is to be able to define the pullback (Êt)ζ . We simply need

a class of objects for which we can define the pullback for. What matters in the end is only the

subspace of the algebraic dual (Hs
t (Γ))

∗ corresponding to pullbacks from H−s(curl,R2). We could

have used more regular test functions in place of Hs
t (Γ).

In the same spirit, boundary pullback for the normal trace could have been defined using more

regular test functions than Hs(Γ). Note that only a-posteriori H−s(Γ) is identified as a topological

dual of Hs(Γ).

Commuting Boundary Diagram. For sufficiently regular functions, we define the boundary operators as

follows.

• Surface gradient:

∇Γu = (∇u)t =
∂û

∂ξα
aαΓ .

• Surface scalar-valued curl:

curlΓEt = (∇× E) · n =
Ê2,1 − Ê1,2

jacΓ
.

For elements of trace spaces, we have to define the operators by duality or, more directly, by utilizing the

boundary pullback operators. Let s ∈ (− 1
2 ,

1
2 ). The surface gradient ∇Γu of a function u ∈ Hs(Γ) is

the unique element of H−s(curlΓ,Γ) such that its boundary pullback coincides with the two-dimensional

gradient ∇ξ′ ûζ . Similarly, the surface curlΓEt of Et ∈ H−s(curlΓ,Γ) is the unique element of H−s(Γ)

whose boundary pullback coincides with two-dimensional curl Ê2,1 − Ê1,2.
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We summarize our discussions for the hypograph domain with the following theorem.

THEOREM 4.1.9

Let s ∈ (− 1
2 ,

1
2 ) and let Ω by a piecewise smooth hypograph domain with boundary Γ. There exist

three continuous trace operators mapping the differential complex energy spaces onto the correspond-

ing trace energy spaces defined on the boundary forming a 2D differential complex, with the following

commuting diagram.

Hs+1(Ω)
∇−→ Hs(curl,Ω) ∇×−→ Hs(div,Ω)

↓ γ ↓ γt ↓ γn

Hs+ 1
2 (Γ)

∇Γ−→ Hs− 1
2 (curlΓ,Γ)

curlΓ−→ Hs− 1
2 (Γ)

PROOF The proof is a direct consequence of discussed definitions of trace spaces, trace operators

and boundary operators for the hypograph domain and Theorem 4.1.8.

4.1.5 The Case of a Polyhedral Domain

Definition of trace operators and spaces, continuity and surjectivity of the trace operators follows now the

classical construction based on the definition of a polyhedral domain and the partition of unity argument.

Following the definition of a polyhedral domain, we consider a partition of unity {ψj} subordinate to the

open cover Wj of domain Ω with its boundary Γ, i.e.

ψj ∈ D(Wj),

J∑
j=0

ψj(x) = 1, x ∈ Ω, supp ψ0 ⊂ Ω .

Let s ∈ (− 1
2 ,

1
2 ) and Γj denote the boundary of hypograph Ωj . We define,

Hs+ 1
2 (Γ) := {u : Γ → C : ψju ∈ Hs+ 1

2 (Γj), j = 1, . . . , J}

∥u∥2
Hs+1

2 (Γ)
:=

J∑
j=1

∥ψju∥2
Hs+1

2 (Γj)
.

(4.27)

For v ∈ (H−s+ 1
2 (Γ))∗, we define the product of v with partition of unity function ψj in the usual way,

⟨ψjv, ϕ⟩ := ⟨v, ψjϕ⟩, ϕ ∈ H−s+ 1
2 (Γ) .

Note that the product ψjϕ ∈ H−s+ 1
2 (Γ) which makes the product ψjv well-defined. The normal trace space

is now defined as follows:

Hs− 1
2 (Γ) := {v ∈ (H−s+ 1

2 (Γ))∗ : ψjv ∈ Hs− 1
2 (Γj), j = 1, . . . , J}

∥v∥2
Hs− 1

2 (Γ)
:=

J∑
j=1

∥ψjw∥2
Hs− 1

2 (Γj)
.

(4.28)
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In order to define the tangential trace space, we need to define first the space of tangential test fields,

H
−s+ 1

2
t (Γ) := {F t : Γ → R3 : ψjF

t ∈ H
−s+ 1

2
t (Γj), j = 1, . . . , J}} (4.29)

where space H−s+ 1
2

t (Γj) is defined by (4.25). We define now the tangential trace space as:

Hs− 1
2 (curlΓ,Γ) := {E ∈ (H

−s+ 1
2

t (Γ))∗ : ψjE ∈ Hs− 1
2 (curlΓ,Γj), j = 1, . . . , J}

∥E∥2
Hs− 1

2 (curlΓ,Γ)
:=

J∑
j=1

∥ψjE∥2
Hs− 1

2 (curlΓ,Γj)

(4.30)

where the product ψjE is again defined by duality,

⟨ψjE,F t⟩ := ⟨E,ψjF t⟩, F t ∈ H
−s+ 1

2
t (Γ) .

Note that the product ψjF t is in the correct space by definition.

The trace theorems follow now immediately from the corresponding trace theorems for the hypograph

domain.

THEOREM 4.1.10

Let s ∈ (− 1
2 ,

1
2 ) and let Ω by a piecewise smooth polyhedral domain with boundary Γ. There exist

three continuous trace operators mapping the differential complex energy spaces onto the correspond-

ing trace energy spaces defined on the boundary forming a 2D differential complex, with the following

commuting diagram.

Hs+1(Ω)
∇−→ Hs(curl,Ω) ∇×−→ Hs(div,Ω)

↓ γ ↓ γt ↓ γn

Hs+ 1
2 (Γ)

∇Γ−→ Hs− 1
2 (curlΓ,Γ)

curlΓ−→ Hs− 1
2 (Γ)

PROOF We shall prove the continuity and surjectivity of trace operator γ. The corresponding

proofs for operators γn and γt are fully analogous. Let u ∈ C∞(Ω). We have,

∥u∥2
Hs+1

2 (Γ)
=

J∑
j=1

∥ψju∥2
Hs+1

2 (Γj)
(Definition (4.27))

≲
J∑
j=1

∥ψju∥2Hs+1(Ωj)
(Theorem 4.1.9)

=

J∑
j=1

∥ψju∥2Hs+1(Ω) (change of coordinates)

≲ ∥u∥2Hs+1(Ω) (Lemma 3.5.2) .

Not that, in passing from domains Ωj to domain Ω we change the system of coordinates but the

Sobolev spaces and norms are invariant under translation and rotation of coordinates. Finally, we



Trace Theorems 131

jG

Figure 4.3
Open cover set Gj

use the density of C∞(Ω) in Hs+1(Ω), to conclude the existence and continuity of trace operator γ

defined on Hs+1(Ω).

To prove the surjectivity of the trace operator, consider and arbitrary u ∈ Hs+ 1
2 (Γ). By definition,

ψju ∈ Hs(Γj) with a support in the shaded subset of Gj illustrated in Fig.4.3. Let Uj ∈ Hs+ 1
2 (Ωj)

be an extension of ψju to hypograph domain Ωj . Let χj be the indicator function of the shaded

subset and χϵj its smoothed version with a slightly larger support illustrated with the larger rectangle

that is still contained in open set Gj . Truncate extension Uj with χ
ϵ
j and define

U :=

J∑
j=1

χϵjUj

We have:

∥U∥
Hs+1

2 (Ω)
≲

J∑
j=1

∥χϵjUj∥Hs+1
2 (Gj)

(triangle inequality)

≲
J∑
j=1

∥Uj∥
Hs+1

2 (Ωj)
(Lemma 3.5.2)

≲
J∑
j=1

∥ψju∥Hs(Γj) (Extension Theorem for Hs+ 1
2 (Γj)) .

Square both sides to finish the argument.

REMARK 4.1.7 The trace norms depend upon the partition of unity but the corresponding

trace spaces do not. Critical in the proof of this fact is the existence of right-inverses of trace
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operators. Let {ψj} and {ϕi} be two partitions of unity subordinate to two open covers Gj and

Hi. Let u ∈ Hs+ 1
2 (Γ) and U ∈ Hs+1(Ω) be the corresponding extension discussed above. Using the

continuity of trace operator defined with the second partition {ϕi}Ii=1 we have,

I∑
i=1

∥ϕiU∥2Hs(Γi)
≲ ∥U∥2

Hs+1
2 (Ω)

and, so, norm (4.27) corresponding to partition {ϕi} is bounded by the norm corresponding to

partition {ψj}. Analogous results hold for the normal and tangential traces.

4.1.6 Characterization of functions with zero traces. Relation with spaces Hs
0(Ω)

Recall that

Hs
0(Ω) := C∞

0 (Ω)
Hs(Ω)

.

The test functions vanish on the boundary. Given the trace theorem, should we expect, for the range s ∈
( 12 ,

3
2 ), the closure to coincide with functions that also vanish (in the sense of traces) on the boundary ? The

answer is “yes”.

THEOREM 4.1.11

Let Ω be a Ck−1,1 domain, and s ∈ ( 12 , k]. We have:

Hs
0(Ω) = {u ∈ Hs(Ω) : γ(∂αu) = 0 on Γ, ∀ |α| < s− 1

2
} .

PROOF Inclusion ⊂ is a direct consequence of definition of Hs
0(Ω) and continuity of trace

operator. We will prove the inverse inclusion for the half space Ω = Rn− and leave the rest of the

proof for Exercise 4.1.4. Consider the closed subspace of Hs(Rn−):

V := {u ∈ Hs(Rn−) : γ(∂αu) = 0 ∀ |α| < s− 1

2
} .

If Hs
0(Rn−) were only a proper (closed) subspace of V then, by Mazur’s Theorem or Orthogonal

Decomposition Theorem, there would exist non-zero functionals l ∈ V ′ that vanish on Hs
0(Rn−). We

will show that this is impossible. Towards this end, let l ∈ V ′ such that l(ϕ) = 0 ∀ϕ ∈ Hs
0(Rn−).

By Hahn-Banach Theorem, functional l admits an extension

L ∈ (Hs(Rn−))′ = H̃−s
Ω (Rn) = H−s

Ω
(Rn) ,

As L = l on V and vanishes on D(Rn−), the support of L is contained in F := Rn−1. By Theo-

rem 3.5.1, there exist vj ∈ H−s+j+ 1
2 (Rn−1) such that

L =
∑

0≤j≤s− 1
2

vj ⊗ δ(j) .
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But this implies that, for all ϕ ∈ V ,

l(ϕ) = L(ϕ) =
∑

0≤j<s− 1
2

(−1)j⟨vj , γ(∂jnϕ)⟩ = 0 .

Thus l vanishes on the entire V .

REMARK 4.1.8 As usual, for a domain with piecewise smooth k − 1 derivatives, the result

extends to s ∈ ( 12 , k +
1
2 ). In particular, for a piecewise smooth C0 domain,

Hs
0(Ω) = {u ∈ Hs(Ω) : γu = 0 on Γ} ,

for all s ∈ ( 12 ,
3
2 ). In other words, test functions from a dense subset in the subspace of functions

with zero trace.

The result discussed above generalizes to the remaining energy spaces.

THEOREM 4.1.12

Let Ω be a polyhedral domain, and s ∈ (− 1
2 ,

1
2 ). The following density results hold:

{u ∈ Hs(grad,Ω) : γu = 0 on Γ} = C∞
0 (Ω)

Hs(grad,Ω)

{v ∈ Hs(div,Ω) : γnv = 0 on Γ} = (C∞
0 (Ω))n

Hs(div,Ω)

{E ∈ Hs(curl,Ω) : γtE = 0 on Γ} = (C∞
0 (Ω))3

Hs(curl,Ω)

PROOF The first result has already been proved but we present here an alternate proof that

applies to the remaining cases as well. We will consider again only the half-space case, Ω = Rn−,
leaving the rest of the proof for an exercise. We shall present the H(div) case, the proof of the other

two cases is fully analogous. Consider a function v ∈ H(div,Rn−) with zero normal trace γnv = 0,

and let ε > 0 be an arbitrary number. By the density result from Theorem 4.1.1, for any ε1, there

exists a function φ ∈ (C∞
0 (Rn−))n such that

∥v − φ∥Hs(div,Rn
−) < ε1 .

Note that function φ may not have the zero (normal) trace. However, we can use results on traces

and extension operators to modify it to enforce the zero trace condition. We define,

ϕ = φ− Edivγnφ

where Ediv is the extension operator discussed in Theorem 4.1.5. We have

∥v − ϕ∥Hs(div,Rn
−) = ∥(I − Edivγn)(v − φ)∥Hs(div,Rn

−) ≤ ∥I − Edivγn∥ ∥v − φ∥Hs(div,Rn
−) .
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Selecting ε1 = ε/4∥I − Edivγn∥, we can bound the term above by ε/4. Definition of extension

operator¶ implies that ϕ is a C∞ function but not necessarily with a compact support, though.

Next we shift function ϕ downward and extend it to the whole space by zero.

ϕδ(x
′, xn) :=

{
ϕ(x′, xn + δ) xn < −δ
0 xn > −δ .

The zero trace condition and the localization argument used in Section 4.1.4 imply that, for the

range of s ∈ (− 1
2 ,

1
2 ), function ϕδ ∈ Hs(div,Rn). For sufficiently small shift δ,

∥ϕ− ϕδ∥Hs(div,Rn
−) <

ε

4
.

Note that ϕδ, in general, is not a C∞ function. It may also not have a compact support. We

first take care of the support. Truncating function ϕδ with the standard smooth approximation χϵR

(different ϵ!) of indicator function χR of ball B̄(0, R) (comp. proof of Theorem 4.1.1), we replace ϕδ

with ϕδR that is still in space Hs(div,Rn) but now has a compact support contained in half-space

Rn− and, for sufficiently large radius R, it remains within the ε/4 distance from function ϕδ.

Finally, we convolute function ϕδR with function ψϵ used in Theorem 2.3.2 (yet another ϵ, sorry...).

Convolution ψϵ ∗ ϕδR is a C∞ function and, for sufficiently small ϵ,

supp ψϵ ∗ ϕδR ⊂ Rn− and ∥ϕδR − ψϵ ∗ ϕδR∥Hs(Rn) <
ε

4
.

We conclude that

∥v−ψϵ∗ϕδR∥Hs(Rn
−) ≤ ∥v−ϕ∥Hs(Rn

−)+∥ϕ−ϕδ∥Hs(Rn
−)+∥ϕδ−ϕδR∥Hs(Rn

−)+∥ϕδR−ψϵ∗ϕδR∥Hs(Rn
−) < ε .

The proof seems to be perhaps somehow technical but it is quite elementary, and it recycles the already

familiar arguments. The key point of the reasoning above is that, for the range s ∈ (− 1
2 ,

1
2 ), functions with

zero trace can be extended by zero to a finite energy function defined on the whole space.

Exercises

Exercise 4.1.1 Prove equality (4.2) for Ω = Rn. (1 point)

Exercise 4.1.2 Construct a function u such that ∇u ∈ (Hs(R3))3 but u /∈ Hs(R3). Hint: Work in the

frequency domain. (2 points)

Exercise 4.1.3 Show that if E belongs to energy space (4.16) and its Fourier transform is continuous, then

Êi(0) = 0. (3 points)

¶Solution of the Neumann problem in half space with C∞ data on the hyperplane is a C∞ function.
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Exercise 4.1.4 Finish proof of Theorem 4.1.11, first for the case of a Ck−1,k hypograph domain, and then

for a general Ck−1,k domain. (10 points)

sectionMinimum Energy Extensions and Rotated Trace for Space H(curl,Ω)

As we have shown, the norms used for the trace spaces depend upon the open cover of the boundary

and the corresponding subordinate partition of unity functions. However, the corresponding trace spaces are

unique. It is no surprise perhaps then that these norms are of little practical importance. The actual, physically

meaningful norms are given by the minimum energy extensions:

|||u|||2
Hs+1

2 (Γ)
= min{∥U∥2Hs+1(Ω) : U ∈ Hs+1(Ω), γU = u}

|||v|||2
Hs− 1

2 (Γ)
= min{∥V ∥2Hs(div,Ω) : V ∈ Hs(div,Ω), γnV = v}

|||e|||2
Hs− 1

2 (curlΓ,Γ)
= min{∥E∥2Hs(curl,Ω) : E ∈ Hs(curl,Ω), γtE = e}

(4.31)

The continuity and surjectivity of trace operators implies that the minimum energy extension norms are

equivalent to trace norms defined with partition of unity functions in Section 4.1 (Exercise 4.1.2).

Recall that, for a hypograph domain, trace spaces Hs(Γ) and H−s(Γ) form a duality pairing. It turns out

that this duality pairing is preserved for a general domain when we use the minimum energy extension norms

but only for s = 0. The first hint comes from the integration by parts formula:

(div v, u) = −(v,∇u) + ⟨v · n, u⟩ .

This gives us the representation of the boundary term in terms of the domain integrals:

⟨v · n, u⟩ = (div v, u) + (v,∇u) .

Cauchy-Schwarz inequality implies∥ then,

|⟨v · n, u⟩| ≤ ∥v∥H−s(div,Ω) ∥u∥Hs(grad,Ω) .

Taking minimum energy extensions on the right-hand side, we get,

|⟨v · n, u⟩| ≤ |||v · n|||H−s(Γ) |||u|||Hs(Γ)

where the norms on the right-hand side are now the minimum energy extension norms. The inequality implies

that

|||v · n|||
(Hs− 1

2 (Γ))′
≤ |||v · n|||

H−s− 1
2 (Γ)

and |||u|||
(Hs+1

2 (Γ))′
≤ |||u|||

H−s+1
2 (Γ)

. (4.32)

The reverse inequalities hold only with multiplicative constants, Due to the equivalence of the minimum

energy extension norms and trace norms defined with partition of unity functions, it is sufficient to prove it

for the latter norms. Critical is the following property of Hilbert spaces.

∥Provided we equip H̃−s(Ω) = H−s(Ω), for s > 0, with the dual norm to Hs-norm.
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LEMMA 4.1.6

Let V be a Hilbert space and

V = V1 ⊕ V2 ⊕ . . .⊕ Vn

be an orthogonal decomposition of V , i.e.,

∥v∥2 =

n∑
j=1

∥vj∥2 where v =

n∑
j=1

vj , vj ∈ Vj , j = 1, . . . , n .

Then, for any l ∈ V ′,

∥l∥2V ′ = sup
v∈V

|l(v)|2

∥v∥2
=

n∑
j=1

sup
vj∈Vj

|l(vj)|2

∥vj∥2
.

PROOF See Exercise 4.1.3.

Let vn = v · n denote the normal trace. We have,

sup
u∈Hs+1

2 (Γ)

|⟨vn, u⟩|2

∥u∥2
Hs+1

2 (Γ)

= sup
u∈Hs+1

2 (Γ)

|⟨vn,
∑J
j=1 ψju⟩|2∑J

j=1 ∥ψju∥2
Hs+1

2 (Γj)

=

J∑
j=1

sup
u∈Hs+1

2 (Γ)

|⟨vn, ψju⟩|2

∥ψju∥2
Hs+1

2 (Γj)

(Lemma 4.1.6)

=

J∑
j=1

sup
u∈Hs+1

2 (Γ)

|⟨ψjvn, u⟩|2

∥ψju∥2
Hs+1

2 (Γj)

≥ 1

C2

J∑
j=1

sup
u∈Hs+1

2 (Γ)

|⟨ψjvn, u⟩|2

∥u∥2
Hs+1

2 (Γj)

(∥ψju∥
Hs+1

2 (Γj)
≤ C∥u∥

Hs+1
2 (Γj)

)

=
1

C2

J∑
j=1

∥ψjvn∥2
H−s− 1

2 (Γj)
(duality of norms on the hypograph boundary)

=
1

C2
∥vn∥2

H−s− 1
2 (Γ)

We can conclude thus that, modulo a multiplicative constant, the minimum energy extension norm is bounded

by the dual norm. Same result holds for trace u ∈ Hs+ 1
2 (Γ).

For s = 0, however, the two minimum energy extension norms are dual to each other. Indeed, consider the

dual norm to the minimum energy extension norm in H
1
2 (Γ),

|||vn|||
(H

1
2 (Γ))′

:= sup
u∈H

1
2 (Γ)

|⟨vn, u⟩|
|||u|||

H
1
2 (Γ)

= sup
U∈H(grad,Ω)

|⟨vn, U⟩|
∥U∥H(grad,Ω)

where the second equality is an immediate consequence of the minimum energy extension norm for trace

space H
1
2 (Γ). Riesz Representation Theorem implies that the dual norm is equal to the H(grad,Ω) norm of

the solution U of the variational problem:

(∇U,∇Φ) + (U,Φ) = ⟨v · n,Φ⟩ Φ ∈ H(grad,Ω)
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or, equivalently, the Neumann problem:{−div(∇U) + U = 0 in Ω

∂U
∂n = ∇U · n = vn on Γ .

Taking gradient of the first equation, we realize that V = ∇U satisfies the boundary-value problem (BVP):{
−∇(div V ) + V = 0 in Ω

V · n = vn on Γ .

Vice-versa, by taking divergence of the grad-div equation for V , we realize that U = div V satisfies the first

BVP. The two problems are thus equivalent to each other and ∥U∥H(grad,Ω) = ∥V ∥H(div,Ω). The point of the

story is that the dual norm leads to a Neumann BVP for Riesz Representation function U which in turn is

equivalent to the Dirichlet BVP for V . Clearly, V is the minimum energy extension of vn and ∥V ∥H(div,Ω)

equals the dual norm ∥vn∥
(H

1
2 (Γ))′

. Note that we had already exploited this relation between functions U

and V in our construction of the extension operator for trace space H−s(Rn−1).

REMARK 4.1.9 An interpolation argument implies that reverse inequalities to (4.32) hold with

multiplicative constants converging to one, as s→ 0, see Exercise 4.1.4.

Now comes a big point. If operators grad and div, and the corresponding traces and trace spaces are in

duality,

where is a duality cousin of operator curl, energy space Hs(curl,Ω), and trace space Hs− 1
2 (curlΓ,Γ) ?

The answer comes again from the integration by parts formula. Let s ∈ (− 1
2 ,

1
2 ) and Et := γtE, E ∈

H−s(curl,Ω). Integration by parts formula:

⟨n× Et, Ft⟩ = (∇× E,F )− (E,∇× F ) (4.33)

identifies n×Et as a linear and continuous functional defined onHs− 1
2 (curlΓ,Γ), comp. Exercise 4.1.5. For

s = 0, the dual norm of n× Et,

∥n× Et∥(H−1/2(curlΓ,Γ))′ = sup
Ft∈H−1/2(curlΓ,Γ)

|⟨n× Et, Ft⟩|
∥Ft∥H−1/2(curlΓ,Γ)

= sup
F∈H(curl,Ω)

|⟨n× Et, Ft⟩|
∥Ft∥H(curl,Ω)

equals the H(curl,Ω) norm of solution F of the Neumann problem (Riesz operator argument):{
∇× (∇× F ) + F = 0

n× (∇× F ) = n× Et .
(4.34)

Function H = ∇× F solves the Dirichlet problem:{
∇× (∇×H) +H = 0

n×Ht = n× Et .
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and ∥H∥H(curl,Ω) = ∥E∥H(curl,Ω). As n × Ht = n × Et is equivalent to Ht = Et, the rotation n× is

an isometry from H− 1
2 (curlΓ,Γ) into its dual. To see that rotation n× is actually a surjection, consider an

arbitrary ψ ∈ (H− 1
2 (curlΓ,Γ))′ and the corresponding Neumann boundary-value problem (4.34) with ψ in

place of n×Et. Take then E = ∇×H where H is the solution of the Neumann problem to get n×Et = ψ.

By the same arguments as for the grad-div pair, the rotation is no longer an isometry for s ̸= 0, but it is

continuous with norm converging to one as s→ 0.

The dual space (Hs− 1
2 (curlΓ,Γ))′ is denoted with symbol H−s− 1

2 (divΓ,Γ). Indeed, in the case of half

space Ω = R3
−,

divΓ(n× E) = −curlΓE .

The surface divΓ operator can be extended to a smooth boundary with the H−s− 1
2 (divΓ,Γ) defined inde-

pendently and only a-posteriori identified with the dual of trace space Hs− 1
2 (curlΓ,Γ)). The point of this

presentation has been to show that there is no need for a separate construction of such a space as its elements

can be simply identified with the rotated traces of space Hs− 1
2 (curlΓ,Γ)). This applies to the discretization

of rotated traces as well.

Exercises

Exercise 4.1.1 Justify the use of minimum in the definition of minimum energy extension norms (4.31). (5

points)

Exercise 4.1.2 Show that minimum energy extension norms (4.31) are equivalent to the norms defined with

partition of unity functions in Section 4.1. Hint: Use the fact that both trace operator and its right

inverse are continuous. (3 points)

Exercise 4.1.3 Prove Lemma 4.1.6. (3 points)

Exercise 4.1.4 Use the real interpolation theory and results discussed in this section to show that there exist

constants C1, C2 ≥ 1 such that

|||vn|||
Hs− 1

2 (Γ)
≤ Cs1 |||vn|||(H−s+1

2 (Γ))′
and |||u|||

Hs+1
2 (Γ)

≤ Cs2 |||u|||(H−s− 1
2 (Γ))′

.

for any s ∈ [−s0, s0], s0 < 1
2 . (2 points)

Exercise 4.1.5 Let ϕ ∈ Hs− 1
2 (curlΓ,Γ), and Φ ∈ Hs(curl,Ω) be an extension of ϕ. Let E ∈ H−s(curl,Ω).

Consider (4.33):

⟨n× Et, ϕ⟩ = (∇× E,Φ)− (E,∇× Φ)

with γtΦ = ϕ. Demonstrate that the right-hand side is invariant under the change of extension and,

therefore, defines a linear functional defined on Hs− 1
2 (curlΓ,Γ). Show that the functional is continu-

ous. Hint: You will need Theorem 4.1.12. (3 points)
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[2] J. Bergh and J. Löfström. Interpolation Spaces. Springer-Verlag, Berlin, 1976.

[3] A. Buffa and P. Ciarlet. On traces for functional spaces related to Maxwell’s equations. Part I: an

integration by parts formula in Lipschitz polyhedra. Part II: Hodge decompositions on the boundary of

Lipschitz polyhedra and applications. Math. Meth. Appl., 21:9–30,31–49, 2001.

[4] A. Buffa, M. Costabel, and D. Sheen. On traces for H(curl,Ω) in Lipshitz domains. J. Math. Anal.

Appl., 276:845–876, 2002.

[5] W. Cao and L. Demkowicz. Optimal error estimate for the Projection-Based Interpolation in three

dimensions. Comput. Math. Appl., 50:359–366, 2005.

[6] C. Carstensen, L. Demkowicz, and J. Gopalakrishnan. Breaking spaces and forms for the DPG method

and applications including Maxwell equations. Comput. Math. Appl., 72(3):494–522, 2016.

[7] L. Demkowicz. Various variational formulations and Closed Range Theorem. Technical report, ICES,

January 15–03.

[8] L. Demkowicz. Projection-Based Interpolation. In Transactions on Structural Mechanics and Materi-

als. Cracow University of Technology Publications, Cracow, 2004. Monograph 302, A special issue in

honor of 70th Birthday of Prof. Gwidon Szefer, see also ICES Report 04-03.

[9] L. Demkowicz. Computing with hp Finite Elements. I.One- and Two-Dimensional Elliptic and Maxwell

Problems. Chapman & Hall/CRC Press, Taylor and Francis, Boca Raton, October 2006.

[10] L. Demkowicz. Polynomial exact sequences and Projection-Based Interpolation with applications to

Maxwell equations. In D. Boffi and L. Gastaldi, editors, Mixed Finite Elements, Compatibility Con-

ditions and Applications, volume 1939 of Lecture Notes in Mathematics, pages 101–158. Springer-

Verlag, 2008. see also ICES Report 06-12.
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