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Preface

The Spring Semester 2018 marks my fourth attempt to teach Sobolev spaces or, as I prefer to call them, the
energy spaces to graduate students from our Computational Science, Engineering and Mathematics (CSEM)
graduate program at the Institute for Computational Engineering and Sciences (ICES), at The University of

Texas at Austin. This presentation is the class notes on the subject.

I have been dealing with Sobolev spaces (with a different degree of understanding) throughout my whole
academic career but I had to restart my study on the subject with the adventure of proving error estimates for
the Projection-Based Interpolation (PBI), see [11, 8, 5, 12, 10] for the mathematical aspects of the technology.
I somehow survived with a heavy help of Ivo Babuska and Annalisa Buffa, but I began to see strongly the
need for a deeper study on the subject of fractional Sobolev spaces and, in particular, the tricky H* spaces.
Around that time, Mark Ainsworth recommended to me the fantastic book of McLean [18] and I began to

develop my lecture notes based on his presentation of Sobolev spaces (a mere 50 pages in the book).

These notes, to a large degree, is a rewrite of McLean’s chapter with extra details provided. In particular,
I have tied the presentation to our book with J. Tinsley Oden [20] and have attempted the presentation to be
self-contained. The last chapter presents perhaps the most original part of these notes, developed with my
student - Federico Fuentes, and we will attempt to publish a summary of it in a small paper. None of these
results are new, we have been learning the theory of traces for the H (curl) space from the ground breaking
papers [3, 4, 19].

A very special thanks go to Martin Costabel who has been patiently teaching me the subject, answering

multiple (not always smart) E-mails and questions, and correcting my mistakes.

Last but not least, understanding the energy spaces presented here is critical for the development of the
Discontinuous Petrov Galerkin (DPG) Method co-invented with Jay Gopalakrishnan [13].



This is a third version of the notes, the original notes were placed on the web in May 2018. In Fall 2018
I corrected a number of mistakes pointed out by Martin, and added Theorem 4.1.12. In Fall 2021, I taught
the subject to a wonderful group of students: Jacob Badger, Lianghao Cao, Jonathan Kelley, Mark Loveland,
Dingcheng Luo, Chenyu Tian, Chuning Wang and Yi Wang, who helped me further to eliminate a lot of small
mistakes and improve the presentation of several proofs. The notes come with many exercises including most
of those from McLean’s book. I have completed the solution manual. Please contact me for a copy of it if

you intend to use the notes for teaching.

Leszek F. Demkowicz

Austin, August 2022
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Introduction

1.1 Variational Formulations

This section reviews a number of classical and less classical variational formulations for a few of standard
model problems to motivate the study of energy spaces. For a more detailed discussion and more examples,
see e.g. [7], [20], Section 6.6, and [14], Chapter 1. In all following examples, €2 is a domain (= open and

connected set) in R™ with boundary I split into disjoint parts I';, I"5.

Diffusion-Convection-Reaction Problem

The classical formulation reads as follows. Find a sufficiently regular® function u that satisfies the following

Partial Differential Equation (PDE) and Boundary Conditions (BCs).

0 ou ou
_aixi(aij(x)aij)+bj(x)£j+c(ac)u—f(x) xz €
u(z) = up(x) rxely
ou
ai;(x)=—n; = oo(x) zel
J 8$j 0 2

or, using a more compact absolute notation,
—div (aVu) +bVu+cu = f in Q
U = Ug on I’
(aVu)n = og on I’y

where coefficients (material data) a = a;;(x),b = b;(x),c = c(x), and right-hand sides (load data) f =
f(x),ug = uo(x),00 = oo(x) are given. We can identify viscous flux ¢ = aVu as a separate variable and

rewrite the second order equation as a system of first order equations.
c—aVu=0 in )
—divo+bVu+cu=f in
U = Ug onl’y

on = oy onl'y

2l

“ue CL(Q) N C2(Q)
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Standard variational formulation. Let
U=V:={veH Q) :v=0 onl;}
Find solution u € g + U such that
(aVu, Vv) 4+ (bVu,v) + (cu,v) = (f,v) + (00, v)r, ,

for every v € V. Here the trial space U and test space V' are equal and consist of functions that, along with
their first derivatives, are square integrable, and vanish on T'y. Function g € H' (1) is a finite-energy lift of
boundary data ug. (u,v) denotes the L?(2) inner product, and {7, v)r, is the L? inner product on boundary
part I';. Derivatives are understood in the sense of distributions and vanishing on I'; in the sense of traces.

These notes are supposed to help you to understand all these notions more precisely.

Eliminating boundary conditions on test functions. Each variational formulation leads to a separate Fi-
nite Element (FE) approximation. It may be convenient to eliminate the boundary conditions on test functions
and redefine the test space,

V=H(Q).

We are testing now with more test functions so we expect additional unknowns. Indeed, the additional

unknown is the flux 6 on the boundary. The new formulation looks as follows.
ue HY(Q), u = U onTy
6eH (I, & = o on Ty
(aVu, Vv) + (bVu,v) + (cu,v) — (6,v) = (f,v) ve HY(Q)
Above H™2 (T") denotes the trace space of another energy space,
H(div,Q) := {v € (L*(Q)® : dive € L*(Q)}

where the divergence is again understood in the sense of distributions. We will spend a lot of time discussing

these two energy spaces as well.

Ultraweak variational formulation. You may want to develop variational formulations starting with the
first order system rather than the second order equation. The ultraweak variational formulation is the most

“relaxed” one as it seeks solution in the L?(2) space.

aeH*(I), @=uy  onTy

e H3(I), 6=0y only

u e L*(Q), o € (L*(Q))?

(ato,7) + (u,divr) — (@, 7,,) =0 T € H(div,Q)
(0, V) — (6,0) + (u, — div(bv) + cv) + (bt v) = (f,v) v e HY(Q)
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where b,, := b -n, 7, = T - n denote normal components of b and 7 respectively. Above a~! denotes the
inverse of diffusion matrix a, and H 2 (") denotes the trace space of space H(£2), to be discussed. Note that

we have now two unknowns that live on the boundary and two unknowns defined on ).

Time Harmonic Maxwell Equations
We seek electric (complex-valued) electric field £ = E(z) and magnetic field H (z) satisfying:

¢ Faraday’s law in (2,

1
“V x E = —iwH ,
o

e Ampere’s law in €,

V x H=J"™ 4 ¢gF + iwekE .

¢ BCs on the electric field on I'q,

nx E=nxEy,

* BCs on the magnetic field on I's,

nx H=mnx Hgy,

Above, u, €, 0 denote permeability, permittivity and conductivity (functions of position x), w is the angular

frequency and J™P = Ji™P(z) is a prescribed impressed current.
Eliminating magnetic field H, we obtain a second order curl-curl problem,
V x (iV x E) — (w?e — iwo)E = —iwJ™ in
nx E=nxE on I’y
n x (%V X E) =n x (—iwHp) == iwJ§® onTy
imp

where Jg ™ is termed to be the impressed surface current.

Standard variational formulation looks as follows.

E € H(curl, ), nx E=nxE onI
(LV x B,V x F) = (v — iwo)E, F) = —iw(J™, F) + iw(Jg", F)r,

for every test function F' € H(curl,Q) : F; =0 onIy. Here F; = —n X (n x F) is the (standard)

tangential component of F' on the boundary. We have arrived at a new energy space,
H(curl, Q) :={F € L*(Q) : Vx E € (L*(Q))*}

where the curl operator is understood in the distributional sense. The BCs above are understood again in the
sense of traces. The H (curl, 2) energy space and the corresponding two traces E; and n x E = n x E; are

a central focus of these notes.
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Eliminating BCs on the test functions is again possible. It leads to a new unknown - the magnetic field

(impressed surface current) on the boundary.
E € H(curl, ), nx E=nxE, onI'y
erH‘é(curl,F), nx H =nx Hy on T
(LV X E,V x F) —iw(n x H,F) = (w* — iwo)E, F) = —iw(J™, F) F € H(curl, Q)

The new energy space —3 (curl, T'), perhaps the most difficult subject of these notes, is the (first) trace space
of H (curl, ).

Ultraweak variation formulation. We finish with the most relaxed formulation derived directly from the

first order system, see [6] for details.

E e H 2(curl,T), nx E=nx Eg onT’
ﬁEH’%(curl,F), nx H=mnx H, on Iy
E,F € (L*(Q))?

(E,V X F) — (n x E,F) +iw(uH, F) =0 F € H(curl, Q)

(H,V x F) = (n x H,F) — ((c + iwe) B, F) = (J™ F)  F € H(curl, Q)

Notice the new unknown - boundary trace E of the electric field.

REMARK 1.1.1 The presentation on Maxwell equations is very simplified. In reality, we have
to satisfy two more equations: Gaussian law for magnetic field and so-called continuity equation.
For w # 0, the extra equations are linearly dependent and they are automatically satisfied at the
continuous level (in some sense depending upon the variational formulation and functional setting).
The whole art of discretization of Maxwell equations is to assure that, with a proper discretization,
these extra equations are also well approximated on the discrete level. This leads to the concept of
differential complex and exact sequence discussed in Section 4.1. For more details on the subject,
see [9, 14]. |

The next two exercises represent a bit a “cart before horses” as they require an elementary knowledge of
energy spaces in one space dimension. They are supposed to motivate studying these notes and refresh your
knowledge of fundamental results from Functional Analysis including the Closed Range Theorem (for both

continuous and closed operators) and the Babuska-Necas Theorem.
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Exercises

Exercise 1.1.1 Study the simplest boundary value problem,
W' =f in(0,0),
with each of the following boundary conditions:

(i) Inflow BC: u(0) = 0.
(ii) Outflow BC: u(l) = 0.
(iii) Inflow and outflow BC together: u(0) = 0, u(l) = 0.
(iv) No BCs at all.
Discuss the well-posedness (existence, uniqueness, possible compatibility conditions for f, continuous
dependence upon data f) within each of the following formalisms:
1. closed operator setting in L2,
2. continuous operator setting in £(H*, L?),
3. trivial variational formulation,
4. weak variational formulation.
Discuss relations between the different formulations and the corresponding stability constants using

Closed Range Theorem (for both closed and continuous operators). Identify clearly dual (transpose)

operators and discussed their role. Consult [20], Section 6.6. (10 points)

Exercise 1.1.2 Repeat Exercise 1.1.1 for another “baby problem”,
—u" +u=f in(0,1),

with the boundary conditions:

Discuss first the well-posedness using the “strong formulations”: closed operator setting in L2, and
continuous operator setting in £(H?, L?). Next, identify the derivative as a new unknown, o = v/, and
reformulate the problem using the first order setting. Following the discussion in Section 1.1, consider
then the four possible variational formulations: trivial, classical, mixed, and ultraweak. Discuss the

relation between the corresponding stability constants. (10 points)






2

Preliminaries

2.1 LP? Functions

This section reviews some fundamental facts about the L” functions. Let f € LP({2) and v € LP+(Q) for

some p € (1,00), 1/p+ 1/p* = 1. Holder inequality states that

| / ol < 1 llorn ol )

i.e., linear functional in v defined by the left-hand side is continuous on LP+ () with the norm bounded by
(in fact equal to) the LP-norm of function f. It turns out that the converse of this statement is true as well. If

a function f generates a bounded functional in v then f must be an LP function with a bound on its norm.

THEOREM 2.1.1 (Duality argument)

Let p € [1,00], and let f be a measurable, compler-valued function defined on a measurable set
Q C R™. Assume that

|/ fodel < Mlollpm@ Vo€ IP(Q),
Q

with some constant M. Then f € LP(Q), and

I fllr)y < M.

PROOF

Case: p € (1,00).

Step 1: f >0, m(Q2) < cc.

Define a sequence of functions f,, := min{f,n}. Then f, is measurable and bounded. Testing with

Lo e en( )
—_—

[l Lo« ()

v = fP~1 we obtain,
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and, therefore,

(L) "<

But, by the monotone convergence theorem ([20], Lemma 3.5.1),

/Qfﬁ—>/9fp asn — 00.

Passing to the limit in the inequality above we get the required result.

Step 2: f > 0, Q arbitrary.
Let x, be the indicator function of ,, := B(0,n) N 2. We have

‘/Q fol = |/QanU\ < M”XnUHLP*(Q) = M||U||Lm(9n)-

Aﬁmyjémﬂzéj%wﬂ

But again, by the monotone convergence theorem,

[y [

By Step 1,

and the bounds holds in the limit.

Step 3: f arbitrary, € arbitrary.

Define
1 iff=0
¢ =
U e fr+o0.
f
We have,

[ 1160l =1 [ fo7tui=1 [ fol < Mloliom o) = Mlgvlzo- o
Q Q Q
By Step 2, |f| € LP(Q2) and, therefore, f € LP(Q2) as well, and the bound holds.

Case: p = 1.

Just test with -
{fﬂﬁ f#0
v =

1 f=0.
Case: p = oo.
Let F be an arbitrary measurable subset of 2. Test with the same v as above but premultiplied

with indicator function yg to obtain:

1
mé'f‘“”'

This implies that [|f[|ze~(q) < M. Indeed, if there were |f(z)] > M on some subset E of positive

measure, then the average of |f| over the very set would be strictly greater than M. |
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REMARK 2.1.1 Contrary to Theorem 2.1.1, the fundamental representation theorem for the
dual of LP+ ([20], Theorem 5.12.1)
(L7 ~ L7,

does not hold for p, = oo as there exist bounded linear functionals on L ()) that are not generated
by L!-functions. But here the job is easier, we confine ourselves to functionals generated by functions

to deduce only the integrability properties of the generating function. |

Distribution function. Let 2 C R™ be an open set, and u be a real- or complex-valued function such that
|u(z)| is finite almost everywhere. Let o > 0. We introduce the distribution function of function u defined
by:

m(o,u) == meas({z € Q : |u(z)| > o}) 2.1

where meas denotes the Lebesgue measure. Function m(o, u), defined on (0, co) takes values in [0, 0], i.e.,
it is an extended real-valued function. Clearly, m(o, u) is (weakly) decreasing. It can be proved that m(o, u)

is continuous from the right, Additionally, if u € LP(2), p € [1, 0o, then

i do\ VP
lull e o) = <p/ oPm(o,u) 0) 1<p<o
0

||U||LQC(Q) = inf{o : m(o,u) =0},

see Exercise 2.1.1. If no confusion occurs, we will abbreviate symbol “meas” for Lebesgue measure to a

single letter m.

p-mean modulus of continuity. Letu € LP(R™), p € [1, 00). We define the p-mean modulus of continuity

of function u by:

wy(t,u) == sup </ lu(z + h) — u(z)[? da:) " 2.2)

[h|<t

Note that case p = oo is excluded. This is because of the crucial density result:
Co(Q) =LP(Q)
which holds only for p € [1,00), comp. Exercises 4.9.1 - 4.9.4 in [20]. Here C(f2) denotes the space of

functions defined on €2 that are continuous and with a compact support contained in €.

Take now an arbitrary ¢ > 0. By the density result, there exists a function g € Cy(R"™) such that

lg —ullzr <

wl o

Recall that any continuous function defined on a compact set is automatically uniformly continuous, see

Exercise 2.1.2. Thus, for any ¢; > 0 there exists a § such that

|h| <d = |glz+h)—g(x)] <e.
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Consequently,

1/p
([ tatetn) = g@Pas) " < (& mlsuppg)'” = cum(supp o)
Let Thg(x) := g(x + h). Take €, = § m(supp g)~/P. We have thus,

1Thg = gllLr < V|h| < & = 6(ei(e)).

€
3
Finally,

[Thu = uller < |[Thu = Thgller +Thg = 9l + lg = ullr <.
—_——

=llu—gllzr
We have arrived at the following result.

PROPOSITION 2.1.1

Let w € LP(R™), p € [1,00). Then

wp(t,u) >0 ast—0.

The following result is a consequence of integral form of Minkowski inequality, see [20], Proposition
5.12.1.

THEOREM 2.1.2 (Hardy’s Inequalities)

Let « > 0 and p € [1,00). The following inequalities hold:

==

dy

[/O"o (ﬁ_a /; £ () ?)p Cﬂ ' é [/OOO ly=*f(y)IP yr 2.3)

IA

and,

Q=

A

ano (xa /:O ) ?)p dﬂ ' = é [/Ooo ly* f(y)|” dyyr’ (2.4)
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PROOF Inequality (2.3):

(o [ ) =] e (] dt)d o
{/0 (:c /O|f(y) y) | = l/o x /O\f(xt)| ; . (change of variable: y = xt)

1 0 1
dx P dt
< / [ / x P f(xt)|P a:] - (Integral Minkowski Inequality)
o LJo x

1 o0 L
d dt
= / [/ (t~ )P f(y)|P y} ’ " (change of variable: zt = y, 92 = %)
o LJo

Y
1 e’} i
a— —a dy|»
= [t | [T sor )
0 0 Yy
——
=1/«

Proof of inequality (2.4) is fully analogous. |

Exercises

Exercise 2.1.1 Prove that distribution function (2.1) is continuous from the right, and

> do\ VP
||uHLp(Q) = (p/ oPm(o,u) 0_> 1<p<o
0

||UHL<>C(Q) = inf{o : m(o,u) = 0}.

(10 points)

Exercise 2.1.2 Prove that any continuous function defined on a compact set must be uniformly continuous.

(3 points)

2.2 Convolutions

Let u, v denote complex-valued functions defined on the whole R™. The convolution of functions u and v is
defined as:

(s 0)@) = [ ule - y)oty)dy.
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We are implicitly assuming that product u(z — -)v(-) € L*(R™). A simple change of variables shows that

convolution is symmetric,
(ws)e) = [ ule - y)otv)dy
= /n u(z)v(x — 2)dz (z=z—1y)

= (vxu)(z).

More precisely, if either the left- or right-hand side is well defined, the so is the other side, and they are equal.

The definition can be extended to three functions,
uxvHxw = (uxv)xw.
As the operation is associative (Exercise 2.2.1), i.e.,
(uxv)xw=ux(v*w)

we are justified to use the notation without any parentheses indicating the order of computing the convolu-

tions. By induction, the notion extends to any finite number of functions.

The following theorem formulates sufficient conditions for the convolution to be well defined, and its

continuity properties.

THEOREM 2.2.1

Let

11 1
S4+S=1+4+>,  pgrellol,
P q r

and u € LP(R™), v € LY(R™). Then u*v exists a.e. and

|| * v

o < ullze ollze -

PROOF Let u € LP(R"),v € LY(R"™) and ¢ € L™ (R"™) be a “testing function” where p,q,r
satisfy the relation above. Let 1 (z) := ¢(—=z). The result from Exercise 2.2.2 implies that

[(ux v, @) < [(wxvx)(0)] <luflee [lvllza ([Pl = llullze o]l Lo (|6l -

Thus, by Theorem 2.1.1, u v € L"(R™) and the estimate holds. |

In the case of r = 0o, we can obtain a stronger result.

THEOREM 2.2.2
Let p € [1,00], and v € LP(R™),v € LP*(R™). Then
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(i) wx*v is uniformly continuous in R™.
(i) For p € (1,00) we control additionally behavior of u v at infinity,

|(u*v)(x)] =0 as|z] = co.

PROOF

Case: p < co. We have,

|(ux ) (@) = (u*v)(y)

=1 A (u(@ — 2) —u(y — 2))v(2) dz| < wp(lz —yl,u) [|v] Lr-
and the uniform continuity follows from Proposition 2.1.1.

Case: p = co. Switch u with v.

In order to prove the second part, we begin by noticing that the Lebesgue Theorem implies that
/ lu(y)|Pdy -0 as R — 0.
lyI>R

Consequently,

Ve dRy >0 VR> Ry / Pedy < P .

Iy < ana / lo(y)
y|>

ly|>R

Note that the argument breaks down for p = co. We have now,

(xv)(x)] < | / PRICEOLIEY / ) i

1/p
< </ lu(z —y)[P dy) vl Lo ) + [Jul| Lo ®e) </ lv(y)
ly|<R ly|>R

< ellvllpr- ®ny + lJullr@n) €

1/px«
b dy>

provided |z| > 2R. Notice that |x — y| > R for |z| > 2R and |y| < R. |

Exercises

Exercise 2.2.1 Associativity of convolutions. Prove that
(usv)*xw=mux*(v*w)
for u,v,w € L*(R™). (5 points)

Exercise 2.2.2 ([18], Exercise 3.3) Let u; € LPi(R"), j =1,...,m, p% + ..+ I%m = m — 1. Prove the

bound:

(ur %ok ) (@) < luall Lo ey - 1umll Lom @n)
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for any x € R"™.

Outline of the proof: Let f; € L*(R™), j =1, ..., m be non-negative functions with compact supports

and unit L'-norms. Let 0 < A; <1, 5=1,...,m. Fixx € R" and consider the function:
g = (fitxx for) (@) A= (s Am)
with f(x)? := 1 for any value of f(z).
(i) Show that g(&;) = 1 where

& :=(1,..., 0 ,....1) eR™.

J

(i1) Use the fact that, for any positive a; and non-negative \;, u;,

to show that the function g : [0, 1]™ — [0, 00) is convex.

(iii) Deduce that g(A) < 1if Ay + ...+ Ay = m — L Hint: X =377 (1 — Aj)é;.

(iv) Deduce the final result.
(10 points)
Exercise 2.2.3 Let u,v € L*(R™) N C°(R™). Show that,
supp uxv C suppu +suppv:={x+y : x € suppu,y € supp v}

if supp w or supp v is bounded. (3 points)

2.3 Differentiation

Multiindex notation. We shall use the standard multiindex notation for partial derivatives. Let u be a

complex-valued function defined on an open set {2 C R”™. Partial derivatives of u will be denoted by:

olely
= (z
« «
ox{" ---Oxp"

0%u(x) :

where

a=(ay,...,a,) €N Jal=a1+...+a,.
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Differentials. Let z € . The first differential of function u at , denoted du, is a linear functional on R",
dzu € (R™)*,

(dzu)(y (dzu) Zylel —Zl Zlgz
=@ -

The second differential of function w at x, denoted diu, is a bilinear, symmetric functional on R"”, diu S

M3 (R"),
n n n n
(dzu)(y,y) = (diu)(z yiei,zyjej) = ZZ u)(ei, e;)
i=1 j=1 i=1 j=1 ‘T’_’
o
ER 61 (I)
= 3 o T
|a]=2
21, o
= Z ol 9%u(z) y
|a]=2
where
y =ity ali=anlee !

Notice how the multiindex notation helps us to avoid using two separate indices ¢ and j. The k-th differential

is a k-linear, symmetric functional on R™, d¥u € MS’;m(R”),

(d5u)(y,...,y) = Z (]z—!! 0%u(x) y*.

k times =k

We can write now a particular version of the Taylor formula in a very compact form,

m 1 1 ! m
o) = 32 gutv )+ oy [0 ) i

If we define the k-th derivative of wu, denoted u(*), as the function that for each z € , prescribes the

corresponding k-th order differential at x,

() . an—>dkueM"C

sym

(R"),

then we can rewrite the Taylor formula in a form resembling its 1D version,

m

1 1

1
ue+9) = 3 2u e y)+%/ (1= ™D (@ + ty) (... p)dt.  @2.5)
k=0 0

THEOREM 2.3.1 (Differentiation and convolution commute)
Letk € N, p € [1,00]. Let u € C§(R™) and v € LP(R™). Then

(i) uxv e CHR™) and,

(i) 0%(ux*v) = (0%u) * v Vel < k.



18 Lecture Notes on ENERGY SPACES

PROOF
Case: k = 0 has already been proved, see Theorem 2.2.2.

Case: k = 1. Denote the finite difference corresponding to partial derivative by:

u(z + hey) — u(x)
5 .

(Appu)(x) = (2.6)

We have,

v(z)dz,

(u*v)(x+ he) — (uxv)(z) / u(x + hey — z) —u(z — 2)
h n h
i.e., the finite difference and convolution commute,
App(uxv) = (Appu) xv.

We have thus the estimate,

AR (uxv)(z) — (Qu*v)(@)] < [(Apu — Ou) * v)(z)| < ||Appu — Ou|| Le-

U“LP.

As derivatives of function u are continuous and have compact support, we have a global, pointwise
bound
|Qu(z)| < C
for some C. By the Mean-Value Theorem, finite difference (2.6) equals derivative dyu(x + £hey) for
some £ € [0,1] and, therefore, it is bounded by constant C as well. Consequently,
|u(z + hep) — u(x)
h

We have thus a trivial dominating function and, by the Lebesgue Theorem, pointwise convergence

— Ju(z)| < 2C.

A — Oju implies global convergence,

/ |Al7hu—81u Pr = / \Al,hu—ﬁlu
" supp u

Case: k > 1. Use induction. |

P~ 50 ash—0.

Theorem 2.3.1 leads to the concept of smoothing by convolution. Let ¢ € C§°(R™) be an arbitrary non-

negative function with a support in the unit ball and unit integral,
P >0, P(x) = 0for x| > 1, RLZJ:l.
We scale ¢ with an € > 0,
Ye(z) = e "p(erx),  pe(x) = 0for|z| > e, 5 e =1. (2.7)

By Theorem 2.3.1, ¢ * u is C°° and we have the following convergence result.

THEOREM 2.3.2

Let w € LP(R™), p € [1,00). Then
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(1) ||tbe * ullrr < ||ullLr and,

(1) ||the ¥ u—ul|r < wple,u) .

PROOF The first assertion follows immediately from Theorem 2.2.1,

[9e * ullLe < llvbellpr llullze = [lullzr -

We have,
(e ) (@) — u(e) = (wr ) (@) —u(@) [ dbely)dy = / [z — ) — u(@)] we(y) dy
R™ ly|<e
e * U — U, < ulz —y) —u(x)| v(y) d z)|dx
eru—wal < [ [ ey —u@l ) dy o)
= [ e ) =@l o) ey

< / wples ) | 6l| w1 (1) dy
ly|<e

= wp(e,u) |4l Lo -

Use Theorem 2.1.1 to finish the argument. |

Recall that continuous functions with compact support are dense in LP(2) for p € [1, 00). We can upgrade

the density result now to C°>°-functions.

COROLLARY 2.3.1
C5°(2) is dense in LP(Q) for p € [1,00).

PROOF  Select a sequence of compact sets K; such that

K1CCK2CC...KJ‘CCK]‘+1CC... Q Q)

<
Il
N

I
s
>

You can take for instance,
Ki={zeQ:dzR"-Q)> %, lz] < j}.
Let x; be the indicator function of set K;. Consider,
Uj 1= UXG, Uje = Pe*Uj.
Note that the convolution used to define u; . is well-defined for sufficiently small e. We have,

e — ulle < |luje — ujlloe + |luy — ullze
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The second term converges to zero by the standard Lebesgue Theorem argument, the first one by

Theorem 2.3.2. Question: Where have we used the assumption that p # oo ? |

We finish this section with an approximation result for indicator functions.

THEOREM 2.3.3 (External Approximation of Indicator Function)

Let FF C R™ be an arbitrary closed set. There exists a function x. € C°(R™) such that
Xe(z) =1 rel
0<xe(x) <1, [0%xe(@)| < Cla)elol 0 < d(2,F) <e
Xe(z) =0 d(x,F) > ¢

PROOF Let v, € L°(R") be defined by:

BE dz,F) <e
ve(m)_{o d(z,F) > ¢

Let 1. be a function like in (2.7). Set x. := t¢/4 * vc/2. Then function y. satisfies the vanishing

conditions listed above (explain, why?) and we have the estimate:

[(0%xe)(@)| = [(0% (Yesa * ves2)) ()] = |(vej2 * 0%esa)(2)]
|/ 6/2 r—=y ¢6/4( )dy|

/ 10°%eja(y)l dy < C° Y| e eIl
ly|<e/4 —_—

depends upon o

as

(0°¢e)(x) = e e (0" Y) (e ).

COROLLARY 2.3.2

The dependence of the bounding constant upon index a is unavoidable. Consider the 1D case illus-
trated in Fig. 2.1. If all derivatives 1™ (€) of function v are bounded uniformly by some constant
C, we have the estimate:

k=1

1 1
(k) k | W)(m—i-l)(g)' xm-i—l < C xm—i—l = (07 1)

~ (m+1)! (m+1)!

N“)—l

=0
with £ being some intermediate point between 0 and x. Upon passing with m — oo, we get ¥(x) =0,

a contradiction.
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F v

\J

Figure 2.1
Function 1.

Exercises

Exercise 2.3.1 ([18], Exercise 3.5) Derive Taylor formula (2.5). (10 points)

Outline of the proof:

(1) Use integration by parts and induction to derive Taylor formula in one dimension:

=2 L0 S [ gy )
0

! m!
=0 7

(i) Take f(s) := u(z + sy) and apply the 1D formula.

Exercise 2.3.2 Differentiation of product of functions. Prove the formula:

*(fg) = ( ‘f;) o 0"y,

<o

(5 points)

2.4 Distributions

L}, functions. Let Q C R™ be an open set. Consider a measurable function u :  — C. The following
two conditions are equivalent to each other, see Exercise 2.4.2.
VzeQ 3IB=B(x,e) uec LYB)

2.8)
V compact K C Q u € LY(K)
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We say that function w is locally integrable and denote the space of such functions by L}, (€2). We will use

the smoothing by convolution technique to prove the following fundamental result.

THEOREM 2.4.1

Let u € L}, .(Q) satisfy the orthogonality condition:

/u¢:o Vo e Ox(Q).
Q

Then uw =0 a.e. in S.

PROOF Let z € Q. Consider a ball B(z,26) C 2 and take . like in (2.7). Let

{u(z) z € B(x,20)

up(z) := , up € LY(R™).

0 otherwise

Then, for z € B(x, 9),

we*uB)(z):/ w(y)zz}e(z—y)dyz/Qu<y>we<z—y>dy:o Ve < s,

n

and
||(1Z)5 *URB _UB”Ll(B(:v,é)) < H’(/}e *UuUp — 'LLB”Ll(Rn) < wl(e,uB) —0 ase—0.
——
=0

Consequently, u = 0 a.e. in B(z,J), i.e.
m({z € B(x,0) : u(z) #0})=0.

This implies that w = 0 a.e. in every compact subset of 2 (explain, why). As ) can be represented
as a union of a countable family of compact subsets (see proof of Corollary 2.3.1), this in turn implies
that u =0 a.e. in Q as well. |

Note that the result does not follow from a duality argument for spaces L°° as the test functions are not

dense in L°°.

Test functions and distributions. Space of infinitely differentiable functions with compact support in §2,
C§°(9), equipped with a very special topology of the locally convex (l.c.) inductive topological limit, see
[20], pp. 366-371, is called the space of (Schwartz) test functions and denoted by D(2). In principle, every
time we use the symbol D() instead of C§°(£2), we emphasize the importance of the topology. Space D(2)
is not first countable, i.e. one cannot introduce it with countable bases of neighborhoods. In fact, it is not even
sequential, i.e. notions of sequential continuity and continuity for functions are not equivalent. However, see
[20], p. 414, a linear functional defined on D() is continuous iff it is sequentially continuous. As the

topological dual of the space of test functions, denoted D’ (€2), is identified as the space of distributions on
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Q, it is sufficient to work only with the notion of sequential continuity for distributions. It turns out that a

sequence of test functions ¢, converges to zero in D(€2) iff there exists a compact set ' C €2 such that
suppg; C K, j=1,... and sup|d®¢;| =0 Vo,
K

see [20], Proposition 5.3.2. Consequently, a linear functional f € (C§°(€2))* is a distribution if

(fs05) == f(#;) = 0 forany ¢; P .

Once we have introduced the dual space D’(2), we need to decide about the topology for D’()). Recall that
for a normed space V/, its topological dual V' can be equipped with the strong topology introduced by the

(dual) norm,
|(f,v)]

lollv

[fllv = sup
v

weak topology introduced by functionals from the bidual space V"', or weak* topology generated by V. For
reflexive spaces, V' ~ V" and the weak and weak* topologies are the same. So, it should not be surprising
that the topology in D’ (€2) can be introduced in more than one way. In these notes we shall equip D’ (Q2) with

the weak™ topology and restrict ourselves to sequences only, i.e.,

def

fi = 0inD'(Q) (fj»0) =0 YoeD).

Occasionally, we shall also need a larger space of test functions, a locally convex topological vector space

(Ictvs), E(2) = C°°(Q), with the topology introduced by the family of seminorms
sup |0%¢|,
K

for any compact K C €2 and multiindex «. As the topology can be introduced with a countable set of compact
sets, see proof of Collorary 2.3.1, space £(£2) is first countable and, consequently, continuity is equivalent to

sequential continuity for any functional defined on £(€2), linear or not.

As the space D(£2) is dense in space £(€2), see Exercise 2.4.3, and
¢; >0inD() = ¢; =»0in&(Q),

see Exercise 2.4.4, i.e. space D({2) is continuously embedded in space £(£2), we have automatically the

continuous embedding for the dual spaces as well,
E'(Q) = D).
The embedding symbol communicates two facts.

(i) Let: : D(Q) — £(Q) be the continuous injection of D(£2) into £(L). The transpose 7 maps then
dual £'(€2) into dual D' (Q2),
T Q) s f = foreD(Q).
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The density result implies that the transpose operator is injective, i.e.
(f;¢) =0V9eD(Q) = (f,¢)=0Vpe&().
Only then we can talk about the “embedding”.
(i1) The transpose operator is always automatically continuous. In our case,
fn—=0in& Q) = f,—0inD'(Q)
which is automatically satisfied for the weak™® topologies. Indeed, the statement above means:
(fni0) = OV0 € E(Q) = (fn,9) = 0V¢ € D(Q)

which is trivially satisfied since D(Q2) C £(9).

We shall characterize space £’(£2) in a moment as the space of distributions with compact support, see
Theorem 2.4.2.

1
loc

Regular and irregular distributions. With every function v € L; () we associate the corresponding

linear functional R,, € (C§°(€2))* defined by the Lebesgue integral,

(Fud)i= [ uo.

Note that the integral is finite (Explain, why?) so the functional R, is well-defined. Let ¢, — 0in D(2) and
K be a compact set such that supp ¢; C K. Then

|/Qu¢j\ - \/Kuam <l ooy 161l iy — 0 asj =0,

1

so R, is a distribution. Distributions generated by L.

-functions are called regular. Any distribution that is
not regular is identified as an irregular distribution. The first and perhaps the most important example of an

irregular distribution is the famous Dirac’s delta. We define the Dirac’s delta at a point zy € 2 by:
D(Q) > ¢ — <5207 ¢> = ¢($0) eC.

Note that 0, is trivially continuous on D(€2). In the case of xy = 0, we drop the index and use the simplified
notation & := &. Suppose now that &, is a regular distribution, i.e., there exists a function u € L}, .(£2) such
that

/Q w6 = dlwo) Vo€ CF(Q).
Consequently,

/ up =0 Vo e CFQ—{xo}).
Q—{=zo}

By Theorem 2.4.1, v = 0 a.e. in  — {x(} and, therefore, u = 0 a.e. in €2, a contradiction since J,, is not

zero. In most of engineering and physics textbooks we encounter the integral symbol for Dirac’s delta:

<6107 ¢> = /Q 5(-T - 1’0)(15(1‘) dx .
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The integral above has nothing to do with the Lebesgue integral and should be understood simply as another
symbol for the delta functional that, as we have just shown, cannot be generated by a function. In stronger
words, the use of this symbol is mathematically illegal and should be avoided. We will give many more
examples of irregular distributions.

1
loc

Space L;j,.(€?) is continuously embedded in D’(€2), i.e., operator

R:L,.(Q)2u— R, €D(Q)

is injective and continuous. Injectivity follows from Theorem 2.4.1. In order to understand the continuity, we

have first to “topologize” space L} .(£2). We equip L}, () with L.c.t. introduced by the family of seminorms:

loc loc

pr(u) ::/ |u|, compact K C .
K

As we can restrict ourselves to a countable set of compact sets, this is a first countable topology. The conti-

nuity of the embedding now easily follows,

/unéo Vecompact K C Q = /unqﬁﬂ() Vo € D().
K Q

Restriction of a distribution. Many definitions for functions can be extended “by duality” to distributions.
We start with the concept of a restriction. Let G be an open subset of 2 and f € D’'(£2) a distribution on .
The restriction of f to G, f|g € D'(Q) is defined by

<f|(;7qb> = <j: qb>a qb € Z)((;)

where g?) denotes the zero extension of test function ¢ to set 2. Note that the zero extension of ¢ belongs to
D(), and
¢n = 0inD(G) = &, = 0inD(Q).

Consequently, the restriction f|, is well-defined.

Support of a distribution. Having defined the concept of restriction of a distribution, we can extend the
notion of support from smooth functions to distributions. We cannot do it directly using the pointwise values
of a distribution as they are undefined. Let f € D’(€)). We define the support of f, denoted supp f to be the
smallest (relatively) closed set F' in 2 such that the restriction of f to difference {2 — F' vanishes. Explain

why such smallest relatively closed set always exists. Equivalently,
supp f=Q -G

where G is the largest (relatively) open subset of €2 such that f|c = 0. Note that, since {2 is open, G is
relatively open in G iff G is open. For instance, according to the definition, Dirac’s delta ¢, is supported at

the single point x.

If u € L},.(), we define the essential support of u, denoted esssupp u, to be the smallest (relatively)

closed subset F' of {2 such that the restriction of w to difference ) — F' is zero a.e. in {2 — F'. One can prove
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that the essential support of function u coincides with the support of the corresponding regular distribution

R, see Exercise 2.4.5.

We are ready now to characterize space £’ () as distributions with compact support.

THEOREM 2.4.2 (Characterization of £'(2))

We have:
E'(Q) ={u e D'(Q) : supp uis compact, and supp u C Q}.

PROOF

Case: D. Use Theorem 2.3.3 to fetch a function y € C§°(€2) such that y =1 in an e-neighborhood
of supp u, and define:

(@, ¢) := (u,x9) V¢e&Q).
Let now ¢ € £(2) and ¢; € £() be a sequence converging to ¢ in £(£2). Then x¢; — x¢ in D(Q)
and, therefore,
(@, ¢5) = (u, xb;) = (u,x¢) = (&, 9),
ie., 4 € &'(Q). Take an arbitrary test function ¢ € D(Q). Then (1 — x)¢ € D(R?) and (1 — x)p =0
in the e-neighorhood of supp u, so
(u,(1=x)¢) =0.
But this means that
(@, ¢) = (u,x9) = (u,9),
le,u=a€&'(Q).
Case: C. Suppose supp u is not compact. Take a sequence of compact sets like in the proof of

Corollary 2.3.1,
K CCKycc...Q Q= UKj.

j=1

If the support of u is not compact then
ulo-x; #0 Vj

(explain,why). Consequently, for every j, there exists a test function ¢; € D(Q) such that

supp ¢; C Q— K;, (u,¢;) #0.

We can normalize functions ¢; with (u, ¢;) to obtain (u, ¢;) = 1. But, by the definition of topology
in £(Q) (explain why),
¢j %OmE(Q) = <u,¢J>%0

a contradiction. |
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Derivative of a distribution. Letu € D'(Q) and o € N". Motivated with the integration by parts formula,

we define:
(0%, ¢) = (=1)\*1 (u,0%), ¢ e D).

Note that

qSJD(—QQO = 8a¢jD(—Q>)O,

s0 9%u € D’(Q). Distributions, like C*° functions, have derivatives of any order.

Example 2.4.1

Consider one-dimensional case: = (a,b). Let u : (a,b) — C be a function consisting of two

smooth branches:

u () x € (a,xo)
u(x) := ¢ anything at = = x¢
us () z € (20,b)

where u; € Clla, 20] and up € C*[z0,b]. Let R, be the regular distribution associated with function

u. Definition of distributional derivative and elementary calculations show that (see e.g. [9], p.32)

(R ) = {Rurs0) + [ulao) (o)

or, in the argumentless notation,

d

%Ru = Ry + [u(x0)]0z, -
Above, % denotes the distributional derivative, v’ stands for the classical, pointwise derivative of u
defined everywhere except for xg, and [u(zo)] := ua(xg) — u1(zo) is the jump of u at point zp. In

particular, if function w is globally continuous, i.e., [u(zg)] = 0, then

d
—R, =Ry, .
dzx

Explain why the value of u at xy does not matter. I

Example 2.4.2
Example 2.4.1 generalizes to multidimensions. Let 0 C R™ be a open set partitioned into two open
subsets €2;, ¢ = 1, 2, separated by interface I'g. More precisely,

§:§1U§2, QlﬂQQZ(Z), I'yg =090, N0N,.

Let u be again a scalar-valued function consisting of two smooth branches:
ui(z) x €
u(z) := ¢ anything € Ty
ug(x) €.
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where u; € C*(Q;), i = 1,2. Let R, again detote the regular distribution associated with function

u. Definition of distributional derivative and elementary integration by parts formula lead to:

0
() = (Ru6) + [l s )
ZT; To
=:(drg.[u]n; D)

or, in the argumentless notation,

0

aileu = —Ru1 + 6F0,[u]ni .

Here, 8%1- denotes the distributional derivative of R,, u; stands for the classical, pointwise partial
derivative ;%Zﬁ defined everywhere except for x € Ty, [u](x) := uz(x) —ui(x), © € T'g is the jump of
u across I'g, and n; are components of unit normal to Iy directed from € into 2a. Finally, o [ujn,
is an irregular distribution defined by the boundary integral, dependent upon jump of u and normal

n, comp. Exercise 2.4.8. Again, if function u is globally continuous, i.e., [u] = 0, then

0

Complex conjugate @ of a distribution w is defined by:

(@ ¢) = (v, ), ¢€DQ).

Convolution of a distribution with a test function. Let f € L} (R") and ¢, ¢ € D(R™). We have,

loc
[ gen@eea= [ [ fe-piw o i

— [ sGe-yweerdsdy  (Fubini
R™ xR™

[ t@uweatyddy  (z=aty)
Rn xR™

= [ s [ wotamdyde  (ubini

- [ t@ [ oo -y =)

=((P*9)(2)
where )(x) = ¥(—z). This suggests to define the convolution of distribution f € D’(R™) with test function
1 € D(R™) as:
(f*4,0) = (f,Px9), ¢€DR").

The convolution is well defined because the operation:

D(R"™) 3 ¢ — 1 * ¢ € D(R™) (2.10)
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is well defined and continuous, see Exercise 2.4.11. Note also that the convolution of a distribution and a test

function is actually a function. Indeed,

Frvnd) = [ by — Yoy dy) = / by — ) ly) dy.
R‘Hr R‘n,

In fact, it is a C'*° function, comp. Exercise 2.4.12.

For example, it is easy to check that the convolution with Dirac’s delta reduces to the identity operator,

(60.6) = 6.4 0) = D+ 0)(0) = [ dG-wowdy= | Vo) dy = (0.0).
Product of a distribution with a C*° function. Lety € C*°(Q) and u € D’(2). One more time we “pass

the job to the test function” to define:

<'¢)u> ¢> = <Ua¢¢’> , Q€ D(Q) :

Note that the product is well defined because a) 1v¢ € D(12), b) ¢; — 0in D(R2) implies that ¢p; —
0in D(Q2) as well.

We conclude this section with a result characterizing Dirac’s delta. Support of §,. contains a single point,
supp 6, = {x}. It turns out that, conversely, a distribution with the support at a single point, must be a linear

combination of ¢, and its derivatives.

THEOREM 2.4.3

Let u € D'(Q) be a distribution with the support in a single point, suppu C {x}, © € Q. Then u

must be of the following form:

u = Z 0“0, forsomem € N,

|a|<m
where coefficients ao are given by:

(=1

Ao = ]
(e}

(u,¢) where ¢(t) = (t — ).

PROOF Choose sufficiently small € such that K := B(z,¢) C 2. By Exercise 2.4.6, there exists

a positive integer m such that

[{u, p)| < C(m, K) Z sup |0%¢|, V¢ € D(Q) such that supp ¢ C K .
laj<m
Take now a test function ¢ € £(Q) (distributions with compact support belong to £'(2)) and consider
the Taylor’s expansion (2.5) of ¢,

m

00) = 3 V@ =y =)+ o [ A= 07e@ ty—)y— .y =)t

i=1(y) =¢2(v)
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The action of u on ¢, yields:

1 leY o j ]' le" «a
(o) = > wd@( -2 V@G- y-2)= ) T0@) -2
|a]<m 0 p(z) (u,(-—z)*) |a]=3
= Z a6 (0%, P) (definition of derivative of distribution.)

la|<m

We show now that action of u on the remainder ¢o vanishes. By Theorem 2.3.3, there exists a
smooth function x € C*°(R™) such that

1 |y <3
x(y) =
g {0 ly| > 1.

Define x.(y) := x(e"'(y — z)) to obtain:

{ 1 on B(z,€/2)

and [0%x.| < C(a)elel,
0 outside of B(z,€)

Xe(y) =

Since (1 — x¢)¢2 = 0 in B(z,€/2), and supp v C {z}, u must vanish on (1 — x.)¢2 and, therefore,

<U, ¢2> = <u7Xs¢2 + (1 - X6)¢2> = <U,X€¢2> .

By Exercise 2.3.2 and Exercise 2.4.7, for any |a| < m,

ol < 3 (2) 00 o < o

<
= <Cem+1-17l <Ce—la—l

Consequently,

[(u,¢2)| < C ) sup |0 (xetp2)| < Ce =0 ase — 0.
K

la|<m

Can you explain why index m in Theorem 2.4.3 must be finite ?

Exercises

Exercise 2.4.1 Existence of C* functions with compact support. Consider the function:

e"r x>0
u(x) ::{

0 <0

Prove that lim,, .o, u9) (x) = 0 and conclude that u(z) is a C™ function. Use the function to construct

a C'*° function ¢ with support equal to [—1, 1] and different from zero in (—1, 1).

(3 points)
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Exercise 2.4.2 Prove equivalence of conditions (2.8). (2 points)

Exercise 2.4.3 Consider a sequence of compact sets K; as in the proof of Corollary 2.3.1. Choose x; €
Cg°(Q) such that x|, = 1. Let ¢ € £(Q2). Prove that

Xi¢— ¢ in&(Q).
Consequently, space D(£2) is dense in space £({2). (2 points)

Exercise 2.4.4 Prove that

(2 points)

Exercise 2.4.5 Let u € L} (). Prove that

loc
ess supp u = supp R,
where R, is the regular distribution generated by function u. (3 points)

Exercise 2.4.6 Continuity in D’'(2). Let u be a linear functional defined on D(2). Show that w is sequen-
tially continuous (and, therefore, continuous [20], p. 414) iff for any compact set K C (), there exists

an m € N such that

{u, )| < C(m, K) Z sup |0%¢|, V¢ € D(Q) such that supp ¢ C K .

lo|<m

Hint: Use proof by contradiction. The condition appears naturally when you study the locally convex

topological inductive limit [20], p. 414. (3 points)
Exercise 2.4.7 Prove the estimate for function ¢, from the proof of Theorem 2.4.3:
18%¢5| < C(a)e™ =181 in B(x,e), 1Bl <m+1.
(3 points)
Exercise 2.4.8 Prove that the boundary integral in formula (2.9) defines an irregular distribution. (3 points)

Exercise 2.4.9 Revisit Exercise 2.2.3 and prove the identity
supp u * v C supp u + supp v

for any u,v € L*(IR™) (not necessarily continuous). Symbol supp above denotes the essential support

of an L'-function. As in Exercise 2.2.3, we assume that u or v has a compact support. (10 points)

Exercise 2.4.10 Let Q = (0,1) and u € L*(Q). Prove that u” € L?*(Q) implies v’ € L*(Q) as well. All

derivatives are understood in the sense of distributions. (5 points)
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Exercise 2.4.11 Prove that map (2.10) is continuous. (3 points)
Exercise 2.4.12 Prove that the convolution of a distribution v € D’(R™) with a test function ¢ € D(R"),
(us ) (@) = (u, (x —))
is a C*° function. Proceed along the following steps.
Step 1: Let x,, — x. Show that
Y(@n —-) = ¢z —-) inDR")

and conclude that (u * v)(z) is a continuous function.

Step 2: Show that
App(us ) (x) :=h~H(u*¥) (@ + hey) — (u* ) ()] = (Ou,(z —-)) ash — 0.

and conclude the final result.

2.5 Fourier Transform
L-periodic functions. A measurable function u : R® — C is L-periodic if
u(z + kL) = u(x) reR" keZ".

Restricting ourselves to functions that are L2-integrable on cube (0, L)", we can equip the space with the

inner product
(u,v) = / u(x)v(x) de
(O’L)n

2
per

well-defined, closed and self-adjoint operator from ( a dense subspace of) Lfm(R") into itself. Spectral

to obtain a Hilbert space LZ,,.(R™). One can show then (not a cheap result...) that Laplace operator is a

Theory for Self-Adjoint Operators [20], Section 6.11, shows that spectrum of the Laplacian consists of real
non-negative eigenvalues only. Elementary separation of variables shows then that the eigenvectors are given
by

() = L—”/2e¢2ﬂ%

with k € Z", and the corresponding eigenvalues

27k \
/\k:(7TL|> .
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Note that the eigenvectors have been normalized to form an orthonormal system. It follows from the Spectral
Theorem that eigenvectors ¢ form a complete orthonormal system, i.e.,
1 ok ke
u(@) =Y (u,d)2, @orx) = — > dL(+)e
kezm kezn

where
(&) = / u(z)e” T da
(O}L)n

Letu € L?(R™) with a compact (essential) support in some (—L/2, L/2). Consider its L-periodic extension
and the corresponding frequency content illustrated in Fig. 2.2 for the one-dimensional case. Elementary
calculations show that if we consider the original function with compact support in interval (—L, L) and only
then consider its 2L-periodic extension (i.e. double the value of period L), the corresponding representation
will consist of old frequencies (and identical values for them) and new frequencies in between the old ones.
If we continue the process, we expect the frequencies to fill the entire real line. This is exactly the intuition

behind the definition of the Fourier transform.

| e

-L oL 1L 2L |

S/2L

.||||||‘ | e ]

2L oL 2L 421
-12L 1AL 3L

Figure 2.2
Change of frequency spectrum from L to 2L.

Classical Fourier transform. Letu € L'(R™). We define its Fourier transform Fu = by

(Fu)(€) = () = / w(z)e— 27 gy

n

Note that we use a simplified notation, £z stands for the dot product & - 2. The formal (at this point) L?-adjoint

of the Fourier transform is equal to:

(Fru)(§) == /n u(x)e?™ " dy .
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We expect operator F to be invertible with the inverse equal to its adjoint, F~ = F*. Holder inequality

implies that the Fourier transform is well-defined. We have the following classical result.

THEOREM 2.5.1

Let u, 4 € LY(R™) and u is continuous at a point x. Then

PROOF

—le|?

Step 1: Gaussian is a fixed point for the Fourier transform. Let ¢(z) = e . One can prove, see

Exercise 2.5.1, that
F=1.

The same property is shared by the adjoint. Indeed,
(FP)(x) = (F)(—z) = (—z) = ¢(2).

Step 2: Consider now the scaled Gaussian:

By Exercise 2.5.2, formula 1,

Froose(€"P(e712)) () = (Famse®h)(e€) = P(e€)
| — ———
Ye(x) =v
and, by Exercise 2.5.2, formula 2,
Fersa(() (@) = €™ Fi (€ a) = the(a) -
——
=y
In other words, the inversion formula holds for the scaled Gaussian as well.

Step 3: By Step 2 result, we have,

/n ﬁ(g)@;(f)emwfx d¢ = . (/ e—iQWEyu(y) dy> ﬁ(ﬁ) pi2men de

— [ ) [ e deay

— [ atwte—y)dy
= Weru)(e).

For every &,

De(€) = h(e€) = h(e€) > 1 ase— 0.
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Thus, by the Lebesgue Theorem (show the dominating function),

/n ﬂ(&);[]:(g)eﬁﬂ&v d¢ — ﬁ(5)6i2ﬂ§w de .

RTL
In other words,
(F*a)() = lim (4 ) ()
and it remains to show that the limit on the right-hand side equals u(z) at points of continuity of .

Towards this goal, assume that u is continuous at x, and pick an arbitrary ¢y > 0. There exists
then a dg > 0 such that
€0
lu(x —y) —u(z)| < 3 for |y| < do -

Consequently,

(eru)(e) = u@)| = | [ fule =)~ u(o) (o) dy

< /y<50 lu(z —y) — u(z)| Ye(y) dy + / lu(z — y) — u(@)| be(y) dy

ly|>do
€
<9 [ oy ([ e -ldy) sw vtdr e @l [ v dy
R™ R" ly|=d0 ly|=4d
—_—
=1
€ —-n_—m €)?
< Db ey e T 4 @) [ )y
ly[>6

As “exponential takes over any polynomial”, term

Efneffr(éo/e)2

converges to zero as € — 0 so, for sufficiently small €, the second term above can also be bounded
by €o/3.
The integral in the third term estimates as follows.

_ @2

Ye(y) dy :m(Sl)/ e e T "y

ly|>d do

=m(Sy) /50 e~ 1 gy (r =et)

where m(S7) denotes the (n-1)-dimensional measure of the unit sphere. As the integrand is summable
over (0,00), the integral goes to zero as e — 0 and, for sufficiently small €, the third term above is
bounded by €y/3 as well. i

COROLLARY 2.5.1
Let u(x) := u(—x). Then
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In other words, we have FF* =1id at points of continuity of u as well.

Fourier transform has a regularizing effect on the function being transformed.

LEMMA 2.5.1

Let uw € L*(R™). Then its Fourier transform 4 is bounded and uniformly continuous over R™.

PROOF We have,

[a(§ +n) —a(§)| = | . u(x)e” P (eI — 1) d
< / |u(z)] |e*i2””“" — 1| dx

< 2/ \u(x)|dx+/ ()] [e=27% — 1| da
R"—Bp Br A

<27|n| ||

< 2/ \u(x)|dx—|—27r|77|R/ |u(zx)| de .
/niBR BR

Given € > 0, we choose sufficiently large R to bound the first term by €/2, and then we choose

sufficiently small 7 to make the second term bounded by €/2 as well. Finally,

W <1 [ e u@ydel < [ Ju(w)ds.

for any & € R™. |

Rapidly decreasing test functions. We introduce one more space of test functions defined on R",
S(R") := {¢ € C®(R") : sup |29’ ¢p(x)| < 00 Va,B}
zER™

The countable set of seminorms
Pa,s(9) = sup |z70° ¢(z)]

rcR”
generates a first countable locally convex topological vector space topology so the continuity of any functional

defined on S(R™) is equivalent to its sequential continuity. It follows that
0; =0 & pasle;)= suﬂg |220%¢;(x)| = 0 Va,B. (2.11)
zER™

Let ¢ € S(R™). Elementary calculations show that

Fae (0%0(x)) (§) = (i27€)* () - (2.12)

This in turn implies that

Faoe ((—i2m2)%d(2)) (§) = 979(§) - (2.13)
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The classical Fourier transform restricted to space S(R™),

F : S(R") - S(R™),
is well-defined, i.e., Fourier transform of a rapidly decaying function is also a rapidly decaying function, and
it is continuous, see Exercise 2.5.3. Theorem 2.5.1 implies that F -1 = F*

As the following inclusions are continuous with dense images, see Exercise 2.5.4,
PRY 4 SERY L g®Y),
we can immediately conclude the corresponding embeddings for the dual spaces,
E'R") <= SR") < D'R").

Elements of dual S'(R™) are called tempered distributions. The following Proposition provides a sufficient
condition for a regular distribution to be tempered. Let u : R™ — C be a function such that u(z) =

O(|z|*), |x| — oo, for some integer k, i.e., there exists a constant C' > 0 such that
lu(x)| < C|z|¥  for sufficiently large || .

We say that function u is slowly growing.

PROPOSITION 2.5.1

Let u € L}, ,(R™) be a slowly growing function. Then R, € S'(R™).

loc

PROOF Recall that in a l.c.t.v.s. with the topology set by a family of seminorms p, (), € I,
a linear functional I(¢) is continuous iff there exists a constant C' > 0 and a finite subset Iy C I such
that

)| < Cmaxpa(e)],

see [20], Exercise 5.2.6. Next note that the integral

(o]
/ |x‘_(n+1) da;:/ / p (D=1 g gg)
|z[>1 siJ1 T

is finite. Let k be the exponent in the definition of slowly growing function. Let r = |z|. We have,

[ wel < / jug| + / g ] = () D) g
R |z|<1 |a:|>1\\g—/
<

Jul + Csup{r™ g} | =+
R7L

< sup o]
R™ |z|>1

|z|<1
where the supremum in the second term is bounded by the seminorms as well. Indeed, let 2 be an
upper bound for n + k + 1. Then

PR < 20— (22 4 a?) <! Z z? |x] > 1

|| =1
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which implies

sup {r" D |g(z)[} <nl Y sup |22 ()]

Jz|>1 =1 |z|>1

Fourier transform of tempered distributions. Let v € L!(R"). Definitions and Fubini’s Theorem imply

(check it) that
[Lao=[ b sesmn,

This motivates the definition of Fourier transform for tempered distributions. Let u € S’(R™).
(Fu,¢) := (u, Fo), ¢eSR").

Note that the continuity of 7 on S(R™) implies that F(u) is well-defined, i.e., it belongs to S’(R™). In
the same way we extend the definition of F* to the tempered distributions. Note that both transforms are

continuous operators on S’ (R"™).

Property (2.12) extends to tempered distributions. Let v € S'(R™). The 0%u € S'(R™) as well, and
(F(0%u), ¢) = (0%, Fp) (definition of Fourier transform for tempered distributions)

Dl*Hu, 0%9)
D) (u, Fose(—i2ma)*é(x)))
Fu, (i27x)%p)

- definition of distributional derivative)
- Property (2.13))

definition of Fourier transform for tempered distributions)

= ( (
= ( (
= (
= ((i272)* Fu, ¢) (
ie., F(0%u) = (i2r2)* Fu. Additionally,

definition of product of a C'*° function with a distribution) ,

(F'Fu,¢) = (Fu, F*¢) = (u, FF¢) = (u,¢), ¢ € SR"),

i.e., F*F = I. Similarly, FF* = I and, therefore, F~! = F* and (F*)~! = F on &'(R"). This and the
property above imply that property (2.13) extends to tempered distributions as well.

Example 2.5.1

Fourier transform of Dirac’s delta equals unity. Indeed,

(F6,6) = (6,8) = $(0) = / 2 %) de = [ o(€)de = (1, 6),

n R'IL
ie., F6 = 1. Similarly, F*0 = 1 as well and, therefore, we know immediately that, conversely,

F1 =4. It is more difficult to derive the last formula directly, comp. Exercise 2.5.7. [

THEOREM 2.5.2 (Plancherel)
Fourier transform is an isometry from L?(R™) into itself, i.e.,

(Fu, Fo)pe = (w,)ps,  u,ve LAR™).



Preliminaries 39

Additionally, F* represents the L?-adjoint* of F and F~' = F* which proves that F is a surjection.

PROOF Let u,v € S(R™). By Theorem 2.5.1,

(Fu, Fv) = (]-:Z-"_zﬁ,v) = (u,v),
so F is an isometry from S(R™) into itself. As isometries are automatically continuous and space
S(R™) is dense in L?(R") (explain, why?) operator F can be extended in a unique way to the L*-
space, comp. [20], Exercise 5.18.1. Let u € L?(R") and v = Fu € L?(R") be the corresponding
value of the (L? extended ) Fourier transform. As L*(R") C L;,.(R") and L*-functions are slowly

growing (explain, why?), we have the corresponding regular distribution R, and,

(FRy, ) = / uF¢ (definition of Fourier transform for tempered distributions)
= Fu ¢ (property of classical Fourier transform + density argument)
RTL V

=v

= <R'u7 ¢>7 V(b € D(Rn) )

i.e., FR, = R,. In other words, the L? extension of classical Fourier transform coincides with the
distributional generalization. Same reasoning applies to F*. Now, by the density argument, the
identity

(Fu,v) = (u, F*v)

extends from u,v € S(R") to u,v € L*(R™) which “upgrades” F* from the formal to the actual
L?-adjoint. Finally, replacing v above with Fv, we obtain that 7*F = id. A similar argument with
u shows that FF* = id as well. Consequently, F~! = F*. |

Fourier transform of convolutions. Let u,v € L'(R"). We have:
Fanellwso)@)© = [ e [ (o~ y)oy) dyda
R" R™
= / e~ ™%y (x —y)dzv(y)dy  (Fubini)

= [ [ e dowdy @y =2)

/ e~ 2RE(E)u(y) dy
R

a(§)o(8)

i.e., Fourier transform sets convolutions into products.

*Not longer just formal adjoint.
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The result generalizes to distributions. First of all, recall the notion of convolution of a distribution with a
test function. Let u € S'(R™), v» € D(R™), and ¢ € D(R™). We defined the convolution u * 1 by:

(w1, 9) 1= (u, i # 6).
where 1)(x) = ¥(—z). As before, the fact that the operation,
¢ > SR") = ¥ x¢p € S(R) (2.14)
is well-defined and continuous (Exercise 2.5.9) implies that the convolution u * 1 can be extended to ¢ €

S(R™), i.e. it is a well-defined tempered distribution.

We are now ready to compute Fourier transform of convolution u 1. First of all, for ¢p € D(f2) and
¢ € S(Q),
F* ()« F¢) =F(1p) ¢ implies o xFo=F(Fy ).

‘We have now,

(Flux),¢) = (ux, Fo) = (u, ) x Fp)
= (u, F(Fv ¢)) (identity above)

= (Fu, Fp ¢) = (Fip Fu, §) .
Thus, F(u* ) = Fu - Fi.
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Exercises

Exercise 2.5.1 ([18], Exercise 3.11) Prove that

n [e%e)
Fooe (e—wm?) _ H/ o2 g o lel?
j—17700

Hint: Method I: Use contour integration to prove that

/ e~ (@O gy = 1, €eR

o0 2
/ e ™ dr=1,
— 00

Hint: Method II: Consider 1D case and prove that both Gaussian u(z) = ™" and its Fourier transform

and the fact that

see, e.g., [15], p.57.

satisfy the differential equation:

u +2mxu=0.

(10 points)

Exercise 2.5.2 ([18], Exercise 3.12) Let ) € L'(R™). Prove the scaling properties:

Fooe(€P(e712))(€) = (Famset)(€€)
and,
Fena((e€))(x) = e (F ) (e a).
(2 points)
Exercise 2.5.3 Show that the classical Fourier transform restricted to the space of rapidly decaying test func-

tions,

F : SR") = S(R"),
is well-defined and continuous. (5 points)

Exercise 2.5.4 Show that the corresponding inclusions are continuous with dense images.

DRY 4 SERY L g®Y).

Hint: Use external approximation ¢, of closed ball (0, n) indicator function from Theorem 2.3.3. (5

points)
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Exercise 2.5.5 If you do not like the extension argument used in the text to define the Fourier transform for

L?-functions, here is another way to get there. Let u € L?(R"™). Take N > 0 and define

() o= {u(x) for || < N

0 otherwise

Explain why uy € L'(R"), and define:

Fu = lim Fuy
~~ N—00 N~
new classical

where the limit is understood in the L2 sense. Prove that the limit exists and show that the new definition

delivers the same result as the two definitions discussed in the text. (3 points)

Exercise 2.5.6 Prove the Riemann-Lebesgue Lemma: Let u € L*(R™). Then 4(€¢) — 0 for || — oo.
In other words:
/ e Ty (z)de — 0 as ¢ — oo

Hint: Prove the result first for u € C$°(IR™) and then use the density of C§°(R"™) in L(R").

Conclude that also,

/ sin(2réx)u(x) dz — 0, / cos(2méx)u(x) dr — 0, as || — oo.

n

(3 points)

Exercise 2.5.7 Compute directly, using the definition of Fourier transform for tempered distributions only,

Fourier transform of unity function. Note that

> sint T
G 2.15
/O =T (2.15)

where the integral above is not a Lebesgue integral but it is a singular integral defined by the limit:

> sint bsint
/ Pt = hm [ a4
0 t b—oo Jo t

(5 points)
Exercise 2.5.8 Compute Fourier transform of Heaviside function. (5 points)

Exercise 2.5.9 Prove that operation (2.14) is well-defined and continuous. (2 points)
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2.6 Tensor Product of Distributions

Tensor product of test functions. Let (2 = Q; x Q5 where Q1 C R™ and Q5 C R™2 are open sets with
ny +ng = n. Let ¢; € D(Q;), i = 1,2 be arbitrary test functions. Tensor product of test functions is defined

as
(01 @ ¢2)(x1, x2) := P1(x1) P2(w2), o= (v1,22) € QU x Q. (2.16)
Obviously, function ¢ ® ¢2 € CF ().

LEMMA 2.6.1

Finite sums of tensor products of test functions,
dsh@ek, ¢ eD),i=1,2,
k

form a dense subset of D(Q2).

PROOF First of all, note that the number of terms in the sums above, although always finite,
can be arbitrary large. The result is a direct consequence of a multidimensional version of the
celebrated Weierstrass Theorem for approximating smooth functions with polynomials on compact
sets. Let ¢ € D(Q) be an arbitrary test function and K; C €;, ¢ = 1,2, compacts sets such that
suppp C K := K; x Ky. Let Pj(xz1,x2) be a sequence of polynomials converging uniformly to
function ¢ along with all its derivatives. Choose two arbitrary test functions x; € D(€);) such that

xi: = 1in K;, and consider a sequence of functions

Pj(z1, 22)x1(21)X2(22)
As polynomials are finite sums of monomials z{*z5?, functions above are finite sums of tensor
products of test functions ;% x;(x;). Uniform convergence of polynomials to function ¢ implies

convergence of test functions above to ¢ in D(Q). |

Take now an arbitrary test function ¢ € D({2), distribution us € D’'(£22) and define:

¢1(z1) = (u2, ¢(1,-)) (2.17)

LEMMA 2.6.2

Function ¢1 € D(Q1). Moreover, if D(Q) 3 ¢/ — 0 in D(Q) then the corresponding functions ¢}
converge to zero in D(Q). The same conclusions hold if we replace test functions D(Q2) with rapidly
decaying test functions S(R™ x R™) and distributions D' (Q2) with tempered distributions S'(R™).
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PROOF The first part follows immediately from Exercise 2.6.2. To prove the result for rapidly
decaying test functions, recall that S(R™) is a locally convex topological vector space (l.c.t.v.s) with

the topology generated by the family of seminorms,

Popl0) = sup 0”07

Moreover, a linear functional u defined on the l.c.t.v.s is continuous iff there exists a finite subset

of indices «, 3, and a constant C such that

(@) <C 3 paslu)

(ea,B)ET

(see [20], Exercise 5.2.6). Let v be an arbitrary multiindex. By Exercise 2.6.3, we can migrate

derivative 9], under the distribution, i.e.

9, (u, d(x1,-)) = (u, 07, d(z1,)) -
Using the continuity criterion for u we have, for every multiindex 9§,
sup 2307, (u, ¢(z1,-))| = sup |23 (u, 7, (1, -))]
x1

x1
<sup|2§| C Y sup|250)¢(x1,22)l
o (a,8)el *2

which remains bounded by the assumption that ¢ € S(R™ x R™). The continuity property follows.

Tensor product of distributions. Let u; € D'(£;), i = 1,2. Let ¢ € D(2) and ¢, be defined by (2.17).

Tensor product of distributions wu; is defined as
(ur @ ug, @) = (u1, d1) . (2.18)
First of all, Lemma 2.6.2 implies that the tensor product u; ® us is well defined. Indeed,
¢ - 0inDQ) = ¢ =0inD(Q) = (u,¢])—=0.

i.e., u; ® uo is continuous. In the same way, tensor product of tempered distributions is a well-defined

tempered distribution as well.

Secondly, notice that the density result from Lemma 2.6.1 implies that it is sufficient to define action of

u1 ® ug on tensor products of test functions for which definition (2.18) reduces to:
(U1 @ ug, 1 @ d2) = (u1, d1) (uz, h2) .
The same density result implies that the tensor product of distributions is commutative,

Uy @ Uz = U2 @ Uy .
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For regular distributions R,,,, u; € Lj,.(€;), tensor product reduces to the iterated integral,

(Ru, ® Ry, ) :/

Q

Ul(lvl)/Q U2(12)¢($1,1‘2)d1‘1dﬁ27

and defines a regular distribution generated by tensor product of functions u1,us. For more examples of

tensor products of distributions, see [21] and Section 3.5. For instance, we have trivially:

611 [ (5372 = 5(9517352) .

LEMMA 2.6.3

Let p € D(21 x Qa) (or S( x Q2)). Let u € D'(Qa) (or 8'(2)) and G C Q1. Then

|t ota o= (. [ ot da),

i.e., action of u and integration in x commute with each other.

PROOF The result is a consequence of the commutativity of tensor product of distributions.

Let x¢ € L},.(Q1) be the indicator function of set G. Then

(xe¢ ®u, ¢) 12/

Q

Y@, b, ) der = / (u, () da

G

and,

(s x.0) = (u |

Q

xa(x)o(x, ) dxy = <u,/G¢(:c, dx).

As we have seen from Lemma 2.5.1, Fourier transform of an L -function is a continuous function. Identity:
Fue((—i2mx)*u(x))(§) = 9%a(§)

implies that if, additionally, u has a compact support (and, therefore, every (—i2mx)*u(x) is an L!-function
as well), its Fourier transform is a C'°° function. It turns out that the observation is true for any distribution

with compact support.

LEMMA 2.6.4

Let u € D'(R™) with a compact support. Then 4 is a regular distribution generated by a C*°-function,

denoted with the same symbol, and defined by:

A(w) = (u, x(-)e” ™) (2.19)

where x € C§°(R™), equal one in the support of u.
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PROOF First of all, @(w) is well-defined, i.e., its value is independent of choice of function x,

comp. Exercise 2.6.1. We have now,

(Fu,¢) = (u,é} = <u,xq§) = (u, x(+) . o(z)e™ 27 dg)

— (. [ xO)(@)e T da)

€D(R" xR™)
= / (u, x(-)e~ ™) ¢(z) da (Lemma 2.6.3) .
RN e ot

=:u(x)

Function () is a C°°-function, comp. Exercise 2.6.2. |

Exercises

Exercise 2.6.1 Prove that value of (2.19) is independent of the choice of function x. (2 points)
Exercise 2.6.2 Let B = B(yo,¢) C R™. Consider a function
R"™ x B3> (z,y) = ¢(z,y) € C
with the following properties:
(i) there exists a compact set K C R™ such that
supp ¢(-,y) C K Vy € B,
(i) for every multiindex «, derivative 0% ¢(z, y) exists for all (z,y) in the domain of ¢ and,
2%¢(x,-) € CY(B) Vz e R".
Prove that, for arbitrary u € D’'(R™), function

f(y) = <u7¢('7y)>7 Y€ B

is differentiable at 9, and

o¢

6—f = (u, 8—%(, Yo)) -

8yj o
Consult [21], Theorem 2.7.2, if necessary. (5 points)

Exercise 2.6.3 This problem is a slight variation of Exercise 2.6.2. Consider a function ¢ € S(R™ x R™).
Prove that, for any tempered distribution u € S’'(R"™),

0 0¢
872/]'<u, ¢(a y)> = <u’ aiy]()y» .

(5 points)
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Sobolev Spaces

3.1 Sobolev Spaces H*

Let 2 C R™ be an arbitrary domain (= open and connected set). Let & be a natural number and p € [1, o0].

The classical Sobolev space is defined as:
WEP(Q) := {u e LP(Q) : 9%u € LP(Q), |a| <k},

with the norm:
k
.
||u||€vk,p(g) = Z Z o 0 U”ip(g)a
1=0 |a|=l

and the corresponding seminorm of order k,

!
‘u|€[/k,p(ﬂ) = Z %Haa“”ip((zw
lo|=k
compare formulas for the differentials. The derivatives in the definition above are understood in the sense
of distributions. This is a delicate and crucial point. We begin with an LP-function u and consider the
corresponding regular distribution R,,. We can differentiate R, in the sense of distributions as many times as
we wish. When we request derivative
0% := 0°R,,

to be an LP-function as well, we request first of all that distribution 9% R,, is regular, i.e., it is generated
by an L], -function, denoted with the same symbol O®u and, additionally, this function is LP-integrable.
Thus, function from Example 2.4.1 will not live in Sobolev space W1 (a, b) unless it is globally continuous.
Otherwise, the distributional derivative includes the Dirac’s delta which is not a regular distribution. The

same comment applies to Example 2.9.

Alternatively, we can say that function v = 9%u in the sense of distributions iff

vo= (=D [ wo© .
/Q 6= (-1) [ %6 VéeDQ)

Take a second to realize why the two reasonings are equivalent. The Sobolev space is a Banach space, i.e., it
is complete. Indeed, let u,, be a Cauchy sequence in W*?(Q). Definition of the norm implies that 9®u,, is

Cauchy in LP(Q) for every || < k. As LP() is complete, 0%u,, must converge to some v, € LP(£2). We

47
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need only to show that 0“u = v, in the sense of distributions. By definition,

/8O‘u ¢ = )‘al/ u, 0% Yo e D).

Passing to the limit with n — oo and utilizing the continuity of both sides, we get:

/ Vo ¢ = (—1)l / ud*p Yo € D(Q)
Q Q
which proves exactly what we wanted.

In the case of p = 2 we have a Hilbert space with the norm derived from the inner product:

(u’UWA(Q)—ZZ '6’&8’()[/2(9)

=0 |a|=Il

For Lipschitz domains (to be defined), the W¥*(Q2) := W*:2(Q) space coincides with space H*(Q) (with
equivalent but not equal norms) that will be defined momentarily. For that reason, very often in the literature,
symbols H*(Q2) and W¥((2) are used interchangeably. In these notes, most of the time, we will restrict

ourselves to the case p = 2 only. Recall examples of variational formulations using spaces H*(£2) or H2(2).

Fractional Sobolev spaces on R”. We would like now to extend the definition of (Hilbert) Sobolev space
W¥(£) to an arbitrary real value of k. The need for such an extension can be motivated in many ways. First
of all, Sobolev spaces are not only used as energy spaces for various formulations but also for accessing
regularity of solutions. Many solutions live in a fractional Sobolev space. Recall that the h-convergence rate
r equals the minimum of polynomial order p and the regularity index s, r = min{p, s}. Without means for
using real values of s, we cannot estimate precisely the rate. More recently, fractional Sobolev spaces have

also been identified as energy spaces for non-local formulations (peridynamics).

We will begin with the case of {2 = R™. Recalling the action of Fourier transform on derivatives,

dou(€) = (i2me)*a(s)

we can represent the Sobolev norm in the frequency domain as:

s = [ (303 2 omen ) ticorpas

=0 |a|=l
The weight in the integral is equivalent to the Bessel kernel,

k l' k
22 =Y Y Do s iy
1=0 \a|:z =0 la|=1 al

comp. Exercise 3.1.1.

This leads to the natural and elegant definition of fractional Sobolev spaces on R" for any s € R:

H*(R") = {u e S'(R") : (1+[¢])*?a(¢) € L*(R™)}
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with the inner product given by the weighted L2-product in the frequency domain:

(o) = [ (146 ale)TTE) de.

By construction, spaces W*(R™) and H*(R") are equal, with equivalent norms.

Bessel potential of order s € R is defined by:
(J*u)(2) = /R (U [EP) P a(e) e g = Fe (1 + [E)%a(€) (@), xR,
or, using argument-less notation,
Jou = Fe o (L+ [€%) 2 Foseu)

Bessel potential is thus a composition of three operators: Fourier transform, multiplication with the weight
(1 4 |£|?)*/2, and the adjoint (inverse) Fourier transform. As all three operations are continuous on S(R"),
Bessel potential is a continuous linear map from S(R™) into itself. It follows immediately from the definition

that
Fose((Jou)())(§) = (1 +[¢*)*"%a(g) .

We also easily have:
JetT— s g0 =1 N (5t =g,
i.e., J® is actually an isomorphism from S(R™) onto itself, with the inverse equal to J—*. We also have:
(J°u,v) = (u, J°v) or (JPu,v) = (u, J°v), u,v € S(R")
where (-, -) denotes the duality pairing, and
(u,v) = (u,v), veVueV',

with V' denoting any topological vector space. For V = L?(Q), (-,-) coincides with the L? inner product
which justifies the notation. The last properties motivate definition of the Bessel potential for tempered
distributions:

(Jou,¢) := (u, J°¢) or (J°u,¢):=(u,J°¢), ¢ecS[R").

It follows that (the extended potential) J* is a well defined continuous map from &’(R"™) into itself with the

same properties as the original potential .J*.

The fractional Sobolev space can now be characterized as the inverse image of L2-space through the Bessel
potential,
H*(R™) = {u € S'(R") : J*u € L*(R")}.

By construction, J* : H*(R™) — L?(R") is a unitary isomorphism. This implies immediately the following

properties (see Exercises 3.1.2 and 3.1.3).
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e H*5(R™) is separable.
* D(R™) is dense in H*(R"™).
 The fractional Sobolev spaces form a scale:
HY(R™) <& HYR")  s<t.

* Topological dual of H*(R™) equals H*(R"™) with equal norms:

[(u, v)|

[l -+ = sup :
o ollm

Fractional Sobolev spaces on an arbitrary domain. Let 2 C R” be now an arbitrary domain. The
Sobolev space H*(£2) consists of restrictions from H*(R"™) to §2, and it is equipped with the minimum energy

extension norm.

H*(Q) :={ueD'(Q) : 3U € H*[R") : u="Ulo}
lull s () = inf WU s mny -
U € H*(R")
Ug=u

We will relate now the definition with standard constructions in Functional Analysis to prove, among other
things, that H*(Q) is a Hilbert space, i.e., it is complete, and the minimum extension norm is generated by

an inner product.

Let F be a closed subset of R™. We define:
Hy(R") :={ue H*(R") : suppu C F}.

It follows immediately (show it) that H§(R™) is a closed subspace of H*(R™). Consequently, the quotient
space H*(R™)/Hg, (R™) is well defined, see [20], Lemma 5.17.1, and embedding

t: H(Q)>u— [Ul=U+H(R") € H*(R")/H, (R™), whereU € H*(R"), Ulg = u,

is a well defined isometric isomorphism, comp. Exercise 3.1.4. This is a standard reasoning for Banach

spaces. For Hilbert spaces we have the Orthogonal Decomposition Theorem, see [20], Theorem 6.2.1,
S n S n L S n L
H*(R") = Ho (R™) © (H (R™)) ™,

and space H*({) is isometrically isomorphic with the orthogonal complement. This shows immediately that
space H®(2) is a Hilbert space. The Orthogonal Decomposition Theorem helps also to identify the inner
product in H*(£2), although in somehow abstract way. Let P,Q = I — P be the orthogonal projections of
H*(R™) onto H&, (R™) and its orthogonal complement. The inner product in space H*(£2) is equal to:

(u, ) s () = (QU, QV) s (mm) where Ul = u, V]g =v.

Once we understand the Functional Analysis picture, a number of immediate observations follows.
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* Space H*®({2) is separable.
* Restriction operator:
H*(R")>U —Ulg € H*(Q)
is continuous with norm equal one.

* Subspace:
C(Q) :={Ulq : U € C°(R™)}

is dense in H*(Q) (consequence of density of C§°(R™) in H*(R™) and continuity of the restriction

operator).

Topological dual of H°(2). For Q = R™, the dual of space H* is simply space H ~*. For general domains

Q, the story is much more technical. Let s € R. We start with the definition of a new space:

H(R™) = Cg°(Q)

H®(R™
B r) C HAR).

By C§°(€2) we really understand zero extensions of such test functions in €2 to the whole R".

THEOREM 3.1.1
We have,
Ho*(R") = (H*(Q) = Hy*(R").

More precisely, the topological dual of space H*(Q) is isometrically isomorphic with a subspace of
HZ*(R") containing Hg,(R™).

We will prove shortly that if  is a C°-domain (to be defined) then

g (R) = H*(R").
Consequently, for C°-domains, the dual of H*(2) can be identified with either of the two spaces.

PROOF  of Theorem 3.1.1. Let U € Hg,*(R"). Take v € H*(Q) and an arbitrary extension
V € H*(R™), V]q = v. Product

depends only upon v. Indeed, let V|g = 0, U = limg_,00 Uk, Uy, € C§°(2) where the convergence is

understood in the H~*(R™) norm. Passing to the limit in

(Ug, V) =0,
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we obtain (U, V) = 0 as well. Define thus
(U,v) :==(U,V)gn where V|g =v,V € H*(R").

We have,
(U, 0)] = [(U,V)rn| < U= ®n) IV [ 72 my -

Taking infimum wrt V', we obtain,
(U, )| < Ul z-5@ny 10l ()
which proves that
U,-) € (H*(Q))" and ||(U,)ll(zr=)y < NUlm-=@n) -

To prove the second embedding, consider an arbitrary | € (H*(2))’, and define the corresponding
functional on H*(R"):
{H*(R") 5V = 1(V]q) € C} € (H*(R™))" .

As H~%(R™)is dual to H?(R™), there exists an U € H~*(R"™) such that
U, V)=1Vl]a), Ve H*R")
and,

(Ve
U+ @ny = sup .
( ) VGHS(R’FL) HVHH&(Rn)

Take now any V € C§°(R™ — ). Then V|q = 0 which implies that
(U, V)gn =1(V]q) =0.
This proves that supp U C €, i.e., U € HZ*. |
Comment: We will show that, for C°-domains and s > —%, we can identify space f[&(R”) = H%(R”) of

distributions defined on the whole space R, with a subspace of distributions defined on {2, denoted H 5(Q).

Consequently, for range s € [—3, 3], spaces H*(£2) and H~5(Q) are dual to each other.

Exercises

Exercise 3.1.1 Prove that

k k
Yot Y Letcoma it aa arigt <ok e Y S

1=0 la=t 1=0 la|=l

for all ¢ € R™. (3 points)
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Exercise 3.1.2 Weighted L? spaces. Consider a weighted L2 () space with the inner product:

(Uy )4y :/wwuﬁ

where w is a measurable function almost everywhere positive in 2. Argue why the completness of the
standard L2-space implies the completness of the weighted space. Prove that the following maps are

unitary isomorphisms.
L2 Su— w/?ue L?
L?su— w'ue Lf/w
LY, 2u—{L} 5v— [(uveC}e (L) .
(5 points)
Exercise 3.1.3 Explain in detail why D(R™) is dense in H*(R™), for any s € R™. Hint: Use the fact that

Bessel potential is a unitary isomorphism and it maps fast decaying test functions into itself. Recall
also that D(R™) is dense in L?(IR™). (5 points)

Exercise 3.1.4 Prove that the map
v H(Q)3u— [U=U+ HE(R") € H*(R")/H§, (R™), whereU € H*(R"), Ulg = u,

is a well defined isometric isomorphism.

(3 points)

3.2 Sobolev Spaces W*

Slobodeckij seminorm. Let 2 C R™ be a domain, and let € (0, 1). The Slobodeckij seminorm is defined

as:
|u(z) — uy)?
lul? o = / — Y dady . (3.1
s alo |lr—ynt
For 1 = R", we will use a simplified notation |u|, := |u|,r~». The Slobodeckij seminorm can then be

expressed in terms of Fourier transform .

LEMMA 3.2.1
Let u € (0,1). We have:
ol 1= ol e = [P e 62

oo
a, = / t_gﬂ_l/ let2mert 1|2 dwdt
0 jw|=1

where
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with wy being the first component of w € R™.

PROOF Elementary calculations show that
(Fomgu(@ + 1)) (€) = €™ (Foseu(®)) (€).
Consequently, for (d,u)(z) := u(x + h) — u(z),
(Fosedn) (§) = (¢#7" = 1)a(8) .

We have now,

h 2
ul?, = / / uly Th\””“ u(y)l dh dy (change of variable z = y + h)

:/R W/ |6nu(y)|? dy dh (Fubini)

1 i )
= /]R” T /Rn le?2™h _ 112 |4(¢)|* dé dh (Plancherel Theorem)

i2mEh 1|2
:/n |a(§)[? </ Wdh) dé (Fubini) .

a weight

We now focus on computing the weight. First, we switch to (n-dimensional) spherical coordinates:

h=pw, p=|h|, w= |Z|€un1tsphere5 dh = p"tdpdw,

‘ei%gh - 1|2 X o i27 pE 2
7dh:/ pHT / e TP — 1| dwdp .
/n ||t 0 \w\:1| |

After another change of variable:

to obtain

§
—w

t=plgl, péw= pl¢ g

- |
=t

the inner integral over the unit sphere transforms into:

/ | ’Lz‘n'tm 1|2 dw .
Jw]=1

As the integral is invariant wrt rotations, we can rotate the system of coordinates for w in such
a way that the first coordinate alligns with vector é—l In the new system of coordinates vector

é—l = (1,0,...,0) so the whole integral becomes:

/ ‘ |€i27rtw1 _1|2dw
wl=1

Consequently, we arrive at the formula:
(o]
[y [ e 1P dwdt =[P a,.
—00 |w|=1

Note that flw|=1 le?m@rt — 112 dw is O(t?) for t — 0 and O(1) for t — oo, so the constant a,, is finite
but it blows up for both y — 0 and p — 1. |
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Slobodeckij norm. Lets =k + p where k € N, u € (0,1). We define the Slobodeckij norm as:

k!

lullfye o) = lullive +az" > 5 1D%ulig (33)
lajl=k

Notice that we have rescaled the seminorm contributions with factor a;l.
For (2 = R™, the Bessel norm and the Slobodeckij norm are equivalent. Indeed,

Julfy ey = [ 16 O d - and

k

l! k! )
lullfys @) = /R Soent X0 el ent 3o e | la©Pds
=0 |a]=l ’ la|=k '
The kernels
k I !
(L) and | D o@m)' 3o e +fgPremnt Y, e (3.4)
1=0 lal=t la|=k

are equivalent, see Exercise 3.2.1, with the equivalence constants dependent upon s only. For instance, for
s=p € (0,1), we have
(L+lgl*)* and  (1+[¢*).

Then

For [£| <1 :(1+[¢*)* <2¢ <2<2(1+ [¢*)

For [£] > 1 : (1 + [¢]?)* < (21€)2)" = 2#]¢|** < 2(1 + [¢[*H)
S0,

(1+[€[2)" < 2(1 + [¢]*)

Similarly,

For [£| <1 :14 ¢ <2 <201+ [¢2)"

For [£] > 1 : (14 [€]?)" < (20€]*)" < 20 < 2(1 + [¢[*)*
SO,

(1+1¢™) <201+ [¢*)"

as well. We might say that choosing the Bessel kernel over the Slobodeckij kernel is a matter of an algebraic

convenience or elegance only.

The equivalence of Bessel and Slobodeckij norms in R™ transfers to arbitrary domains under some addi-
tional assumptions. Let  C R™. Recall that the norm in H*({) is defined through the minimum energy
extension norm,

lull3- (o) = min{[U 13-y : Ul =}
The Slobodeckij norm (3.3) is always bounded by the minimum extension norm. Indeed, let U € H*(R")
be the minimum energy extension of u to R".
llullws ) < U llwsm®n) since 2 C R"”
~ U 5= (mmy equivalence of norms

= ||ull g+ () minimum energy extension
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The inverse inequality requires some assumptions on regularity of the domain.

THEOREM 3.2.1

Let s > 0. Assume there exists a continuous extension operator E : W*(Q) — W*5(R™). Then

spaces W*(§2) and H*(Q2) coincide with each other with equivalent norms.

PROOF
lull s ) < [1Eull g mm) (minimum energy extension argument)
~ || Bullws®n) (equivalence of norms)
< Ollullws o) (continuity of extension operator E) .

We will construct such extension operators for Lipschitz domains (to be defined). In the case of a general

domain €, space W*(2) may be larger, see Exercise 3.2.3.

The Sloboditskij norm is indispensable in proving many results for fractional Sobolev spaces. Here is one

of them.

LEMMA 3.2.2

Lete > 0. Let K; = B(0,5), and X5 € Cg° (R™) be the corresponding C*° approzimation of indicator
function x; = XE, from Theorem 2.3.3. Let uw € H*(R"™),s € R. We have:

Xju —u in H*(R"™).

PROOF Case: s = k € N. We start with the L?-estimate.
[1a-u@P< [ ju@P oo asjos
RTL ﬂ_BJ
since

/n ()2 da < oo

The same reasoning applies to arbitrary derivative 9¢. The formula from Exercise 2.3.2 extends to

distributional derivatives (prove it...),
(63 € « € o —
(1= xHu) =Y (7) O"(1—x5) 9* u.
v<a

Each of derivatives 97(1 — x§) is bounded (pointwise) with a bound independent of j (see Theo-

rem 2.3.3) and each derivative 9% Vu is L%-integrable.
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Case: Arbitrary s > 0. For the Sloboditskij seminorm things are a bit more technical but the idea
is exactly the same. You have to mimic with differences what we have done above with derivatives.

Let ¢; := 1 — xj. We have a simple estimate

|65 (2)u(x) — &5 (Y)uy)| < |o;()] lu(z) —u(y)| + [6;(z) — ¢; ()] [u(y)]
< fu(x) —u(y)| + 16, (x) — &5 (y)| [u(y)]-
Consequently, for u € (0,1),

/ )~ SONODE 114, < ju(e) ~u@) ,
R"XR"—B; X B; R"XR"—B; X B;

o — gl o — gl

Jr2/ |65 (%) — & (y)? [uly)|?
R xR"— B, x B; |z — y|n+2n

The first integral goes to zero by the integrability argument. The second integral is bounded by:
|65 (y +h) — &;(y)[?
/n Ju(y)|* / S dhdy.

=w;(y)

dxdy

We know that
|9 (y + h) — ¢;(y)| < Clhl,

with constant C independent of both y and j. This shows that the weights are uniformly bounded,
, B — b ()2 4 B — b ()2
h|<1 h|>1

e R

<C |h|2dh+4/ #dh
T i [AfrRe in>1 A2

As u € L*(R™), its is sufficient to show that the weights w;(y) go pointwise to zero. Let y € R™.
For j > |y|,¢;(y) = 0, and the integral reduces to:

) )2 (2)]2 1
/ wdh:/ Mdzg/ —————dz—0 asj— 00.
ST |2 — y[t2e 2125 |2 =y

This finishes the proof for s = u. For s = k + pu, the reasoning has to be applied to the k-th

derivatives.

Notice that in process of proving the convergence, we have also proved the bound:

(L= x5 ull e @ny < Cllullgegny s 20,

with C' depending upon k and €, but independent of w. You can also deduce the bound from
the Uniform Boundedness Theorem, see [20],Theorem 5.8.1. By the duality argument, the bound

extends to negative s. Indeed,
(= X5)u, @) = [(u, (1 = x5)¢)]|
< ullg-s@ny 1(1 = X5) @l e rr)

< HuHH—S(]R") O||¢||H5(R")
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which implies that
(X = x5)ull -« @n) < Cllullg-s@n) -

Case: —s < 0. Pick an arbitrary €9 > 0. Let u € H™*(R") and v € C§°(R"). Let ¢ =1 — x§ as

above. We have: . . .
p5ull r—s@ny < 1105w — V) |2 @n) + 950/ -2 mn)

< Cllu — vl g-s@ny + |#50] L2 ®n)
By density of test functions in H~*(R"™), we can select a v € C§°(R™) such that the first term is
bounded by €y/2. By the result for non-negative s, the second term is bounded by € /2 for sufficiently
large j as well. |

REMARK 3.2.1

1. We proved that ¢ju — 0 in H*(R") for any u € H*(R") and ¢; = 1 — x§5. Upon examination
of the proof, we can see that functions ¢; can be replaced with any other sequence of C'*°

functions with derivatives bounded uniformly in j, and vanishing on ball B;.

2. Lemma 3.2.2 illustrates the fact that the definition of space H*(R™) involves a certain decay
of functions at infinity. This is intuitively clear for positive values of s but less so for negative
s. Note also that closed balls B; can be replaced with any sequence of compact sets, K; such
that

KicCK,ccC...K;CC UK, =r".
j=1

Exercises

Exercise 3.2.1 Prove that kernels (3.4) are equivalent with equivalence constants depending upon s only. (5

points)
Exercise 3.2.2 Consider Q = B(0, 1) C R? and function
uw=In|lnr|
where 7, 0 are polar coordinates. Show that u € H*(£2). (3 points)
Exercise 3.2.3 Let (2 be the crack domain.
Q=(-1,1) x (-1,1) = [0,1) x {0},

see Fig. 3.1. Prove that there exists no continuous extension operator from W*(Q) to W(R?) ~
H'(IR?). Consequently, space W1 () is larger than space H'(2). (10 points)
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Xy

Figure 3.1
The crack domain.

Exercise 3.2.4 Let o € [0, ]. Prove that function u(z) = 2 belongs to space W'/2+2=¢(0,1) for any

(small) € > 0. (10 points)

3.3 Domain Regularity and Density Results

All results proved so far, hold for arbitrary domains {2 C R™. In this section, we learn how to characterize

regularity of a domain or, more precisely, its boundary I' = 9§ := Q — Q.

Hypographs. Letxz = (x1,...,x,) € R™. We will use the notation:
r=(z',2,) ER" P xR~R" where 2’ = (z1,...,7,_1).

Let ¢ : R"~! > 2’ — 2, = ((2') € R" be now a continuous function. By the hypograph of function (, the
hypograph domain or, shortly, a C°-hypograph, we mean the open set:

{reR™ : 2, <((2)) 2 eR"'}.

Explain why the set is open. If function ¢ is Lipschitz, we talk about a Lipschitz hypograph or C*! hypograph.
If ¢ is a C*! function, k = 1,..., 00, we speak about a C*:! hypograph. Recall that notation C**? is used
for k times differentiable functions such that k-th derivatives are Holder continuous with exponent 6 € (0, 1].

For # = 1 we have Lipschitz continuous functions, hence the notation.

Finally, if function ( is continuous and piecewise smooth, we will call it a piecewise smooth hypograph.

More precisely, we say that a continuous function f defined on an open set G

f:G R,
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is piecewise smooth if G can be partitioned into a finite number of open sets G;, j = 1,..., N such that
N
GinG; =0 fori#j , G=|JGj,
j=1

and restriction f|g, € C'(G;), foreach j =1,...,N.

C*, C*1, Lipschitz and polyhedral domains. A domain 2 C R" is said to be a C* or C*! domain if its

boundary T is compact and there exist open cubes G; = (al, b)) x ... x (a/,,b}),j =1,...,J, such that:

* G4,j7=1,...,J is an open cover of I';

s foreach j = 1,...,.J, cube G; can by extended to the whole space with 2 N G extending to a C*
or C*! hypograph. The local systems of coordinates for the cube may be obtained from the canonical

coordinates in R™ by a rigid body motion.

The definition is illustrated in Fig. 3.2. A C%! domain is called a Lipschitz domain. Finally, if each hypograph

is piecewise smooth, we speak about a polyhedral domain.

Partition of unity. A finite or infinite sequence of functions ¢; € C'°°(R") is called a a partition of unity
for a set S if

e ;>0

» For each x € 9, there exists a neighborhood B such that only a finite number of functions 1); is

non-zero in B;
* D vir)=1 z€S8.
Note that, by the second assumption, the sum in the third condition is always finite.

LEMMA 3.3.1

Let S be an arbitrary set in R™ and G an arbitrary® open cover for set S. There exists a partition
of unity ¢; € C°(R™) such that

Vj 3G e€G :supp¢; CG.

*It need not be countable.
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a)

1

G;

/
/

S

b) / o
A Xn

] :

d)

Figure 3.2

Regularity of a domain. a) Open cover of domain boundary I'. b) A particular open set GG; covering a part of
I'. ¢) Same set G; after rotation. d) Extension of 2 N G to a hypograph domain.

PROOF Let H be the union of all sets G from family G. Obviously, H is an open set. There

exists! a sequence of compact sets K; C H such that

K; CintK;y i=1,2,... and |JK;=H.
1

TSee. e.g., Lemma 5.3.1 in [20].
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Consider compact sets
F1:K1, Fj:KjfiIItKj_l j:2,3,

Note that F; N K;_o = ) for j > 2. For every x € F} there exists an open set G € G such that
z€G. For j >2, v € G—K;_5 as well. Pick an open cube G, neighborhood of z, contained in G
for j =1,2 and in G — Kj_», for j > 2. The family of open cubes G, ., * € F}; constitutes an open
cover for the compact set F; and, therefore, we can always extract a finite number of those cubes
that still cover set Fj. Notice that each cube G}, may intersect only with a finite number of cubes
corresponding to sets F;_; and Fji;. Collect now all the cubes into one countable family of cubes
{G;.}. For every cube Gj ., pick a C* function v; with support in the cube (comp. Exercise 2.4.1)
and different from zero at x. The construction implies that only a finite number of functions is

different from zero at point x. Normalize,

to obtain the partition of unity. |

THEOREM 3.3.1

Let G; be a countable open cover for a domain Q@ C R™. There exists a corresponding partition of

unity ¢; for domain Q such that
suppy; C Gj, Vj.

We will say that partition 1; is subordinate to cover G;.

PROOF Let ¢; be a partition of unity from Lemma 3.3.1. For each j, define the index set:

j—1

Ii:={i:suppg; CGyj, i¢ U I}

k=1

and set:

b= i

’L‘EIJ‘
Note that sets I; may be empty, finite or infinite. Because of the last possibility, we cannot claim

that functions 1; have a compact support. |

LEMMA 3.3.2

Let s € R and € > 0. For every v € H*(R™) there exists a function v € C§°(R™) such that

lu —v|ge@rny <€ and suppv C {z € R" : d(x,supp u) < ¢} .
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PROOF Proof is a direct consequence of Lemma 3.2.2 and Exercise 3.3.1. |

LEMMA 3.3.3

Let Q C R™ be an arbitrary open set, and s > 0. The set
W) NC™(Q)

is dense in W*(9).

PROOF Consider open sets:
1
Gy ={zxeQ:dxT)> 7 lz| <4}, j=1,2,...,

and the corresponding partition of unity ; subordinate to G;. Note that boundedness of G; implies
that ¢; have compact supports. Let u € W*(Q2), s > 0. Take an arbitrarily small e > 0. We claim
that functions 17)71; where tilde denotes the zero extension, belong to W*(R™) = H*(R™). We start
with s = 1. Indeed, for v € W(Q),¢ € D(Q2) and ¢ € D(R"),

<8iju, @) = —(%, 0,¢) (definition of distributional derivative)
= —({a,0;9) (u = i)
= —(i1,d;¢) (definition of product of C*° function with distribution)
= —(u,d;(pp) — ;9 ) (1 ;¢ has a support in )

= (Du, V) + (u, 0,1 ¢)
= (§0;u,¢) + (050 u, 6),
ie.
0;(u) = ¢ dju + Jjpu € L*(R")
and, 1,/)\1/1 € W(Q) as claimed. By induction, the result holds for any integer s. Consider now
€ (0,1). We have:

and, therefore,

[Y(@)ul@) — vy)u@) < 200 @) [u@) — u)]* + 20 (@) — v y) uy) . (3.5)

Consider an auxiliary 1D function:
X(t) =Pz + 1ty —x)).

By the Mean-Value Theorem,

V) — () = X(1) ~ X(0) = X(O) = 2L (4 Ely — )y ).

J



64 Lecture Notes on ENERGY SPACES

Thus, by the Weierstrass Theorem, there exists a constant C' > 0 such that

[Y(@) <C and  |¢p(z) —(y)| < Clz -yl

for all . The Slobodeckij integral corresponding to the first term in (3.5) is thus bounded by the

Slobodeckij seminorm of u. For the second term we have:

/Q QM|u<x)|2dxdy=/ Iz/}(y>_¢<m)u(x)|2dyd:c§C/Q|u(ac)|2d:10

|z — y[nt2e alo |z—yrt
since,
2
— x
/ W(y) QfJEQZl dy <C |y _ ml—n—2u+2 dy +C |y _ $|—n—2ﬂ dy
n |$ - y| lz—y|<1 lx—y|>1

and both integrals on the right-hand side are finite and independent of x.

By Lemma 3.3.2, there exist functions v; € D(£2) such that
— 1 -
[Vju —vjllws @) < [Yju — 05 gs@mny < £ and supp v; C ~ — neighborhood of supp ©;u. (3.6)
27 j

Define now v(z) = Z;’;l v;. We claim that the sum is locally finite and, therefore, we can conclude

that v € C°°(Q). Indeed, by the definition of partition of unity, for any x € Q, there exists a
neighborhood B(z,d,,) and a constant N, such that

N
d =1 inB(x,d,),
j=1
ie., ¥; = 01in B(x,d;) for j > N,. In other words, supp¢;ju C Q — B(z,d,). Condition (3.6) on

support of v; implies that, for % < %’, suppv; C Q — B(z, %), ie., v; = 0 in B(z, %T) Finally,

comp. Exercise 3.3.2,

[u—vllwe@) = | Z(%‘u —vj)lwe (o) < Z [thju — villws (o) <e€.
j=1 j=1

THEOREM 3.3.2 (Theorem 3.29 in [18])

Let Q be a CY-domain in R™. Then

(i) Cs°(Q) is dense in W*(Q), for all s > 0,
(i1) C5°(2) is dense in HS(R™), for every s € R. Consequently,

Ay(R") = HL(R") s€R.
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PROOF (i) Case: Q2 is a C%-hypograph.

Let u € W#5(2), s > 0. As C(Q) N W?(Q) is dense in W*(Q) (Lemma 3.3.3), we may assume
additionally that u € C*°(Q). Let € > 0. For each 6 > 0, define the “shifted function”:

us(z) = u(@,x, —9), x€Qs:={reR": x, <((z)+5}.
Differentiation and shifting commute,
0%us = (0°u)s , (3.7)

i.e. derivative of the shifted function equals the shifted derivative. Let w denote the zero extension

of function w to the entire R™. If w € LP(Q) then w € LP(R™). Recalling Proposition 2.1.1, we have
v —uslallLe@) < @ — dsl|L2@n) — 0 asd — 0.
By the commutativity property above,
107w — 0% (uslo) | L2(e) = [10°u = (3% w)slallL20) < 0°u — (9*w)sl|2(zn) =0 asd — 0.

A similar reasoning holds for the Sloboditskij seminorms. It is sufficient to notice that if we introduce
an auxiliary function of two variables,

U(l‘,y) L U(:C) B U(y)

R (z,y) € Q2 x Q

and define the corresponding shifted function

1}5(377?/) = ’U((l‘/,l‘n - 5)a (y/ayn - 6)) (xay) € Qs x Qs

then
us(z) — us(y)

Ué(x,y): |x7y|%+u

Consequently, if seminorm |ul, ¢ is finite, i.e. v € L%(Q x ), then,
lu — us|aluo = ||v —vslaxallL2@@xo) =+ 0 asd — 0.

Commutativity of derivatives and shift implies the same result for the seminorm applied to deriva-
tives. We have thus,

uslo = w  inW?(Q) asd — 0.

Choose now such a § that

€

5 .

Next, employ a cutoff function x = xs/2 from Theorem 2.3.3 for set Q, ie.

[lu — U6|QHW-(Q) <

lon(
X:
0onR™ —Qs/5.
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As x and all its derivatives are bounded, we have,

xus € WH(R") = H*(R") = C§°(R").
Consequently, there exists a test function V € C§°(R™) such that
€
||XU§ — V”Ws(Rn) < 5 .
Set v = Vg, and use triangle inequality to finish the argument.

lu —vllws) = lu—usla + (xus — V)lallw: ()
< ||u — U(;‘QHWs(Q) + ||XU5 — V||W5(Rn) < €.
(i) Case: Q is a C°-domain. Let G;, j = 1,...,J be an open cover for I' = 92 from the definition

of Lipschitz domain. Define,
Gy={xeQ:dxT)>s}.

Claim: there exists a 6 > 0 such that

Indeed, assume to the contrary that there exists a sequence x,, € Q such that

J
d(z,, 1)< = and z,¢ | JG;.

=1

3=

Let y,, € I be the corresponding sequence of points on I' that realize the distance, i.e.
d(xnv F) = d(xnv yn) .

Compactness of ' implies that there exists a subsequence, denoted with same symbol vy, that
converges to a point y € I'. Consequently, x,, converges to y as well. But y must belong to an open

set G; from the cover. Consequently, for sufficiently large n, x, € G; as well, a contradiction.

Let now u € W*(Q) and € > 0 be an arbitrary constant. Let {1;}] be a partition of unity
subordinate to cover Gy := G, Gy, ...,G of domain Q. By the result above for the hypograph, for
each product ¥;u € W*(G; NQ), there exists a function v; € C§°(R™) such that

€ .
||¢jU-Uj‘Gij”Ws(GjﬂQ) < m, J :17...7J.

By Lemma 3.3.2 and equivalence of Bessel and Sloboditskij norms in R™, there exists also a function

vo € C§°(R™) such that the same estimate holds for ¥gu,

€
— s < —.
[You — vola|lw (Q) J+1
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Function v := Z}]:o v; € C§°(R™), and
J J
flu — U|Q||WS(Q) =l Z(%‘U - Uj)||Ws(Q) < [You — UOHWS(Q) + Z ll9ju — UjHWs(Gij) <e.
Jj=0 j=1
(ii) Case: €2 is a C°-hypograph.
Let h € R™. For a ¢ € S(R™), define a ‘shifted function’,
On(z) := p(z + h).
The identity:
/" up(x)p(x) de = / w(z)p_p(z)dx,
suggests to define the shift for a tempered distribution u € S'(R"™) as,
(un; @) = (u, d—p) .
Take now an arbitrary u € H%(R"), s € R, and € > 0. For § > 0, consider a shifted distribution
us(x) := up(x) where h = (0,6) € R"™! x R.
By Exercise 3.3.3,
us € H*(R™) and suppus C {z € R" : z,, <((z') —d}.
We have,
us =~ win H*(R")as 0 — 0.
Indeed, for any h,
(- + h) = u() e @) = /Rn(l +[€[%)%]e™e — 1 Ja(g) [ de .
and the result is implied by the Lebesgue Dominated Convergence Theorem. Finish the proof by

applying Lemma 3.3.2 to function wus.

Contrary to the reasoning in the first part of this proof, this is an easy argument as we operate

only on distributions in R".

(i) Case: Q is a C°-domain. The proof is fully analogous to the one for (i).

REMARK 3.3.1 Let s € R. Theorem 3.3.2(ii) and Theorem 3.1.1 imply now that
(H*(Q)) = Hy*(R") = Hy*(R™),

with equivalent norms. By reflexivity of Hilbert spaces, conversely,

(HH(R™) = H™*(Q),
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with equivalent norms, as well. |

Exercises

Exercise 3.3.1 ([18], Exercise 3.17) Let ¢ and 1. be functions like in (2.7).
(i) Let u € D’'(R™). Show that convolution u. := 1. * u lives in £(R™) and
supp u. C {z € R” : d(x,suppu) < €}.
(ii) Letu € H*(R™), s € R. Show that
lwell e @ny < lull re@ny and  [Jue — ufl rs@ny — 0ase—0.
(10 points)

Exercise 3.3.2 (Generalized triangle inequality) Let 2 C R”™ be an arbitrary open set, and s > 0. Let

uj € W*(Q) be a sequence of functions such that the sum

u = Z Uj
=1
is locally finite, and

Z||uj||W5(Q) <o0o.

j=1
Prove that

lullwey = 1> willwsa@) <Y lwjlws) -
j=1 j=1
(5 points)
Exercise 3.3.3 (Shifted functions) Let h € R™. Fora ¢ € S(R"™), define a ‘shifted function’,
on(x) = ¢(z +h).
* Prove that the shift operation:
S(R™) > ¢ — ¢, € S(R™)

is a well-defined and continuous linear map.

* Note the identity:
[ wn@@rde = | u@)o-p(a)da,
and extend the definition of shift to tempered distributions by:

(un, @) = (u(z)p—p) -

Prove that the shift operation is a well-defined continuous map from S’(R"™) into itself as well.
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* Let u € H*(R™) (for negative s, u is a distribution). Prove that
(Fun)(§) = " (Fu)(€).
Consequently, uy, is in H*(R™) as well.

(5 points)

3.4 Calderon Extension Theorem

Existence of extension operator,
E:WQ)s>u— FEueW'R"), s>0,

provides a crucial argument in proving equivalence of W*(Q2) and H*(Q2) spaces. This section contains a
simplified version of presentation in Appendix 1 from [18]. The bulk of the work will be done for the case of a
Lipschitz hypograph domain with the partition of unity argument for an arbitrary Lipschitz domain presented

in the end of the section.

Xn

C&)

Xy=0&) (Xn LK)

Figure 3.3
Construction of the symmetric extension for a hypograph domain.

We start with the analysis of the symmetric extension, see Fig. 3.3. Let
Q:={z=(2,2,) €ER" : 2, < ((a),2’ €¢R" '}
where ( is a Lipschitz function,

IC(z") = C()| < M2’ —of| o',y e R,
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For u € W*(Q) N C§° (), define the symmetric extension by:

u(x) z €
(Bou)(z) := § u(z/,2¢(2') — x,) z€R"—Q. (3.8)

THEOREM 3.4.1

Operator Ey admits a unique extension to a continuous operator:

Ey : W(Q)>u— Eyu e W(R"), forse][0,1].

PROOF Transformation x — Z has a unit jacobian. This implies that
HEOUHQW(Rn) = ||UHQL2(Q) + HEOUHQLz(ng) = 2||U||iz(9) :

In turn, for z € R® — Q, the chain formula for differentiation,

d(Epu) ou , . ou ,_. O0C ,, .
(@) = G @)+ 2 @) e 1< j<n—1
O(Eyu) ou

al'n (.I') = _%(j)a

implies the estimates:

O(Fou) Ou ou .
| O llL2@r—g) < ||%HL2(Q) +2M||%HL2(Q)’ fory=1,...,n—1,
J J n
O(Fou) ou
|| o, ||L2(1R"752) = ||@HL2(Q)-

It remains to analyze the Sloboditskij seminorm. Let g € (0,1). The seminorm can be split into
four integrals:

|EOU|Z,R" = \uﬁ,g +l+ I3+ 1.

7\ ~\ 2
I = / / %dmdgj.
en>C@) Jyascy 17—y

As for the single integral norms, we intend to change variables from z,y to Z,y, but we need first

We start with I,

to estimate the denominator. We have:

1
2

[ = n] < 2[C(a") = C)| +Hlom — yal < VI+4AM2 (J2" =3/ + |20 — yn]?)
—_—————

<M|z'—y'| =lz—y|

S0,

1

1 1
Z—g=(|2' =y P+ (@n—5)°) % < (Jo—yP+ 1 +4M?)|z — y[*)® < V2+4M?2 [z —y].
N———
=:C
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This implies now a bound for I5,

2 SN N2
I = / / [ul®) = WD 45 < omam / / [ul®) = WO gz g5
Fn<C(a’) JGn<C) |$_ |+2m n<C(a") JGn<C) | — gt

:lu‘mﬂ

We proceed similarly with I3,
=y 2
I = / / % dz dy .
IH>C(I,) yn<<(y/) |.T;' - y| ) !

If y,, — ,, < 0 then

Otherwise,

Yn — T < CY) +2n —2¢(2") < CW) + W) = Y+ — 2¢(2") = (20 — yn) + 2(¢(2") — C(Y)).
—_——

>0

Consequently, for both cases,
Y — Zn| < Jzn — yal +2[C(@") = CW)] < |z — yal + 2M 2" — o]
Therefore,

ly =2 =y = 2'? + lyn — &l* <[y — 2" + 20z — yol* +8M2[a — /P < (1 +8M?) |y —z*.
a,_/
=:C?

The lower bound for |« — y| implies then an upper bound for I,
I3 < C™PPHul? .

Procedure to bound I, is fully analogous to that for I5. |

We proceed now with the construction of a general extension operator based on a version of Sobolev

representation formula. Define the cone:
K:={yeR" : y, < -Mly']}

and notice that v+ K C Q, forall z € €. Take a cut-off function x € C§°([0, c0)), equal 1 in a neighborhood
of 0. Consider now an arbitrary u € W*(Q2) N C5°(Q), a point w on unit sphere S, and apply Exercise 3.4.1
to function p — u(x + pw)x(p) to arrive at the identity:

_1\k 00 k
e = w0 = 4 [ A e+ ) X do

_ (=pF Sk [ i)y k-1
= —_—
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Take now a smooth function v (w) defined on the unit sphere with a support contained in cone V' scaled in a

_ (=DF
/Si/)(w) ds = G-

Multiply both sides of identity (3.9) with v)(w) and integrate over unit sphere S to obtain:
u(z) = Z ( ) / h(w / XD (p)uD (@ + pw; pw) pF1" p" L dpdS

(3) [ oo ot v) ol ay
—_———
>lal=t Lo u(z+y)y®

- Z 2 / ( ) al Iiyl)x(kfl)(lyl)y“ [y~ 9%u(x + y) dy

such a way that

B |

=0

1=0 |a|=l
=:Vo(-y)
_ZZ/ u(z +y)d ZZ/ u(z —y) dy
=0 |a|=l 1=0 |a|=1
k
=373 (o # 0% (2)
1=0 |a|=l

At this point, this is just a clever representation formula for function u(z), z € 2. Notice that the assumption
on support of 1)(w) assures that the integration is done only within domain 2. The symmetric extension
operator Fy now comes in. Replacing derivatives 0“u with their extensions Ey0%u, we define a general

extension operator,

(Erpu)(x Z > (Wa * Eo(0°u))(x). (3.10)

=0 |a|=1

THEOREM 3.4.2

Operator Ey, admits a unique extension to a continuous operator:

Ey : W(Q)su— Epue WR"), forselkk+1).

Before we can prove our main result, we need to introduce the concept of homogeneous distributions and

establish some basic facts about them.

Homogeneous functions and distributions. A function u : R"~{0} — C is homogeneous of degree a € C
if

(Myu)(z) := u(te) = t*u(z) t >0,z € R"—{0}.
One checks easily that, for u € L} _(R"),

(Myu, ¢) =17"(u, My 19) t>0, 6 €DR").



Sobolev Spaces 73

This leads to the definition of M,u for a general distribution u € D’'(R™). We say now that the distribution «

is homogeneous of degree a € C on R™ if Myu = t%u, i.e.

(Myu, @) :=t7"(u, My;¢) = t*(u, ¢) ¢ € D(R").

LEMMA 3.4.1

Let a € C and let u € §'(R™) be a homogeneous distribution of degree a on R™. Then its Fourier

transform 4 is a homogeneous distribution of degree —a —n on R™.

PROOF Let t > 0. One easily checks that
FMip=t"M,; Fo ¢ < DR").

We have thus,
(Myti, @) = t="(Fu, Myp¢) =t~ (u, F My ;1)

=t~ (u, "My F ) =t~ (M, yu, F )
= (7" %, Fp) =t " Fu, ).

Principal value integral. Let K € C*°(R"—{0}) be now a homogeneous function of degree —n with zero

/|w|1 K(w)dw=0.

The principal value of K, denoted p.v.K, is defined as

average over the unit sphere,

(p.v.K, ) := lim K(x)p(x)de ¢ e DR").
ENO S|z >e

The following results hold.

LEMMA 3.4.2

(i) The u :=p.v.K is a well-defined tempered, homogeneous distribution of degree —n.

(i) Fourier transform of w is a regular distribution generated by a homogeneous function 4 €
C>(R"—{0}) of degree 0. In particular, @ is (pointwise) bounded.

(iii) Convolution ux 1 = (p.v.K) 9 has the following continuity properties:
w*dllgs@n) < CllYllgsrn)y sER
lux 9], < ClYly ne (0,1)

where | - |, = |- |urn is the Sloboditskij seminorm.
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PROOF

(1)

(i)

Let supp ¢ C B(0, R). Properties of function K imply that

R R g
/ K(Jc)d:c:/ K(pw)p”fldpdwz/ —p/ K(w)dw=0.
e<|z|<R € Jw|=1 e P Jwl=1

This implies that

(oov-Kg) =l [ K(@)(6() = 6(0)

To show that the limit exists is thus sufficient to show that the integrand is an L! function.

This follows from the fact that every test function is Lipschitz continuous. Indeed,
K (2)(6(z) = ¢(0))| < C|K (2)| 2| < Cp™" K ()], |w|=1,
with the right hand side being summable over supp ¢. Consequently,

(pv6) = [ K@)(ole) - 6(0)dr. G.11)
The algebraic decay properties of function K (comp. Proposition 2.5.1) and formula (3.11)
imply now easily that the p.v.K can be extended to fast decaying test functions and it is
continuous on S(R™), see Exercise 3.4.2. Finally, we easily check that p.v.K is a homogeneous

distribution of degree —n:

(My pv.K, 6) = t="(p.v I, My o) = 1= limes o f) 1o K (4)6 (6~ y) dy

— ll\r% e K(tz)p(z)dz=1t"" 11\% . K(2)¢(z) d=
=t~" lim K(2)p(z)dz =t (p.w.K, §) .

t71eN0 |z|>t—Te

Let x € C§°([0,00)) be a cut-off function, equal 1 in a neighborhood of 0. Let

K(z) = x(|z)) K (2) + (1 = x(|z])) K (z) .
=:K1(x) =:Ks(x)

Function K7, as a product of a test function and a tempered distribution, is a tempered
distribution also, and it has a compact support. Its Fourier transform K, is thus a regular

distribution generated by a C*° function, see Lemma 2.6.4.

Let supp x C [0, R]. For |z| > R,
Ky(z) = K(z) = K(Jz|w) = |2] 7" K(w) where |w| =1.
As K5 is bounded on Bg and K(w) is bounded on the unit sphere, we have the bound,

(Ko (2)] < C(1+ [z])™".
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Since 0“K is a homogeneous function of degree —n — |a, by the same argument,
0% Ka ()] < C(1+ |z]) "1l

with constant C' depending upon «. Consider now a multiindex 8 such that |8] > |a|. We

claim that
OP(—i2rx)* Kyo(x)] € LY (R™).
Indeed,
0% [(—i2ma)* Ko (x)] = (5 ) 07 (—i2ma)® 0% Ky (x)
v<B 7
— (5 ) (—i2m)P! (i2me)*? 9P TKy(x)
Y<a,y<B K

SOyl <C(A|a|)=m 1871
< C(1 + |z|)~nFlel=18]

Consequently, by Lemma 2.5.1, (i21€)P8*K5(€) is (absolutely) continuous and bounded on
R”. In particular, for |8| > 1, £PKy(€) and, therefore, £8K(€) as well, are L},. functions.

We already know from Lemma 3.4.1 that the regular distribution corresponding to K is ho-

mogeneous of order 0. We will show now that the function K is homogeneous of order 0 as

well.
We have,
| eerree©d = [ wkmodn =)
N B
=7 [ &) () o an
(K, Ty /4mP ¢)
=t K, nPp) (R is a homogeneous distribution of order 0)
— [ (@Kot dn
— [ ke dc.
Consequently,

P (K(tE) — K(€)) =0 ae. inR" = K(t£) = K(£) ae. inR",
i.e., K is a homogeneous function of order 0.
(iii) Assume first ¢ € D(R™). The result is an immediate consequence of the fact that
Flusy) =i,

representation of the Sobolev norms and Sloboditskij seminorms in the Fourier domain, and

boundedness of 4. Final results follow from density of test functions in H*(R").
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REMARK 3.4.1 Definition of principal value extends to function K () from proof of Lemma 3.4.2.

We just cannot claim that p.v.K; is a homogeneous distribution. |

LEMMA 3.4.3

Let K € C(R"—{0}) be a homogeneous function of degree 1 — n. Convolution K * 1) has the

following continuity properties:
10; (K )| oy < Cltollrey s €R
10;(K * )] rn < Ol e € (0,1)
for every ¢ € C§°(R™).

PROOF As K is only weakly singular, K € L], (R"), and we have:

(K x4p) = (Kx059) = | K(z—y)(9;9)(y) dy

R

= }{% e K(z—y)(0;9)(y) dy

. oK
~ tim - / I e / Kl —g)o)  ny, dS},

ly—z|=e
=(z;—y;)/¢
=:(x)
with
(x) = / wj K(ew) " Y(z — ew)dw — wiK(w)dw (z) ase—0.
|w|=1 N—— |w|=1
=el ="K (w)
::aj
Consequently,
0K

9j (K x ¢)(z) = ajip(x) + lim >— (@ —y)v(y)dy.

e\0 ly—z|>€ 3y]

Function g—f(y) is homogeneous of order —n. If we show that the average of g—f(y) over the unit
J J

sphere vanishes, application of Lemma 3.4.2 will finish the proof. Towards this goal, pick an arbitrary

non-negative test function x € C§°(0, c0) and normalize it to satisfy the condition:

We have then, p
K
—x(|z|) dx = — K T jdm
Gl [ K@ (e

or,

(oo}
/ / A (pw)x(p )p"‘ldpdw=—/0 y IK(pw)x’(p)wjp"‘ldpdw,

|18$]
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or,
/ i oK w)dw = —/ X'(p) dp / K(w)w; dw
0 P Jwl=1 Ox; 0 |w|=1
—_——
=1 =0 finite

which implies that

REMARK 3.4.2 Estimates from Lemma 3.4.3 extend to function K; from proof of Lemma 3.4.2.
By triangle inequality, it is sufficient to show that they hold for function Ky from the same proof.
We have,

105 (K % ) By = [ (14 €1 Hli2mts PLER(OP 19O de

- / (2l | Ka())2 (1 + [€2)F [d(6) [ de
e

see proof of Lemma 3.4.2 for boundedness properties of K. A similar estimate holds for the Slo-

boditskij seminorm. |

PROOF of Theorem 3.4.2. We start by recalling formula for functions ¥, in spherical coordi-

nates. Skipping the constant factors, we have:

Vo (p,w) = ¥(=w) (=) x* D (p) o577, Jaf =1.

Case: | < k. Derivative x(*~)(p) vanishes in the neighborhood of 0 and, therefore, ¥, € C5°(R™).
By Theorem 2.3.1, 9%(¥,, x u) = (0°¥,) * u and, since 0°¥,, € C5°(R") as well, by Theorem 2.2.1,
1(0°Wa) * ull L2@ny < [0°Wall@ny llullzzn -

—_——
=:C
for any B. This implies that
[Wo * ull ey < C(s)[lull2@n)
for any integer s > 0 and, therefore, for any s € [0, 00).

Case: | = k. We are dealing now with a (possibly singular) homogeneous function K (x) of degree

k — n premultiplied with the truncating function,
Va(z) = x(|z)) K (z).

By the chain formula,
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We need to discuss only the term with v = 0. Derivative 9°K is also a homogeneous function of
degree k — |3| — n. For |B| < k, the function is at most weakly singular, i.e. with singularity p!="
that cancels out with jacobian p"~!. Consequently, ° K € L'(R") and we have the bound as above.
For |B| = k, derivative 0° K equals first derivative of a homogeneous function of degree 1 — n and,

by Remark 3.4.2, we have,
[0°W o # ullz2mny < Cllullpzeny and  [[0°Wq *ull, < Cllull,.-
Pulling everything together, we see that

IE | grisneny < C D I1Bo(@* W)l ey < C Y 10%ulli@ny < Cllull gosn gy

lal<k lal<k

as required. |

Finally, we comment shortly how to extend the construction of the extension operator to an arbitrary Lips-
chitz domain. Let G;,j =1, ..., J, be an open cover of boundary I', and ;, j = 1, ..., J, the corresponding
partition of unity subordinate to the cover. Let u € H*(Q) with s = k + p, k € N, pp € (0,1). We define the

extension operator by
J

J
Eku = Ek(z ¢ju) = ZE%(’(ﬂJU)

j=1 j=1
where E,JC denotes the extension operator for the j-th hypograph domain, and ¥;u € H*(12;), comp. Exer-
cise 3.4.3. We have

J J
| Bcullw: @) < C Y NEL@ju)lws@n) < C Y Ibsullwsa,) < Clullwsa

j=1 j=1

with the ultimate constant C' dependent upon the partition of unity functions.

Exercises

Exercise 3.4.1 Let f € CE([0,00)), k = 1,2, .... Prove the representation formula:

—_1)k 0o
0= 5= [ # 0.

Hint: Use induction in k. (2 points)
Exercise 3.4.2 Prove that (3.11) is a well-defined tempered distribution. (3 points)
Exercise 3.4.3 Let 2 C R™ be a domain, and ¢ € C§°(2). Prove that
lYullws o) < Cllullws@) weW?(Q),s>0

with constant C' depending upon ). (5 points)
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3.5 Spaces H*(Q)

We begin with a construction of extension operators from Sobolev spaces defined on a hyperplane to Sobolev
spaces defined on the whole space. The result logically belongs really to Section 4.1 but we will need it

already in the proof of the following Hérmander’s Theorem.

Let0; € Cg°(R), j =0,1,..., be cut-off functions such that

9, _v fi <1
J(y)fj! or [y < 1.

Define extension operators:
n; - S(R”fl) — S(R™)

AEN 6.:((1 12\3 n) somerat
(nju)(w) — /Rnil U(f) (jl(:— |—g/|§)|é) - )ez27r£ac d£ r eR™.

(3.12)

Definition of the cut-off functions implies that 9§-k) (0) = d;%. Consequently,

0% (nyu) (2/,0) — / (127€) 4(€)8 0, €27 dE' = 0% ()5,

Rn—1

In other words, operators 7); satisfy the conditions:

g0 , 0 u(z')  for ay, = j
(nju)(2’,0) = (3.13)

0 otherwise

and, for that reason, they are identified as extension operators.

LEMMA 3.5.1

Let s € R be an arbitrary real number. Each of operators (3.12) admits a unique extension to:

n : H*7I73(R"1) = H5(R™).

PROOF We need only to show that the operators are bounded in the appropriate norms. We
use the standard substitution &, = (1 + |¢/|2)2t, to obtain:

A e |2 [e’g) . .
Il = [ [ R+ €1 1)) P e

_ 2
= Cullul sy gy

where

Cs = /Do (1+%)%16;(t)|? dt

—00
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is finite for all s € R. Density argument finishes the proof. |

Consider now the hyperplane:
F:={zeR": z,=0}.

The next theorem establishes a fundamental result about the subspace H§(R™) of distributions in H*(R"™)

with compact support in hyperplane F', for any s € R.

THEOREM 3.5.1 (Hérmander)

The following two scenarios hold:

(i) For s € [-%,00), space H{(R™) is trivial, Hy(R™) = {0}.

(ii) For s € (—o0,—3), any u € Hi.(R™) must be of the form:
J . .
u=> v;®6% withv; € H*H¥2(R") (3.14)
§=0

where J = entier(—s — %) and 6Y) denotes the j-th derivative of Dirac’s delta.

PROOF Step 1: We begin by showing that distributions (3.14) belong to H3.(R™).
(Fae(v(2') @ 89 (), 6(6))
= (0(2") ® 69 (@), (Fesad) ()
= (v;(a") © 69 (), d(x))
= (vj(2'), (69 (2,.), p(2, 20 ))& ) 1 (definition of tensor product of distributions)
il
o),

=Fea((—i278n)7 ¢)(2,0)

(.13/, 0) >Rn—1 =...

= (=1)7 (v ("),

But,
Feosa((—i27€,)7 6(€)) (2", 0) = / (—i2mE, ) G(€', €, )e 2T E T HE0) g’ e,

- /R (—i20 ) (Fersar ) (& £0)
Continuing, commutativity of tensor product implies:
(1) (), (=827, Dhrds = (27, (052", Bnr)m
— (12m60)7, (5;(€), Brn-1)x -
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We are ready to compute the Sobolev norms. With the substitution:
G=(L+IEP)E, 1HIEP+& =0 +EPa+1)
we have:

o 692, ) = / (1+ [6P)"],(€") [2m&a % de

L 00F [ 1P (4 2 2n(0 € B) 3 (141 ) drag

/H [ (€1)[* (1 + &)+ 2 de’ /R(l +£2)° 2| dt .

=:Cj s

Finally,

1 1
Cjs <o for s+j<-5 and Cjs — oo for s+j——5

Step 2: Let v € Hi(R™) and ¢ € D(R™) be a test function such that
0<j<—(s+%). We will show that (u,¢) = 0. Towards this goal, define:

T r € R%
¢:|:(CU):{¢() € RY

0 otherwise.

gi? (',0) = 0 for all

Exercise 3.5.1 shows that ¢y € H ~3(R%). There exists thus a sequence of test functions ¢ — ¢+
in H—*(R™). Consequently,

DR" —F)3 ¢y =0, + o =t +¢~ =¢ in H 5(R").

This implies that

<ua¢>: m <u7¢m>:0'
——

li
m—r oo
=0
In particular, if u € Hi(R™) for s > —1 (no conditions on ¢ then), u vanishes.

Step 3: Let £ € N and s be such that —k—% <s< —k—%. Let w € Hip(R™) and 0 < j < k. Let

71; be the continuous extension operators discussed in Theorem 4.1.3. Define:
v € DR, (0,0) == (—1) (w,n;¢) &€ DR,
We have,
V5, O < Mlull ey 1mj @l =2y < Cllull e @) 1] - § (s

i.e.

193 o+ sy < Clullzeca -



82 Lecture Notes on ENERGY SPACES

At the same time,

k , 5J¢
u—zv ®6U),¢) = (u,¢) = > (- —(-,0))gn
0 =1 " o
Jj= J
=1
={u,n;%;)

k
=(u.¢—Y nit;) =0 Vo€ DR,
=0

by Step 2 result.
k-1
Step 4: Tricky case: s = —k—3. Ifu € HFk 2(R") then u € Hi(R™) for s = —k — 3 — € as well,

for any € > 0. By Step 3 result, there exist functions

v € HTFR"™Y) 0<j<k—1
vp € H (R 1) Ve >0

such that u = Z?:o v; @ 6. Tt is sufficient to show that contribution v, = 0. In particular, this
will imply the first part of the theorem for s = —%. We have:

k—1
v @6 =y — Zvj ® 0 ¢ H_k_%(R”).

j=0
and
lloe ® 5(k)\\H-k-%-s(Rn) = Cppm 1 —ellorllFr—c -1y -
With € — 0,
[|vr, ® 5(k)||H—k—%—€(Rn) = Jlux ® 5(k)\|H—k—%(Rn) and  Cpp 1 =00,

SO Hvk”%{,e(wﬂ) must converge to zero. This implies:

[(ve, D) < llowllmr—emn-1) Sllme@n-1y

—0 bounded

so, in the limit, we get (vg, @) = 0, for any test function ¢. |

Invariance of Sobolev spaces under multiplication. Let u € H?*()). Under what assumptions on a
function v, product ¥u is in space H*(2) as well ? Let us start with s = 1. For any distribution u € D’(2)

and ¢ € C*(Q), we have the same formula for differentiating product 1u as in the classical calculus:

9 aw

5 00 = 5,

e, u+ w— in D'(Q) (3.15)
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where the derivatives are understood in the sense of distributions. Indeed, for any ¢ € D({2), we have:

(i (Yu), ¢) = —(Yu, %> (definition of distributional derivative)
ox j ox j
= —(u, ¢§—¢> (definition of product of a C*° function with a distribution)
L
0 oY
= _<U7 871'] Vo) — 7¢>
= ( Yoy + (u %qb) (definition of distributional derivative)
N &r ] ’ 895 j
0
<w¥ + ¢ U, B) (definition of product of a C'*° function with a distribution.)
y

If we assume addltlonally Y e C§° ( ), then both ¢ and its derivatives are bounded and, therefore, u, 8‘9 Lo

L2(9) imply that ¢u, 2 61 u, 2% € L*(Q) as well. Consequently, equality (3.15) is satisfied in the L sense

as well. But this still leaves us W1th the assumption that 1) is infinitely differentiable.

We can reduce the assumption to ¢ € Cg(Q) by proceeding slightly differently. We first note that the

¢

holds for any u € H'(Q) and ¢ € H* (Q) with supp ¢ C (2. Indeed, this is a consequence of the definition of

integration by parts formula:

distributional derivative and Lemma 3.3.2. We can now revisit the derivation above by replacing the duality
pairings with the integral and use the same reasoning to establish the final result for ¢» € C(Q). In fact,
we can still do better by recalling the famous result of Rademacher [1919] that every uniformly Lipschitz
continuous function 1y € C%! is differentiable a.e. with the derivatives uniformly bounded. This is sufficient
to reproduce the same steps in the context of Lebesgue integrals. In conclusion, formula:

0 61/)

5 00 = 5,

—_— 1 2
oz, u+ w in L°(Q) (3.16)

holds for any ¢ € C%1(Q) and u € H'(£2) and implies that the product remains in H'(£2). By induction,

the conclusion generalizes to integer s = k and ¢» € C*~1:1(€). In the end, we obtain the following result.

LEMMA 3.5.2
Let ¢ € C*~LI(R™). There exists a constant C' = C(k) such that
lvull s ) < Cllllwr.co @mny [l s () »

for any v € H*(2), and s € [—k, k].

PROOF Prove the result first for = R™. Use duality to establish the result for negative
s = —k and interpolate between —k and k for real s. For general € the result is a consequence of
the definition of H*(Q2). Let U € H*(R™) be an extension of u. We have:

lVull s @) < N[Ul s @ny < CllYllwro @y 1U | s @y 5
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and it remains to take the infimum with respect to U to get the final result. Note that we have
assumed that function 1 is defined on the whole space to avoid technicalities related to the existence

of a sufficiently regular extension to R™. |

REMARK 3.5.1 In the proof of Lemma 3.5.2 and the following Lemma 3.5.3, we have used
the interpolation argument that will be explained only in (the next) Section 3.6. More precisely, we
are using the general interpolation result from Theorem 3.6.2, and the particular result concerning
interpolation of spaces H*(R"™), see Theorem 3.6.4. This is not very elegant but it makes the proof
much simpler. Note that, of course, we will not use these results in the following exposition on the

interpolation theory. |

Invariance of Sobolev spaces under change of variables. Let
T:R">¢(—xz(f) eR”

be a sufficiently regular bijective map. Under what assumptions on map 7', spaces H*(R") get mapped onto
space H*(R™) ? In context of what we will need, we shall restrict ourselves only to maps with unit jacobian.

For functions u € H*(R™), s > 0, we define* 4 to be the composition of transformation 7" and function w,

a(§) == u(x()), §eR".

For distributions u € H*(R"), s > 0, we define @ by duality:

(1, 9) = (u, ¢) .

LEMMA 3.5.3

Let T be such that (components of) T and T~ are in C¥~1Y(R™) with a unit jacobian. Then, for
any s € [—k, k], u € H*(R™) iff & € H*(R™) with equivalent norms.

PROOF Standard change of variables and density of C§°(R") in L?(R™) imply that the map
L*(R") > u — 4 € L*(R")

is actually an isometry. The chain formula:

o Ou Ox; . .
= (summation convention at work)

& Ox; 0§

and boundedness of derivatives g—? for Lipschitz T imply that the map

H'(R™) 3 u— 4 € HY(R™)

1 hope, we can survive the notational collision with Fourier transform.
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is bounded. By the same argument,
HYR"™) > u — a0 € H*(R™)

is bounded for T' € C*~11. Use the interpolation argument then to establish the boundedness for
positive fractional s, and then the duality argument for negative s. We have essentially repeated

arguments from the proof of Lemma 3.5.2. |

Note that, in case of a map 7" with a non-unit jacobian, the map:
H*(R")>u—ae€ H*(R")

is bounded for a smaller range of s € [—k + 1,k|. This is due to the presence of the jacobian jac €

C*=21(R") in the duality argument.

We are ready now to extend the result of Theorem 3.5.1 to a class of sufficiently regular domains.

THEOREM 3.5.2

Let Q be a C*=11 domain, k = 1,2,..., with boundary T'. Let u € HE(R™) for s € [—%,k]. Then
u=0.

PROOF Let G;,j =0,...,J, be now maps like in the proof of Theorem 3.3.2, and v;, j =
0,...,J, be the corresponding partition of unity subordinate to maps G;. By Lemma 3.5.2, distri-
bution ¢;u € H*(G,) with a compact support in G;. Its extension by zero lives in Hy, (R™) where
I'; is the boundary of the corresponding hypograph domain. By Lemma 3.5.3, the corresponding
distribution %\u lives in H*(R™) with a support in the hyperplane ' = R"~!. By Theorem 3.5.1,

@ = 0 and, therefore, 9;u, and u = Zj ¥ju must be zero as well. |

COROLLARY 3.5.1

Let Q be a C*=VF domain, k =1,2,.... Let s € [—%, k]. The restriction map:
HE(R") = H5(R™) 3 u — ulg € H*(Q),

is injective and, therefore, can be used to identify space ﬁfl (R™) with a subspace of H*(2), denoted

by H*(Q). For s € [—k, 1], spaces H*(Q), H=5(Q) are dual to each other.

We shall spend the rest of this section discussing the H? (€2) spaces.
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LEMMA 3.5.4

Let s € (0,1). There exists a constant C = C(s) such that

2
o) 2
/ &= u(e)? de < C(s) // [u(= |1+22| dady (3.17)
0

for every u € C§°([0,00)). The same inequality holds for the range of s € (%7 1) under additional
assumption that u(0) = 0. For s =1 +e¢, O(s) = O(%).

€

PROOF We begin by noticing that the right-hand side is finite for the whole range of s € (0,1).
Let supp v C [0, L). Breaking the integral into three contributions:

/Om/om..._/OL/OL...+/OL/L°O...+/L°°/OL

we easily show that the second and third integral are bounded by C(s)||ul. (0,1)- Concerning the

first integral, we introduce the change of variables:

{;:Lzy/zg N {wi(ngn)/Q,

We can now bound the integral

L 2
fu(e) — uy)?
[ e ae

V2L pq Ju( §+n (%)Pdd
|§|1+25 &dn .

As u is Lipschitz continuous (explam7 Why?),

by

<
. N<c

2 - 2

S = Clel,

and we can bound the integral by:

1 V2L V2L 2 V3L
702/ / |€|1_28 dé-d’l'] — 02/ / 61_25 dé- d’l? _ / 772(1—5) dn < 00,
2 0 —n 0 0 2(1 =) Jo

First version of the proof. We will present first the proof from [16], Theorem 1.4.4.4, see also [18],
Lemma 3.31. We have:

Cauchy-Schwarz inequality implies that

o) <5 [ o)~ uw)Pdy.
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Consequently,

/ x72s|v(m)|2dx§/ 3371725/ lu(z) — u(y)|? dydx
0 0 0

_ / h / a2 u(e) — u(y)Pdedy  (Fubini)

* u(z) — u(y)|
/ / Irﬂ—yll“s dedy,

so the weighted norm of v(z) is under control for the whole range of s € (0,1). We will show now
that the weighted norm of component w(z) can be estimated by the weighted norm of v(z) and, in

turn, by the Sloboditskij seminorm as well. It is a bit tricky to see that

w(z) Zi/oxu(y)dyz—/;v(;)dy.

Indeed, notice that both sides vanish at infinity and, upon differentiating both sides with respect to
x, we get:
1 [* 1 v(z)
_ dy + = -
2, u(y) dy + —u(z) = —
which easily follows from the very definition of v(z).

Case: s € (0, 3). Apply the second Hardy inequality (2.4),

o0 oy [° d d
/ |/ U9) g2 g = / |x/ o(y) Ypp
0 T Yy X

1 g dy _9s
S@—«S)Q/o ly U(Z/)P; (a=+5%)

- |

Case: s € (3,1). With u(0) =0, w(0) = 0 as well and, therefore,

Apply the first Hardy inequality (2.3),
_9s 2 [T dy o dz
e [ [T [ Yp
0 0 ) €
1 /OO —2:1 2 dy 2s—1
S— 1| Wzl (a==57)
5)2 0 Yy 2
- — 1 [ vl
(s—=3)*Jo

Second version of the proof. Recall that the proof of Hardy’s inequalities was based on the use of

D=

Integral Minkowski Inequality. It is not a surprise then that the theorem can be proved directly by

means of the Minkowski inequality.
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Case: s € (0,3). We demonstrate the bound for the weighted norm of function w(z). The rest of

the proof remains the same. We have,

/ x*2s|w(x)|2dx:/ r2 2|/ (t)dt|* dz = ..
0

Let U € C§°(R) by a symmetric extension of . Introducing the Fourier transform of U, we transform

the inner integral to:

/07«‘ u(t) dt = /l / > (W) dw dt

/ / 2miwt gy U(w)dw  (Fubini)

e27rzut |a‘ —

(627rzuz 1)

27r7w 27'r7w
/ 1 ( 2miwx I)U( )d
= — e — w w
R 2miw
Continuing,
oo 1 A .
—25—2 2miwx 2
.= — — 1)U (w)dw|*d
| | e - 00 def ds
:/ T2 2|/ et _ 1)U (x~'t) dt|? dx (change of variable: wx = t)
27rzt
1 42
< Y [ | R 2 : d | Minkowski i i
< x T |U(z="t)|° dz t (Integral Minkowski inequality)

2
2mit -1 R 2
/ e 1] </ t725 722502 | U (W) P tw 2 dw> dt] (change of variable: 71t = w, dr = —tw ™2 dw)

1 2
2mit 1 oo R 2
= /%t_s—% (/ WU (w)|? dw) dt]
| /R T 0

r 1 2mit 1 2 0o R
_ | / |e|t25§dt} / W07 () 2 dow
127 Jr t 0

finite, of order 1/(% —s)2

By Lemma 3.2.1, the Bessel seminorm is equivalent to the Sloboditskij seminorm,

s - |U Uy
/0 w? |U( )|? dw = a 1/ / |1+2$ dydz ,

// 0V gy [ [ [ [ [ [
<4/ /oowlx_ |1+2)|2dd:c.

1). We proceed now directly without splitting function u(x)

&
/000 % u(z)|? dr = /OOO 7% |u(x) _u\((,).)/F dr — / 2S|/ £) dt|? dar

=0

Case: s €
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We transform now the inner integral,

/ u’(t)dt:/ /62”“ Ulw) dwdt
0 0o Jr ——

2miwl (w)

= / / 2™t dt 2miw U (w) dw (Fubini)
RJO

e2miwt |z

0

= / (2™ _ 1)U (w) dw
R

Continuing,
/ x*28|/(62m’w — 1)U (w) dw|? dz
0 R

= / r 272 /(62”” — 1)U (z~ ) dt|? da (wr =t, dw = z~1dt)
0 R

1 2
/ (/ x72572|€27rit _ 1|2 |U(l‘71t)|2 dsc) dt]
0

R
| - : .k
/ 2™ 1] (/ t72 7202 2| U (W) 2 tw ™2 dw) dt] (271 =w, do = —tw 2 dw)
R 0

IN

_ 1 2
. o R 2
- /|e2mt—1|t—s—% (/ w2S|U(w)|2dw) dt
L R 0
- 2 00
= /|e2m1|tsédt] / w?|U(w)|? dw
LJR 0

=C(s)

For t — 0, €2™® — 1 ~ 27t and the integrand is of order ¢¢~5~2 = ¢=5*2 which is integrable for

5 < 3. For large t, [¢*™ — 1| < 2 and factor 573 is integrable for s > 3. Note that

o0
1 s =

i.e. the blow up at s — %+is the same as for s — %_.

-~

Recall that d(z, F') denote the distance of point = from a closed set F',
d(z,F) = mind
(z, F) min (z.9),
where d(z, y) stands for the Euclidean distance. The following lemma is a generalization of Lemma 3.5.4. to

the multidimensional case.

LEMMA 3.5.5

Let © C R™ be a Lipschitz domain, and s € (0,%). There exists a constant C' = C(s) such that

Aﬁmm*%uﬁmsc@wmmw (3.18)
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for everyu € C§°(Q). The same inequality holds for the range s € (%, 1) under additional assumption

that u =0 on T.

PROOF Case: 2 is a Lipschitz hypograph. Let z € Q2 and y € I" as depicted in Fig. 3.4. We

have:

|<(I/) —Zn| = |Yn — Tn —|—C(x') - C(y/)| < |Zn — Ynl +M‘$/ _Z//‘ <VI1+ M2z -y

where M is Lipschitz constant for function {(2’) defining the boundary. Consequently,
d(z,T) >
and, therefore,

/ d(z, 1) 2 u(z) 2 dz < (1 + M2)* / (C(&) = 20)2 |u()[? da

zn<{(z')

= (1+ M?)® / /t2s|u (z') —t)|* dt da’
Rn— 1

0 _ _ / AN 2
Rn—1 ‘t _ 7—|1+25

/ 2
/ / / —ul@’, 2)| dy dz dx’
Re-1 Jy<¢(an) Ja<c(ar) |

Y-z |1+25
—
=:h

o) / _ 2

|h|1+25

[es} ‘eiQ‘n'gnh _ 1‘2

|h|1+2s dh dg

same integral as in the proof of Lemma 3.2.1

¢/ [6al** [T €)1 d€ < CIU 7y

Taking infimum with respect to extensions U finishes the proof.

Figure 3.4
Notation for the proof of Lemma 3.5.5.

(Lemma 3.5.4)

(U e Cg(R™), Ulg =u)
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Case: (2 is a Lipschitz domain. Use the partition of unity argument
i

Spaces Hg(€2). Lets € R. We define one more Sobolev space:
s oo (@)

H5(Q) :==C§° () . (3.19)

The space can be viewed as a prototype of energy space for the case of homogeneous (essential) boundary

conditions.

The following theorem is our final characterization of spaces H () for Lipschitz domains

THEOREM 3.5.3

Let Q be a C*~L1 domain, and s € [—%, k]. The following properties hold:

(i) H*(Q) c H(Q), and

.%.2,... < k. In particular, for s € (—%,1)

(i) H*(Q) = HS(Q), except for s = -1
H*(Q) = Hj(Q) = H*(Q).

PROOF (i) follows immediately from definitions and the continuity of the restriction operator

R: H*R")3U —=Ulg€ H(Q).

(ii) Case: s =k € N, u € C§°(Q2). Let ¢ denote the zero extension of u. We have

lalF oy = @l ey ~ Y 1070720 (0%0 = 9%u)
la|<k
= Z ||8au||%2(m = HUH%/V’V(Q) ~ ||u||?1k(9)~
ler| <K
Consequently,
7o (RY) 7o (@)
5o () =G50 (9) :

Case: s=k+pu, ke N,pue (0,1), p# 3. Let again u € C5°(Q).

dx dy

. ] 0w) - O7a(y)
ey = Ny~ 3 0%y + 0 32 [ [

T — |2;1,+n
|l <k lae|=F

The double integral can be broken into four parts with the last contribution vanishing

//:/Q/Q+/Q/_Q+/Q/Q+/Q¥Q
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The second integral can be reduced to a weighted L?-norm:

Joru(@)? / 2/ dy
dydx = 0%u(x — dx.
// _q |z —y|2rtr Q| @) Ro_gq |T — y[2H

wy, (x)

It remains to use Lemma 3.5.5 to estimate the weight. Introduce an auxiliary spherical system of

coordinates centered at x. Let & be a point on the unit sphere, and let
r(&) :=sup{r : [z,z+ri) C Q},
see Fig. 3.5 for notation.

P 1 |S‘ 20
/Rn o |x_y|2p,+n /Im 1/(96 2nn | dr dS < d( I

2u r(z>2u

where |S] is the measure of the unit sphere. Consequently,

Z / A, 1) |00u(@) 2 < C)lulZeggy,  (3:20)

lel=k

for p # 0. We shall return to a careful analysis of constant C'(u) shortly.

Figure 3.5
Local spherical coordinates used in the proof of Theorem 3.5.3.

Case: s € (—1,0]. We will use the duality argument. We have, for s € [0, 1),

H*(Q) = H3(Q) = H*(Q).
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We have already proved the first equality. The second equality follows from Theorem 3.5.2 and Mazur
Separation Theorem ([20], Lemma 5.13.1). Indeed, consider an arbitrary w € (H*(Q)) = H*(Q)

vanishing on H§(Q2). In particular,
(w,9) =0 V¢ C5°(Q).

Orthogonality of w to test functions implies that suppw C I'. By Theorem 3.5.2 then w = 0.

Q
In other words, the orthogonal complement of H§(Q2) = C§°(2) @ is trivial. Magur’s Theorem

implies that H$(2) must coincide with the whole space H*(12) &.
The final result follows now from duality,
H™*(Q) = (H*(Q) = (H*())' = H (),

and the fact that H=*(Q) € Hy *(2) (C H—*(2)) by the first part of this theorem. i

REMARK 3.5.2 Let the assumptions of Theorem 3.5.3 hold. As, through the restriction
operator, space H*(f) is isomorphic with H*(R") = HE (R™), space H*(Q) can be characterized as
a subspace of H*(2) functions admitting zero extensions in H*(R"),

HY(Q) = {uc H*Q) : &€ H*R")} (3.21)

where u denotes the extension of u by zero. For functions u, i.e. for s > 0, the notion of the zero

o u(z) ze
u@y_{o zeR" - Q

extension is clear,

The delicate point of the statement above concerns the negative range of s. What do we mean by

the zero extension of a distribution (functional) ? We have,
(u,0) =0 Vo € C°(R" - Q),

We may thus mean by a zero extension of u, any U € H*(R") with the support in Q such that
Ulo = u. However, a difference of two such extensions must have a support in I' = 9Q and,

therefore, by Theorem 3.5.2, it must be zero. This makes the zero extension unique. |

REMARK 3.5.3 Let us talk about the behavior of embedding constant C(u) in (3.20) as
1 — 0. Constant a;l/u present in (3.20) is of order one as u — 0. However, constant in proof of
Lemma 3.5.5 blows up at 4 — 0. This can be traced all the way to the proof of Lemma 3.5.4 where
we estimate the weighted L? norm of function v(x) by the Sloboditskij norm. The blow up of C(u)

at zero is not expected as for ;4 — 0 we converge to the L2-norm, and we expect the constant to

8Otherwise, there would exist a non-trivial continuous linear functional on H*(£2) vanishing on Hg ().
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converge to one. Fortunately, the interpolation argument discussed in Corollary 3.6.1 establishes
what we expect, i.e., the embedding constant indeed converges to one as u — 0. In the end, this

simply points out to a deficiency of argument in the proof of Lemma 3.5.4. |

Exercises

Exercise 3.5.1 (Exercise 3.22 in [18]) Consider half space: R” := {x € R® : z,, < 0}. Let u be a

restriction of a function from C§°(R™) to R™ and let U denote its extension by zero:

u(z) forz, <0
U(z) =
0 otherwise.

(i) Demonstrate that
U] < Cr(L+ 1) (1 + [€al)
for every k > 0.
(i) Conclude that U € HET
(iii) Show additionally that

(R") for s < 1.

Ohu(z',0)=0 for0<k<j = U € H:-(R™) fors<j+g.
(15 points)
Exercise 3.5.2 Prove that

() u=In|ln|z|| € Hz (-1, ).

(i) o' = pp € H-3(-3,1).
(iii) w = In|In|z|| € H2(0,3) butitis norin Hz (0, 3).

(i) ' = -2 € H™2(0,3) butitis norin (0, 1).

z In |z] 2

Hint: Use Exercise 3.2.2, Trace Theorem and Lemma 3.5.5. (10 points)
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3.6 Real Interpolation Method

Let X, X7 be two normed subspaces of a common vector space X. We say that spaces X, X are compat-
ible. We equip the corresponding spaces X N X7 and X, + X1 with the norms:

1/2

lullxonx, = (lull%, + llulli,)"? = lullx, + llullx,

lull xo+x, == inf{(||uo||§(U + ||u1H§(1)1/2 cu=wug+u;, wug€ Xo,u €X1}.

We have the obvious (continuous) embeddings:
XoNnX) = X, = Xo+Xqy j=12.
The interpolation problem consists of constructing a family of normed spaces:
Xog=(X0,X1)pq 0<0<1,1<¢g<o0
such that
* We have the embedding:

XoNX, = Xog = Xo+ X1 j=1,2. (3.22)

* Space Xy 4 has the following interpolation property: for another compatible spaces Yy, Y1, and com-
patible operators: Ay € L(Xo,Y0), A1 € L(X1,Y7), e,

Agu = Aju Yu € XoN Xy,

there exists a unigue operator Ay : Xy 4, — Yy 4 such that
Ag :Aou:Alu Vu e XgN Xy and
146l < [[Ao]*=* [ Ax]”

3.6.1 Real Interpolation (the K-) Method
We begin by introducing the so-called K -functional. Lett > 0,u € Xy + X;. We define
K(t,u) := inf{(||u0||§(O + t2||u1||§(1)1/2 cu=ug+uy, ug€ Xo,u €X1}.
For a fixed ¢ > 0, the K-functional is an equivalent norm on Xy + X7,
min{L, 1}]|ull xyx, < K () < max{L, t}]lullx,x, -
For a fixed u, K (¢, u) is (weakly) increasing in t. Moreover, see Exercise 3.6.1,

min{1, E}K(s,u) < K(t,u) < max{1, E}K(s,u)
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For a class of functions f(¢),¢ > 0, we introduce now a weighted L?-norm,

o0 1/q
([T ) 1sa<w
= 0

|0,q =

I/

ess supt>0\t_9f(t)| qg=o0.

Note that the weighted norm satisfies the dilatation property:
It = f(at)llo.q = a®[|fllo.q -
Finally, we define the normed space,
Koo X):={ue Xo+ X1 : [|K(,u)loq < oo}

with the norm,

[ull koo (x) = Nog 1K, u)llo,g

where Ny , is a normalizing factor to be specified later.

THEOREM 3.6.1

The following inequalities hold:

(Z) XoNX; C ngq(X), and

6,10
lull 5, x) < Mullie” lullk, < llullxonx, — uweXon X,

(’LZ) K97q(X) C Xo+ X1, and

K(t,u) < t9\|u||K9,q(X) and, in particular, ||u|| x,+x, < ||u||K9yq(X)

provided we use the normalizing factor:

Noq = [Imin{1, -}y, =
q=00.

PROOF For u = 0 both results are clear. Assume u # 0.
(i) We have:

K(tu) < min{l|ul[x,, tl|ulx, } = [Ju] x, min{1,at}

with a := ||ul|x, /||u]|x,- Consequently,

1 (- 1)llo.q < llullxya” | min{L, Hlo.q = llulli” lullk, /No.q

because of the dilatation property. This implies the first inequality:

—0 0
lull 5, x) < Mull” lullk, -

{[qaa—e)ﬁ 1< q< o0,

(3.23)

(3.24)

u e Kg’q(X) s

(3.25)
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Take now p = (1 — 6)~!. The Young’s inequality implies:
_ 1 —o\p 1 p”
lullie,” llull%, < ’ (llull’,”)" + p (lull%,)” = (= )ulx, + Ollullx,
<[(1-0)* + 67

1
2 HU”XoﬂXl < Hu||X0ﬂX1'

(ii) It follows from the inequality: min{1, § } K (¢,u) < K(s,u) (see Exercise 3.6.1) and the dilatation
property that :
t_OH min{l, '}Hayq K(t,u) < HK(, uHe,q

which in turn implies K (¢, u) < t?||ul|x, . The last inequality corresponds to t = 1. |

REMARK 3.6.1 With the normalizing factor used in Theorem 3.6.1, embeddings in (3.22) enjoy
unit continuity constants. As we do not need the embedding constants to be equal one, any other
normalizing factor will do the job as well. We will shortly discuss the interpolation of weighted
L?-spaces where another normalizing factor turns out to be more natural. The two normalizing
factors do not bound each other uniformly in 6. Consequently, in general, we do not claim uniform

bounds for the embedding constants in (3.22) as well. |

THEOREM 3.6.2
Let Ay : Xo — Yy and Ay : X1 — Y7 be two compatible continuous operators.
There exists then a unique continuous operator Ag : Ko o(X) — Kg 4(Y) such that
Ag=Agon Xy and Ay = A;onX;.
Moreover, if ||Ajully, < Mj|lulx,, j = 0,1, then

[Aoullre, vy < My~ MY Julli, ,(x)  u€ Koqg(X).

PROOF Let u € Xy + X;. Compatibility of the two operators implies
Agu = AQ(UO + ul) = Agug + Agui = Agug + Aiuq

and the value is independent of the decomposition u = ug + u;. Indeed, all decompositions of u are
of the form:
U=uy+v+u —v veE XgNXy.
—— =
€Xo €x,
But Agv = Ajv and, therefore, the value defining Apu is independent of v. Let now u € Ky 4(X).
We have: .
K(t,Agu;Y) < (| Aouoll3, + t*[| Arua[l3,)*
1
< (M lluollk, +t2MF lua[%,) 2

1
< Mo((luolk, + (at)?||ur]l%, )2
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where a = M7 /M. Consequently, K(t, Au,;Y) < MoK (at,u; X) and, by the dilatation property,
1Aoull iy vy < Moa®[[ullic, o (x) = Mo ™" MY ||ull xey () -

This proves, in particular, that Ay takes Ky o(X) into Kg 4(Y). i

Note that in Theorem 3.6.2, we can use any normalization factors as long as they are used for both spaces
XandY.

3.6.2 Interpolation of Weighted L? Spaces

The K -method can be used to interpolate between weighted L? spaces. The result will be useful in controlling

the equivalence constants between spaces H*(Q) and H*(1) for s € (—%,1). The results in this section
are reproduced from [2], pp. 114-116. In the rest of this section we work with the Hilbert spaces only using

q = 2, and drop symbol ¢ from notation.

Let 2 € R™ be a Lipschitz domain, and wq(z), w1 () denote two positive weights defined on €.

THEOREM 3.6.3
Let 6 € (0,1). Let L2, (Q) and L2, (Q) denote weighted L*-spaces with weights wo, wy. Interpolation

between the two weighted spaces yields a weighted space,

(L2,(Q), L, () = L

w

Q),

with weight wy given by:

Wwe = wéfewf .

The norm resulting from the interpolation is the weighted norm,

|W@Z%AU@WW@W$

scaled with factor
T

Cp — - .
2sin w6

PROOF Let f € L?UO Q) +L121;1(Q)7 ie, f=fo+ fi, fo€ quO (), f1 € qul(Q). Let t € (0,00).
We have,

w2 f) =, i ([ lon@Punte o+ [ foro)Pur(o) o)

Po+p1=

= inf ol2wo () + 2121 12ws (2)) da
/QZ(H-lef(m)(' ol “wo () |21 |" w1 ()

. w
= [1F@Puol@) it (0l + # ) da

= [ 1f@Pun(a) P2 s
Q

0
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where

s
F(s):= inf
(5) = nf_ (ol + slaaf?) = T

see Exercise 3.6.2. Switching the order of taking the infimum and integration is legal since the

ultimate (after the switch) integrand is measurable, see Exercise 3.6.3. Consequently,

K200 - [ o Lo,
—,_/

wo () + t2w; (x)

=:wy ()

We can compute now the norm of the interpolant,

R A N
/|f|2/ PR dtda

:/ | £ 2wp™? 0/ 57172 F(s*)dsdx  (change of variable t2%% = 52)

wo
=09/|f|2 o ‘wid

0 0 g1-20 T
cp = / s R(s?) ds = / T ds= o0,
0 o 1l+s 2sin 7w

see Exercise 3.6.4. I

where

3.6.3 Interpolation of Sobolev Spaces

This section is reproduced from [18], pp.329-330.

THEOREM 3.6.4

Let so, s1 be arbitrary real numbers, and 6 € (0,1). We have:
(H°(R™),H**(R™"))g = H*(R™) withs = (1—6)sg+ 0s;.

The Ky norm equals the Sobolev norm if we use the normalization factor:

Ny — (251n7r0>1/2
s

PROOF The proof follows exactly the same lines as in proof of Theorem 3.6.3. We are again

dealing with weighted spaces but, this time, in the frequency domain. Let f = fy + f1, fo €
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He®o(R™), f1 € H*(R™). Let t € (0,00). We have,

K3 0) =, inf [0 P @) + 20+ €0)91(OP) de

- /R FEPA+ g2 P21+ ¢ ~) de

A P e
= /n |f(€)‘ (1 + |£|2)so -l,-t2(1 + |£|2)Sl df

Upon integrating in ¢, we obtain the final result,

15 =co [ IFOPL+ g0 oo de.

where cg is the same constant as in Theorem 3.6.3. |

Having established the interpolation result for the Sobolev spaces in R™, we proceed with spaces H*({2).
Letu € H*(R2), and let U € H*(R™) denote the minimum energy extension of u. Let U = Uy + U; where
U; € H%(R"),j =0,1. Setu; = Uj|qa, j = 0,1. We have an obvious inequality,

K2(t,u; H(Q), H*(Q)) < |luoll3reo 0y + £ 1l Fe1 ()
< NUoll3re0 () + ENUL 71 ey -
Passing to infimum with respect to Uy, U1, Uy + U; = U on the right-hand side, we obtain,

K2(t,u; H(Q), H(Q)) < K2(t,U; H* (R™), H**(R")).

Consequently,
[ull ke (0,2;120 (), 121 (2)) < U ||k (0,250 (), 121 (7))

= U s ) (Theorem 3.6.4)

= ”uHHS(Q)'

We have arrived at the interpolation result for Sobolev spaces defined on a domain €.

THEOREM 3.6.5

Let so, s1 be arbitrary real numbers, and 6 € (0,1). We have:
H?(Q) — (H*(Q),H**(Q))s withs=(1—0)sg+ 0s;.

The Ky norm is bounded by the Sobolev norm provided we use the normalization factor:

Ny = (231n7r0>1/2 .

™

COROLLARY 3.6.1
Let p € (0,%). We know that, for a Lipschitz domain €2, Sobolev space H"(Y) is embedded in
the weighted space L2 () where weight w = d~** with d denoting distance from boundary 0. Let

w
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Cy denote the embedding constant. The result trivially holds for u = 0 with the corresponding
embedding constant Cy = 1. Let 0 < s < u. By Theorem 3.6.5, Interpolation of Sobolev spaces
yields a superspace of H*(QY) and, by Theorem 3.6.3, interpolation of the weighted spaces yields
the weighted L2 space with weight w = d=2°. Note that both theorems use the same normalizing
factor. Consequently, space H*(Q)) is embedded in the weighted L?, space with the embedding constant
estimated by:

ch=culn.

The constant converges to one as s — 0.

Exercises

Exercise 3.6.1 Prove the inequality:
. t t
min{1, -} K(s,u) < K(t,u) < max{1, -} K(s,u).
s s
(2 points)

Exercise 3.6.2 Let s > 0. Prove that

s
1+ s

. 2 2\
it (ol + slaal?) =

where zg, z1 are complex numbers. (3 points)

Exercise 3.6.3 Explain in detail why switching the order of taking the infimum over functions ¢q, ¢; and

integration over €2 in the proof of Theorem 3.6.3 is legal. (3 points)

Exercise 3.6.4 [18], Exercise B.5. Use contour integration to show that ,

0 g1-20 T
/ ds = — .
o 1+s? 2sin7f

Hint: Use contour shown in Fig.3.6. (10 points)
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Figure 3.6

. . P 1-260
Contour for integration of Z-—.

3.7 Embedding Theorems

There are many embedding results for Sobolev spaces, see [1] for a comprehensive review. Following [18],
we reproduce perhaps the two most important results. The first one identifies minimal conditions for which el-
ements of Sobolev space represent continuous functions. Remember that elements of L spaces and Sobolev
spaces in particular, are equivalence classes of functions that are equal to each other a.e.. The embedding
theorem states that, under appropriate conditions, there exists a representative that is a Holder continuous
function and Holder’s exponent is controlled by the Sobolev norm. The second theorem reproduced in this
section is the famous result of Rellich showing that, for a bounded domain, Sobolev space H®*({2) is com-
pactly embedded in space H®2()) where so < s;1. The result is crucial for studying PDEs and Mikhlin

compact perturbation argument in discrete stability analysis.

THEOREM 3.7.1 (Sobolev Embedding Theorem)

Let p € (0,1) and u € H3H#(R"). There exists a Hélder continuous representative of u, denoted

with the same symbol, such that

lu(z)| < C|lul Vo € R™

H%‘F/"(Rn)
u(@) —u()| < Cllull g g+ugny le =yl Yo,y €R?

with constant C' independent of u.

PROOF Step1l: u € S(R™). We have,

@l =| [ a©e*eag < [ jao)ae
[ IER)THE (1 ) fage) e
< (L a1 ) oy

=:C
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with
C% =S| / 1+~ GH e < o
0

where |S| denotes the measure of unit sphere S in R™.

Step 2: u € HZ*#(R"). By the density of S(R") in H2¥#(R"), there exists a sequence u; €
S(R™) converging to u in H 2 #(R™). By Step 1 result,

Juj (@) = ur ()| < Clluy — urll g +u gy
which implies that u;(x) is Cauchy in R. Let U(z) := limj_,o u;(x). The estimate:
U(z) = Ul < U (@) —w;(@)] + |uj (2) —ui ()] + u;(y) — Uy)
and the inequality above imply that U(z) is uniformly continuous in R™. Let ¢ € D(R"™).

/ U¢ = lim Ui = uQ

j—oo Jgrn R

and Lemma 2.4.1 imply that w = U a.e. in R” and

U@ = lim fus(@)] < C lm sl gy = Cllull g gy

Step 3: Consider dpu(x) := u(x + h) — u(z). We have,

Nl

ute+1) —u@)] < [ @l < ([ a4 1eh e 12 i) ol

=:My(h)

M,,(h) is bounded uniformly in h, see calculations ins Step 1. For || > 1, the
Let now 0 < |h| < 1. By the Mean-Value Theorem, |e??™" — 1| < 27|¢ - h| and, therefore,

M?2(h) < 4r* /

l€1< 7

‘7:4 n o0 n
< 47r2|h|2/ / (1+r2)*5*”r2r”*1drdw+4/ / (1+rH~ 2,y dw
|w|=1J0 |w|=1J &

[h]

(1+Wﬂ%_%_”K~hFd£+]/ (1+]6)~ 5+ de

1
1€1> 177

1 n ﬁ n o0 n
§47r2|h|2|5’| / (1+r2)_§_”r"+1dr+/ (1+r2)_7_“r”+1dr —|—4|S|/ (1—}—1"2)_5_“7""_1(#
0 ~—~— 1 —— ﬁ ~——

>1 >r2 >r2

n+2 —2u+2 1 P20
< 4r2|p)2 r 1 r T 4 50
<amis] | S+ gl | s Ty
h|21—2 1
§0h21+|7 + C=|h|?*
Ll 2(1—u)] ﬂII
< C|h2*

where the ultimate constant C' blows up (linearly) for p — 0, 1. |



104 Lecture Notes on ENERGY SPACES

Let X, Y be normed spaces. Recall that a linear map T : X — Y is compact iff it maps bounded sets into

precompact sets, i.e.,

Dboundedin X = (D) compactinY .

If X, Y are Banach, X is reflexive, and 7' is linear then the condition above is equivalent to
Tp —2 = Az, — Ax,

i.e., weak convergence in X implies strong convergence in Y, see Prop. 5.15.1 in [20]. Finally, we say that

an embedding X — Y is compact, denoted X <Y, if the identity map is compact.

THEOREM 3.7.2 (Rellich Theorem)

Let —o0o < s <t < oo. The following compact embeddings hold:

(i) for any compact set K C R™,
Hi(R") = H}(R"),

(ii) for any bounded domain @ C R™,

c

HY(Q) S H(Q).

PROOF (i) Recall the Bolzano-Weiestrass Theorem stating that, in a metric space, a set is
compact iff it is sequentially compact. It is sufficient thus to show that from any bounded sequence

u; € Hi-(R™), we can extract a subsequence converging in H (R").

Step 1: Choose a cutoff function x € D(R™) such that x = 1 on set K. We have:

(€)= X (€) = / R(E = n)a;(n) .

n

Applying Peetre’s inequaity (Exercise 3.7.1), we obtain,

(1)t < [ +IeP) e —nllinlan <25 [ (@l (4 ) H(En) oy ()] dn.

Rn

In turn, Cachy-Schwarz inequality leads to:

(1+ €2)! iy (©) < 2 /}R (L4 1€ — ) |50 — )P d /R (1-+ [nl2)* s ()2 din
= 2l HXH%{HI(R") HujH%It(]R") :
Step 2: By standard properties of Fourier transform,
0%ty = 0°(X5) = (0°) * ity = X * il

where Xq(z)(—i272)*x(z). The above and Step 1 resullt imply then:

(L4 162 10%a5 () < 2 Ixall et oy N1 e )
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Control of the derivatives implies that #; are uniformly bounded and equicontinuous over any com-

pact subset of R™. Take now any sequence of compact sets

KiCKyc..., [|JK;=R".
J

Arzela-Ascoli Theorem ([20], Theorem 4.9.3) and the diagonal choice method lead to the conclusion
that we can extract a subsequence of @;, denoted with the same symbol, such that #; converges

uniformly on any compact subset of R".

Step 3: We claim now that u; is Cauchy in Hj (R™). Take an arbitrary e > 0. Next, choose a
sufficientlty large R such that

/ (14 1€[2)° [a5(€) — i (€)? de < (1 + R2)> / (1+ [€[%)¢ a5 (6) — an(©)[? de
[EI>R

I€I>R

IN

(R [P () — il de

2001w e ey + el e ) €
= L+ R2) 2

Use Step 2 result to choose sufficiently large N such that:
PR R €
[ eyl - iR s < 3
[§I<R

for every j,k > N.

(ii) Let u; € H'(2) be a bounded sequence. Let U; € H*(R™) be the corresponding minimum
energy extensions, i.e. ||u;| g () = [|Uj|| gt (rn). Lemma 3.5.2 implies that sequence xUj is bounded
in Hj (R™) where K = suppy. By part(i) of this theorem, there exists a subsequence xU; converging
to some U € Hj(R™). This in turn implies that

Uj; = (XUJ)|Q — U|Q in HS(Q)

Exercises

Exercise 3.7.1 Prove Peetre’s inequality:

(1+1€%)* < 281+ 1€ =) (1 + [n?)®

for any s € R and ¢ € R™. Hint: Proceed in the order: s =0, s =1, s > 0, s < 0. (3 points)
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Trace Theorems

4.1 Trace Theorems

4.1.1 3D Differential Complex and Exact Sequence.

We are finally ready to discuss the energy spaces introduced in our opening Section 1.1. We start by recalling

the definitions. Let 2 C R? be an arbitrary domain. We have
H(grad, Q) = {u € (H*(Q)° - Vue (H@QP}  uld gy = lulo) + [Vl g

H (curl, Q) = (E € (H'(Q)* : Vx E € ()} B3y = 1B + 1V % B4 g

H*(div,Q) == {v € (H*(Q))® : V-ve H*(Q)} ||’UH%{S(div,Q) = ||U||%15(Q) +IV- U||§{s(9)
where, as usual, the derivatives are understood in the sense of distributions. From the practical point of view,
we are interested in Lipschitz and polyhedral domains only. This will limit the range for regularity parameter
sto(—3,3).

Spaces H*(grad, ), H*(curl, Q), H*(div, ) and H*(£2), along with operators of grad, curl and div, form

the so-called differential complex:
R(C) 24 H*(grad, Q) ~ H*(curl, Q) X5 H*(div, Q) > H*(Q) - {0} 4.1)

which means that the range of every involved operator is contained in the null space of the next operator in
the sequence. In simple terms, gradient of a constant, curl of a gradient, and div of a curl, are all equal zero.

Notice that all operators are well defined.

REMARK 4.1.1 For Lipschitz domains,
H*(grad, Q) := {u € H*(Q) : Vu e (H*(Q)"} = H'(Q). (4.2)

The result is immediate for R™, see Exercise 4.1.1. For a general Lipschitz domain, it is a consequence
of the existence of a bounded extension operator from H?(grad, Q) to H®(grad, R™), see [17] and comp.
Theorem 3.2.1. For s > 0, both spaces coincide with W15(Q). |

For a bounded domain () “without holes”* we arrive at the structure of an exact sequence, i.e. the range of

*Topologically equivalent to a ball.

107
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each operator in the sequence, is equal to the null space of the next one. In other words,
u€ H*(grad,Q), Vu=0 <& FceR(C):u=c
EeH(cur,Q), VX E=0 < 3Juec H*(grad,Q) : E=Vu
ve H5(div,Q), V-v=0 < 3FJEeH%(cul,Q):v=VxE
ge H*(Q) & FJveH(div,Q) :q=V-v

Usually, we simplify the notation and cut off the first and the last elements of the sequence,
H*(grad, Q) — H*(curl, Q) X5 H*(div, Q) > H*(Q)

remembering that the div operator is a surjection and the nullspace of grad operator are constants.

2D differential complexes and exact sequences. The 3D differential complex (exact sequence) gives rise

to a couple of two-dimensional sequences:
H*(grad, Q) —2» H*(curl, Q) <% H*(Q)

and,

H*(grad, Q) Y5 H*(curl, Q) 2% H*(Q)

where

curl E:=Fy1 —F15 and V xu:=(ug2,—usi,).

The 2D sequences are easily obtained from the 3D sequence by considering functions F = (Ey, FEs,0) (first

sequence) or £ = (0, 0, u) (second sequence) with all components depending upon z1, x5 only.

Traces for energy spaces H*(Q2) and H*(div,2) will be discussed in n space dimensions. Traces for
H?(curl, ) will be discussed in three space dimensions, and we will comment on the two-dimensional case.
We will proceed in three steps. In the first step, we define the trace spaces and establish the trace theorems

for the half-space domain,

R :={x=(21,...,Zpn-1,2,) ER™ : 2, <0}.
—_———

In the second step, we generalize the definitions and prove the trace theorems for a piecewice smooth hypo-
graph, see Fig. 4.1,
Q:={z=(2",2,) ER" : z,, < ((a)}

where ((2'), ' € R"~1, is a continuous, piece-wise smooth function. Finally, in the last step, we generalize

the results to an arbitrary (curvilinear) polyhedron using the partition of unity technique.
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Figure 4.1
Piece-wise smooth hypograph

4.1.2 Density of Test Functions in the Energy Spaces

Critical in the proofs presented in this chapter is the density of test functions C§°(€2) in all energy spaces
forming the differential complex. We showed in Section 3.1 that test functions D(R™) are dense in H*(R"™),
forany s € R. As restrictions of functions (distributions) from H*(R"™) to domain €2 constitute space H*(£2),
restrictions of test functions D(R™) to ) are automatically dense in H*(€2). The result is also true for the

remaining energy spaces, and we will show now an alternate reasoning that applies to all of them.

Consider first the case of the whole space, 2 = R™. Let ¢, be the function used in Theorem 2.3.2. We

begin with a generalization of Theorem 2.3.2.

LEMMA 4.1.1
Let w € H*(R™),s € R. Then

‘I’lpe*u_u||Hs(R7z) —0 ase—0.

PROOF We have:
/ (L+ 1€ |0 v a = uf?de = / (1+ |€2)* e — 12 a(e)? de
R» R

where

GO = [ e e do = [ () dy = (ed).

As 123(0) = 1, factor 1. — 1 converges pointwise to 0. It is also bounded by 2. Function 2(1 +
1€]2)%]a(€)|? provides thus an integrable dominating function and, by the Lebesgue Dominated Con-

vergence Theorem, the integral converges to zero. |
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LEMMA 4.1.2

We have,
llgrad(vpe * u — u)|| gsrny =0 ase—0,

div(tpe x v — )| gsmny =0 ase—0,

curl(vpe ¥ E — E)||gsmsy =0 ase—0,

for any u € H®(grad,R™), v € H*(div,R"), and E € H*(curl, R3).

PROOF It is sufficient to show that
grad (¢ x u) = 9. x grad u,
div (e * v) = e x div v,
curl (e * E) = ¢ xcurl E.

The result follows then from Lemma 4.1.1. For example, we have for the div operator,

(div (e % v), @) = —(1he % v, V) (definition of distributional divergence)
= —(v,9 ¥ V)
= (v, V(i % 9))
= (div v, ¢ * @)
= (e * div v, @)

definition of convolution of a distribution with a smooth test function)
Theorem 2.3.1)

definition of distributional divergence)

(
(
(
(

definition of convolution of a distribution with a smooth test function) .

The smoothing by convolution provides thus a constructive way to approximate functions from energy
spaces with C'> functions. Let x§ be the approximation of indicator function x;; of ball B(0, 5) from The-
orem 2.3.3, and let v € H*(div,R"). By Lemma 3.2.2, x5v — v in H*(R") as j — oo. Similarly, we
have,

div (x5v) = (Vx5) - v+ xjdive.

By Lemma 3.2.2 again, term x§ div v converges to div v in H*(R"™) with j — oo, and the first term converges

to zero, comp. Remark 3.2.1. By the same argument, identity:
cutl (XGE) = (Vx5) x E+ xjeurll E,

implies that, for any E' € H*(curl,R"), x5E converges to E in H*(curl, R") norm. The same argument
holds for space H*(grad, R™).

Combining the truncation results with Lemma 4.1.2, we obtain the final density results:

DR ) go(grad, R and D@D ) Z g (div, R,

—H* (curl,R?)

(D(R3))3 = H*(curl, R?).
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REMARK 4.1.2 Note that, for functions u,v, E with a compact support, the convolution
provides directly a C§° approximation with a support being arbitrary closed to the support of the

original function, comp. Exercise 3.3.1. |

We are ready now to discuss the case of an arbitrary domain €2. The next result builds upon the reasoning

similar to that in proof of Lemma 3.3.3.

LEMMA 4.1.3
Let Q C R™ be an arbitrary open set, and s € R. Then
H?(grad, Q) N C>°(Q) is dense in H*(grad, 2),
H?(div, Q) N (C>°(€2))™ is dense in H*(div, §2) , and
H*(curl, Q) N (C*°(£2))? is dense in H*(curl, ().

PROOF We will prove the result for the H*(div, 2). The remaining two cases are fully analogous.
Let
1
Gj={reQ:dzT)> 7 lz| <4} j=1,2,...

be an infinite open cover of  and ¢; a C°° partition of unity subordinate to G;. Let v € H*(),

and U € D'(R") be any extension of u, i.e. Ulg = u. Consider the zero extension %vu defined by
wju = 1;JU

where 1[;j is the zero extension of partition of unity function ;. It is easy to check that m is

independent of extension U. In particular, we can take an extension U € H*(R™) to obtain:

[jull e ey = (195U ey < CONU | pre @eny -

Taking minimum with respect to all extensions U € H*(R™) on the right-hand side, we get

Y5l s mmy < C(05) 1wl s () -

Let now v € H*(div,Q), and let V € (H*(R™))"™ be an extension of v, and W € H*(R"™) be an
extension of div v. Let ¢ € D(R™). We have,

(0505, @) = — (501, 0:0) = — (¥ Vi, Bi )
=—(Vi, ;0,0 )
~——
9 ($;¢)—0i;d
= (0iVi, ;0) + (0t Vi, 6)
= (W,2;¢) + (3;4;Vi, ¢)  (Both 9;Viand W are extensions of div u)

= (W, 8) + (83, Vi, 9,
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ie.,

—_—~

Oi(Wgvi) = 1 (div v) + (0:1);)v;
This implies that 81(@1) € H*(R™) and,
10:(503) | = ey < Ca3)lldiv vl 22(2) + C (@53 0] =y -
Take now an arbitrary e > 0. Let W7 € (D(R"))" be such that (comp. Remark 4.1.2)
||1ZJ;{) = W | s (div,rmy < 2% and supp WY C %neighborhood of supp 171]\/1)

Let w= (3, W7)|q. By the same reasoning as in the proof of Lemma 3.3.3, the sum in j is locally

finite in 2 which implies that w is a C*° function. Finally,

v = wlla@ve = 1> ww = Wialr@v.e <> 1w — W |a@re) <.
j j j

The proof of our final result is essentially a reproduction of arguments from Theorem 3.3.2.

THEOREM 4.1.1
Let Q C R™ be a C° domain'. Then
C§° () is dense in H*(grad, Q) ,
(C§°(2))™ is dense in H*(div, ) , and,
(C§°(9))? is dense in H*(curl, ).

PROOF We will again prove the result only for the H(div) case. The other two proofs are fully

analogous.
Case: Q is a C° hypograph.

Let v € H*(div,2). By Lemma 4.1.3, we can assume additionally that v is a C*°(Q) function.
For any 6 > 0, let v° be the shifted function

V() i=v(a,z, —0), ze€Qs:={zecR": z, <((z)+5}.
The operations of shifting and divergence commute,

div v° = (div v)°.

Tn = 3 in the last case.
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Let € > 0. Let V € (H?(R™))™ be an extension of v and W € (C§°(R™))" such a function that
HV — WH(HS(Rn))n < % Then,

||'U_W‘Q||(HS(Q))71 < ||V_W||(H5(Rn))n < and

(=)

€

||U(S - (W|Q)6||(H0(Q))n S HV6 — W(;H(H**(R”))" = ||V - W”(Hs(Rn))n < 6

At the same time,
€
IWla = (W) llgzs@pn < IW = WOll(ms@nyn < &

for sufficiently small §. Indeed, by the Lebesgue Dominated Convergence Theorem,

W = WOl oy = [ (L IePYle 27 1P W(©OR dg 0 as5—0.

R‘!L
By triangle inequality,
5 €
||U —v ||(Hs(Q))n < 5 .

Exactly the same reasoning® for div v implies that

: : : . €
[div v° — div v|| g0y = [|(div v)° — div V| e () < 5

so, finally,

llv — 'U(SH(HS(Q))W + ||div v® — div UHHs(Q) <e€.

Once we have established the convergence of the shifted function v® to v, the rest of the proof is

identical with the proof of Theorem 3.3.2. We truncate v’ € H*(div, Q) with a cut-off function y,

lon
X:
0onR™ —Qs/9,

to obtain yv® € H*(div,R™), and use the density result for H*(div,R™) to establish existence of
an approximating test function W on R™. Restriction w = Wlq provides the final approximating
(C§° ()™ function in H*(div, Q).

Case: An arbitrary Lipschitz domain 2.

Use the standard partition of unity argument. |

4.1.3 The Case of Half-Space

We begin by recalling the classical results for standard Sobolev spaces.

THEOREM 4.1.2 Trace Theorem

Let s > % Define the trace operator:

7 DR™) = DR™Y),  (yu)(@') := u(@’,0).

¥Notice that an analogue Z of function W need not to be related to W, i.e., we do not need div W = Z.
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There exists a unique continuous extension of operator vy, denoted with the same symbol, to

v : HY(R™) — H* 2 (R*1).

PROOF It is sufficient to prove that the original operator - is continuous in the Sobolev norms.
We have:
(ra)(a') = [ aleetne 10 dg

= /R ( [ O:O (¢’ &) d&) e dg!

Applying the two-dimensional Fourier transform to both sides of the equality, we get,

Tu(e) = / (e, &) de, = / (L4 [€2)7F (1 + |2 Fae &) d,

— 00 — 00

Cauchy-Schwarz inequality implies now,

oy !/ > d n > S | !
RUES )|2 < / (1+ ‘§/|2€+ IBBE /_ (1+ ‘§|2) a(§ 7§n)‘2d‘fn-
=M. (&)

Use substitution &, = (1 + [¢'|?)}/?¢, to obtain,
1 < dt
M, (€) = /
(5 ) (1 =+ |£/|2)sf% . (1 + t2)s
—_———

<oo fors>1/2

and, consequently,

oo

(L+ €72 Fae)? < C/ 1+ [€*)* [a(©)[* d&n -
Finally, integrate wrt & € R™~! to obtain,

Il sy < Cllullegany-

REMARK 4.1.3 If s = § +¢ then the integral in M,(¢’) is of order O(1/€). This gives the final
blow up in the continuity constant for the trace operator (we need to take the square root in the

inequality above) of order O(1/e?). |

Construction of the extension operator has already been given in Lemma 3.5.1 (operator 7g). An alternate

construction can be based on the solution of the Dirichlet problem:

4.3)

-AU+U=0 in R™
U=u on R 1,
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In order to derive an explicit formula for U (to investigate the continuity in fractional spaces), we first Fourier
transform boundary-value problem (4.3) in =’ and obtain the following ODE problem in z,,.

. 92U .
(4W2|§’|2+1)U—8?:0 U(0) =1.

Selecting the exponentially decaying solution for x,, — —o0, we get,
0(Es0) = ColHTIE o,
and, upon utilizing the boundary condition, we obtain,
U(fl;l‘n) _ ﬁ(€/)6(1+4ﬂ2|§/|2)1/2xn Ty < 0.

Let ©) € S(R) be now any extension of exponential e*,z € (—o0, 0] to the whole real line. We use it to

extend the minimum energy extension above to the whole space:

U ) = a1+ 4| *) Pa,)  @n €R.

Fourier transforming in x,,, we get:

0€) = [ aley((1+ 4wl ), Je 760 da,
Y S {7 N—
— () (1 + 4n%[¢' )" / e arment @.4)

én
(1+4n2|¢’ \2)2

THEOREM 4.1.3 Extension Theorem
Letu e H"2(R" 1), s € R. Let U(x) = FeaU(E) with U(E) given by (4.4). Extension operator:
H* 3(R" 1Y) 5u— U e H R (4.5)

1s well-defined and continuous.

PROOF The estimate uses the same integration techniques as in the proof of the trace theorem.

We have,
0y = [ L+ PO de
X [ » én
— m 7\|2 1 471'2 712\—1 2\s
| )R -+ antie ) /g(lﬂf s
~ ).,

(€2 (14 4n2¢' ) / (14 4r2 €2 + ) —— )2 de, de’
= [ ey a@)P / (14 2l de
Rn—1

o (1 + 4n2[¢' )%
—_————
1

=t
%/ (L+1¢7) = (e’ |2d£/ %) ()| dt
Rn—1

< oo for any s

)| &, dg’
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|
LEMMA 4.1.4
Let w € C, & € R be arbitrary numbers. The following inequality holds:
|2 4+ €2 + w|* > [wl? VzeC (4.6)
21t e . .
PROOF An elementary calculation shows that
2

mmin{xz +(Ex+b)*} = Tre

for b € R and real argument . Applying the inequality to x = Rz, 3z and b = Rw, Sw and summing

them up, gives the result. |

LEMMA 4.1.5
Let &, ...,&, € R, 0, € C. The following inequality holds:

512 o [90f? + E151 + .+ €t 2 A 5 2 @)
1 n 1V1 nUn _1+‘€/|2’Un .

for all v1,...,0,_1 € C.

PROOF We use induction in n. For n = 1, inequality (4.7) turns into identity. Assume that the
inequality holds for n — 1. We have,

| 01 [P (02 + o [0 + G001 + 2B + . 4 €y 2

~— —

z w
> 022+ ..+ 02 + 7‘52732?;%5"73"‘2 (Lemma 4.1.4)
= (02 + .+ [0l + gy Oz + -+ el nl’
P I
> H |0 |2 (induction assumption)
1+1+s§+‘"Jr 1+e?
= TRl

THEOREM 4.1.4 Normal Trace Theorem

Let s > —%. Define the normal trace operator:

Yo+ (DR™)" = DR, (1av)(@’) = va(a’,0).
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There exists a unique continuous extension of operator ~v,, denoted with the same symbol, to

Y @ H¥(div,R") — H*"2(R"1).

PROOF We use the same starting point as in the proof of Trace Theorem:

o0

T () = / Bul€60) o

— 0o

(L+]g]?)*
(1+1€71%)

., oo 1 112 > (1 2\s+1 . ,
T@P < [ s e [ S e P .

::Ms(g/)

We insert now factor ( )% and apply the Cauchy-Schwarz inequality,

We use the same substitution, &, = (14 [¢/|>)'/2t, to estimate term M, (¢'),
o dt
Ms " = 1 2 _(s_% / T o~ -
—_—
<oo fors>7%

We multiply both sides by factor (1+ \§’|2)3_%, integrate over R"~!, and use Lemma 4.1.5 to obtain

> dt L+ ¢
n 2 L < 1 2\s n 2d nd /
vl sy < | e [ (IR T 1P dea e

> dt 2\S (|5 |2 ~ 2 ~ ~ 12 !
< —_— n oo+ Enn n
_/m i /Rn(1+|£\ V(01" 4 - A On]? + €101 + - oo+ EnDn]?) Ay dE

> dt )
- (1+¢2)s+1 ol i ) -

Given our experience with the construction of the right inverse of trace operator v, we base the construction

of the right inverse for the normal trace on the minimum energy extension problem as well:
-V@divV)+V =0 in R™
(4.8)
V,=wv onR* 1,
Taking the divergence of (4.8);, we learn that V' satisfies the problem above iff U = div V' satisfies the

Neumann problem:
-AU+U =0 in R™

4.9)
o _ v on R"~1,
o0z,

The gradient V' = VU is thus the desired extension of v. As before, in order to derive an explicit formula
for U, we first Fourier transform boundary-value problem (4.9) in 2’ and obtain the following ODE problem
in x,,.

02U oU

ArE'?P+ 1)U - == =0 5 (0)=1.
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Selecting the exponentially decaying solution for x,, — —oco, we get,
U 2n) = CelHan’ 1€ 1)) 2 ay,
and, upon utilizing the boundary condition, we obtain,
U(€s2a) = 0() (1 + 4°[¢]7) M2 H I e g <0,
Similarly to the technique used to arrive at extension (4.4), we extend the function to whole R™ with:

0(5/3 Ty) = {)(5/)(1 + 4772‘§/|2)71/2¢((1 + 47T2|§/|2)1/2xn) Ty, €R

where 1) € S(R) is an extension of the exponential. Notice the regularizing effect of factor (1+4r2[¢'|?)~1/2,
If v € H~2(R™ 1) then the inverse Fourier transform of ©(¢')(1 4 472|¢|2)~1/2 lives in H5t2 (R"~1).

Fourier transforming in z,,, we obtain the formula for the extension in the Fourier space,

A PN 2(¢112\—1,7 &n )
U@mmu+mm>wawﬁgm;. 4.10)

The only difference between (4.10) and (4.4) is the different value of exponent for the (1 + 472|¢’|?) factor.

THEOREM 4.1.5 Extension Theorem for Normal Trace Space
Let s € R and v € Hs_%(R”_l). Define V.= VU where Fourier transform of U is given by

formula (4.10). Extension operator:
H* 3(R" ') 50—V € H*(div,R")

18 well-defined and continuous.

PROOF It is sufficient to notice that operator:
H* 3(R" ") 50— U e H (R

is continuous. Indeed, the gradient operator takes H**1(R") into (H*(R"))" and, in R", div VU =
AU =U € H*"1(R") (better than needed). Note that the extension above is defined in the whole

R™ but the relation between the Laplacian AU and function U can be claimed only in the half space.

‘We now restrict ourselves to three dimensions, n = 3.

THEOREM 4.1.6 Tangential Trace

Let s > —%. Define the tangential trace operator:

7t (DRY)? = (D(R?)?,  (mB)(2)) = (E1(',0), Ex(a, 0)).
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There exists a unique continuous extension of operator ¢, denoted with the same symbol, to

H*(curl, R®) — H*" 7 (curl, R?) . (4.11)

PROOF Consider V =V x E. Then divV = 0 and, by the Normal Trace Theorem,

[eurl (. E)] V x E)|

ez = Il meb@n = Vit oy
S WV s @iv g2y = IV s re) = IV X Ellgrs®e) < Bl mre cun, ) -

Next, by Lemma 4.1.4, and an elementary algebraic argument,

~ ~ ~ ~ 2 ~ ~ 2 2 A
Bl + Bal? 4 |eaBr — €1 Baf? > Sl B2 + B2 = My 2

1+€2
> LU 2 (&> %< fora > b,c > 0)
= 11:|‘§£/‘|22 |En)?.
By the same argument,
|Bo|? + |Es| + |&2B5 — G By > 111_|§,||22|E2|2 :
Consequently,
1+ (¢

ENTIE (1L + | Eal?) S|EL + Bl + | B3| + & By — &1 B3]* + |&E5 — &E* + |61 By — B

Note that the last term on the right-hand side is redundant here but it was used in the estimate of

curl v, E. The rest of the proof follows the same lines as in the proof of the Normal Trace Theorem.

Extension theorem for tangential traces. We start with a heuristics similar to that for the standard and
normal traces. Let ¢ € H* 2 (curl, R?). As in the previous two cases, we would like to work with the

minimum energy extension F that satisfies the equation:
Vx(VxE)+E=0, (4.12)
with boundary conditions on the tangential traces,
Ei(z',0) = e;(2)), o' €R?*i=1,2.

We cannot work directly with equations (4.12). After the Fourier transform in z’, we obtain a system of three
second order equations hard to analyze. Instead, we notice that by taking divergence of (4.12), we learn that
div £ = 0. Recalling that

—AE=V x(VxE)-V(divE),

we realize that solution of (4.12) must also satisfy the system of decoupled equations:

—-AE+ E=0. (4.13)
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Conversely, taking divergence of (4.13), we learn that
—A(divE)+divE =0

To be able to conclude that solution of (4.13) is also divergence-free (equations (4.12) and (4.13) are then
equivalent), we need to impose a boundary condition for divergence,
div E(z',0) =0 2’ € R%.
This leads to a Neumann boundary condition for E3. After the Fourier transform in 2/, we get:
OF;
6(L‘3

In the end, we end up with the following candidates for the extension:

(5/; 0) = —i27‘f’(£1é1 + fgéz) .

Bi(€sm5) = 64(€)e0H 4™ IEMRen 51 9

E3(£/§ xg) _ _iQW(glél + £2é2) (1 + 4ﬂ_2|£/|2)—%e(1+4ﬂ—2|£/‘2)§w3
After extension to whole space we get,

Ei(¢523) = (&)1 +472|¢ ) 2as), i=1,2

B3 (€5 w3) = —i2m(&1é1 + &2és) (1+ 4n°(¢/]7) 72 (1 + 4n2[¢'?) 2 w3)

where 1) € S(R) is an extension of the exponential. Given our experience from Theorem 4.1.3, this is

4.14)

probably the most convenient form to analyze continuity properties of the extension operator. With e; €
H*~2(R?), extensions E; are clearly in H*(R3). Concerning the third component, it is sufficient to notice
that factor

—i2m(§101 + Ea2) (1 + 4n°[€]7) 72
in F5 represents Fourier transform of a boundary data that lives also in H s=3 (R?).

The third component of V' x FE is given by the formula:
(V x B)s(€'s5) = i2mlaa(€') = &1 (€)0((1 + 47°[€*) Fag)

with boundary data representing the two-dimensional curl that lives again in H s=3 (R?). The only tricky part
perhaps is with the remaining two components of V x E. Computing the second component of V x E in
the lower half space, we get:
I - 5 2002 | 2 2 5 5 210712\~ 1 2)¢112\%
e —i2r6i By = [61(1+ 4n2(6} + ) — 4n%0 (6161 + )] (1 4m* 1) I +4n2(E ) ).
(4.15)
The term in the square brackets must represent a boundary data® in H s=3 (R?) which permits only the first
powers of ;. Clearly, there must be some cancellations here to have a success story. This is where the

assumption on the boundary curl comes in again. We have

curle = i2m(€165 — £aé1).

1
2.

$We have the regularizing factor (1 + 472 |¢/|?)
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Hence,
. . i&o ——
516262 = 5561 — éCl,lI‘l €.
27
Substituting into the bracket, we get:

[-+] = [é1 + i2néacurl ]

which represents the expected regularity of boundary data. Consequently, the H® norm of (4.15) is bounded
by the [ s=3 (curl, R?) norm of the boundary data. Note that (4.15) represents the curl of the extension only
in the lower half-space. Identical reasoning works for the first component of V x E. We have proved the

following result.

THEOREM 4.1.7 Extension Theorem for Tangential Trace Space

Let se R and e € Hs_%(curl, R?). Define E = ngIEA where partial Fourier transform E s given
by formulas (4.14). Extension operator:

HS*%(curl,Rz) Se— E € H(curl,R?)

1s well-defined and continuous.

We summarize now our findings in three space dimensions.

THEOREM 4.1.8

1
§ .
spaces onto the corresponding trace energy spaces defined on the boundary forming a two-dimensional

Let s > —5. There exist three continuous trace operators mapping the differential complex energy

differential complex, with the following commuting diagram.

HH(R3) 5 He(curl, R3) Y5 Hs(div, R3)

Y e 17

PROOF

Commutativity follows from the construction of the trace operators. The boundary sequence is

the 2D differential complex with regularity shifted by % |

REMARK 4.1.4 Notice that the theorem has been formulated using the language of the dif-
ferential complex only. This is for a reason, the discussed spaces do not form an exact sequence in

R™ n =1,2,3. Let us discuss for instance the 3D sequence. Fourier transforming the curl, we learn
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that
- E, _E, FEs
VxE=0 & —=—F7=—"7.
& & &
The common value above is identified as the (Fourier transform of) scalar potential w,
iona = B _ B2 _ By
T = —= — = —
& & &

First of all, contrary to a bounded domain where the scalar potential is always determined only up
to an additive constant, in the case of R3, the scalar potential is unique. Fourier transform of unity
is Dirac’s delta that is not a function, hence constants do not live in any Sobolev space. Does u live
in H®(grad,R?) if Vu is an element of (H*(R3)3 ? It is easy to construct counterexamples showing
that, in general, the answer is negative, comp. Exercise 4.1.2. The only way out is thus to build
additional assumptions into the definition of the H(curl) space, to secure that the potential is in
the starting space H'**(R3) ~ H*(grad, R?). The modified definition of the energy space reads as

follows:
1+ [¢J?

572|Ei|2d£<oo7i:1,2,3}. (4.16)

(E € H* (curl, R?) : /Rsa e

1+¢]?
2

Presence of the additional, singular factor secures that the potential is in the right energy

space. In particular, continuous Fourier transf(;rms E; must vanish at zero, see Exercise 4.1.3. This
says that, in a certain sense, components F; have zero average. If we still insist on having an exact
sequence, the extra conditions for the H(curl) energy space propagate into extra, more complicated,
conditions for the H(div) space and so on. The moral of the story is to avoid the exact sequence

arguments when working in the whole space and stick with differential complexes only. |

4.1.4 The Case of a Piecewise Smooth Hypograph

REMARK 4.1.5 We have a terrible notational conflict in what follows. The “hat” symbol @
and argument £ have been so far exclusively reserved for the Fourier transform of function v and
its argument from the Fourier (frequency) domain. Unfortunately, exactly the same two symbols
have been used for parametric finite elements and Piola transforms known also as pullback maps. I
have decided to use the symbols nevertheless. I hope, you can survive it. Please review elementary
facts about curvilinear systems of coordinates ([14], Appendix 1) and derivation of Piola transforms

before reading this section. |

We shall consider the standard map from the half-space onto the hypograph of a globally continuous and

piecewise smooth function (,

T:R23&=(4,6,8) > o= (v1,22,23) EQCR®
—— ——

=:£' =z’
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defined as:
' =¢, a3=8+ (&) 4.17)
For {5 = 0, the map implies a parametrization of the boundary I" of hypograph 2. We shall make precise

assumptions about function ¢ shortly.

If we consider the map to be a parametrization for {2, we have the following formulas for the basis and

cobasis vectors.
ar =55 =(1,0,¢1) a2 =FE =(0,1,¢2) a3=FE =(0,0,1)
CLl = (1,0,0) a2 = (O, 170) a3 = (—<71, —<72, 1)

g?, the jacobian [a1, as,a3] := (a1 X ag) - a3 = 1. Normal to the
J

Determinant of the Jacobian matrix

boundary equals the unit vector of a>,

n =

_ ¢1 _ G2 1
< I+ +EE \/1+c?1+c?2’\/1+<?1+<?2>

and the boundary cobasis vectors a® = a® — (a® - n)n are given by:

gl = (HSh it ¢a a2 = (—_Calo 1+¢% (o
r A HCS THCHCS T 14 +C5 r THCR Q7 TG ¢S 1A +¢h

We employ now the usual pullback maps (Piola transforms) with unit jacobian,

G=u, E=5% ¢;=2%4. f=f%

JDE; * 9z, Ui
~ i 9&; ST _ 7
u=1u, Bi=FEjg:, vi=gv, [f=F

or, more explicitly,
Ey=F) —(1E3, FEo=FEy—(oFs, E3=FE;

v = 01 vy = 1 v3 = (101 + (202 + 03

Let e; denote the Cartesian unit vectors in 2. From

A O ox; . . Oz

E=Fpe =FE; —aijl €, V=08 = 785; vje; = v; 786; €; (4.18)
v M
—ai =a;

follows that E; can be interpreted as the covariant components of E, and 9; are the contravariant components
of v in the curvilinear system of coordinates implied by the parametrization T'. As usual, we do not show the
compositions with parametrization 7 or its inverse, e.g. the inequality & = u assumes that either u stands for

woT or 7 means @ o T 1.
We make now precise assumptions about function {(¢').
R? = U;"Zl Gj, G, are open and pairwise disjoint, j = 1,...,m

(lg; € CHG)),j=1,...,m, (4.19)

( is globally continuous.
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Partition of R? into sets Gj, 7 =1,...,m, implies a partition of Q) := R3 into sets Qj = Gj x (—00,0).

Consequently, parametrization (4.17) of the hypograph domain is also piecewise smooth, see Fig. 4.2 for

illustration.
A al’l AXn
Gl e < G2 é’ X,
AN g o
Q, /‘ X
A Q
Q 2
Figure 4.2

Parametrization of the hypograph domain.

The strategy for constructing traces for a piecewise smooth hypograph consists of three steps.

1. Given a function in one of the energy spaces defined on the hypograph domain €2, we first pull it back
to the parametric domain (half-space) 2 = R® . We will show that, with the assumed regularity on map
¢(¢') and range s € (—3, 3), the Piola transforms map the energy spaces on {2 into their counterparts
defined on €.

2. We trace the pullbacked functions to the boundary of Q) - the hyperplane.

3. We push forward the trace to boundary I" of the hypograph domain $2.

The first step is a consequence of Lemma 3.5.2 and Lemma 3.5.3 where we have studied invariance of Sobolev
spaces under multiplication and change of variables. In the second step we utilize the just proved results on
traces for the half-space domain. Finally, the preservation of boundary energy spaces necessary in the last
step will simply be a consequence of definitions; the trace spaces on 92 will be defined as the images of the

corresponding trace spaces on the hyperplane under the boundary push forward maps.

We start by demonstrating that Piola transforms map the exact energy spaces defined on the hypograph €2
onto the energy spaces defined on the half-space R? . Notice the commutativity properties of the pullback
maps:

Vi=Vu, VXxE=VxE V-i=V.0.
In fact, it is exactly these commutativity properties that have led to the definition of Piola transforms. Due

to the commutativity properties, it is sufficient to show only that all pullback maps preserve H® spaces. Let
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s € (—%7 %) The first case is easy. Lemma 3.5.3 (k = 1) directly implies that
il prermy S llullme(o) -

For the H*(curl) case, the Piola transform involves both change of variables and multiplication with the
Jacobian matrix, 5
. T
Ei(§) = E;(x(S)) agj- (x(£)) -

While there is no problem with the change of variable (same situation as in the H* case), the multiplication

is a challenge. Jacobian is only piecewise continuous and Lemma 3.5.2 implies the result only for the trivial
case of s = 0. This is where the tilde spaces come in. Let E be a function defined on {2 and E be the
corresponding pullback function defined on Q. Let E; denote the restriction of E to subdomain §);, and F;
its extension by zero to the whole space. Obviously, £ = > j E’j in . Recall that

1B | e ey = 1 Ell 72a,) -

Therefore, we have,

||E||§{(Q) < Z B2, (triangle inequality)

§ZIIEAH2L 0, (H*(Q;) ~ H* () for s € (=3, 3))

m
< Z ||EH%{S(QJ,) (piecewise smooth parametrization)

Note that, for the negative range of parameter s, Piola transforms involve multiplication of functionals with
elements of the Jacobian matrix. The same result holds for the inverse transformation £ — F and the

remaining Piola transforms. Consequently, for s € (f%, %),
] proes sy S Null s
1B e eur ) S 1B e eunt)
||@|\Hs(div,Ri) S ||U||Hs(div,9)
1Fllre s y S 1 llare

with same inequalities valid for the inverse transforms as well. Of course, all equivalence constants depend

upon map (.

Traces on boundary of the hypograph. Extension of trace theorems for a half space to the hypograph
domain 2 is a direct consequence of definition of trace spaces on boundary I" of domain 2. We will use the

following notation for the boundary jacobian:

jacp (&) = (143 + ¢%)Y2.
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We derive first (formally) formulas for the pullbacks of all three traces defined on hypograph boundary T

Given a function u : I' — C, we denote the corresponding pullback on reference boundary by :
dc : R2—=C,  ac(€) =u(¢, (). (4.20)

It follows from (4.18) that the normal trace on I is given by:

Up = Va5 = 2
T acy
This implies that the pullback of the normal trace is given by:
(93)¢ = vn (&', C(€)) jacp(£) - (4.21)

It follows again from (4.18) that the tangential trace on I' is given by:
E, = F,af .
Consequently, the pullback of the tangential trace is given by:
(Ea)e = Ei(€,¢(€) - aa,  a=1,2. (4.22)

The main idea is now to identify the trace spaces on hypograph boundary I' by requesting the corresponding

pullbacks to be in the corresponding trace spaces for the half-space domain. Let s € (0, 1). We define:
H(T):={u:T = C : ac € HR" 1)} (4.23)

with the norm,

[ll e (ry = Il e (rn-1) -
By construction, spaces H*(I') and H*®(R"~1) are isometric, and the pullback map is an isometric isomor-
phism.

Before we define the normal trace spaces, we need to extend the definition (4.21) to functionals. We do it
by using the duality. Notice that
[ obeas = [ o€ c€)iee) jner¢de = [ vnsar.
Rn—1 Rn— r
Let w be now any linear functional defined on just defined H*(I"). Let ¢ € H*(I"). We define the pullback
w¢ of w by:
<’UA}C7 $C>R”*1 = <’LU, ¢>F .

This identifies the normal trace space as the topological dual of space H*(T"):
H™5(T) = {w e (H*T))* : v, € H*(R" 1)} = (H*(T))’. (4.24)

with the norm:
_ Jw, o)l
Jwllg—+ry = sup = |Jdc |l - gn-1y -
veHs(T) HU”HS(F)
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Again, by construction, spaces H~*(T") and H ~*(R"~!) are isometric, and the pullback map is an isometric

isomorphism.

We show now how the trace theorems for H* and H*(div) spaces in the reference domain imply automat-
ically their counterparts in the hypograph domain. Let u € H'*%(Q). Then @& € H'**(R"). Consequently,
by Theorem 4.1.2, we have trace ¥4 € Hz5(R™"~1). We define trace yu € H2(T") by requesting that the

trace of the domain pullback matches the boundary pullback of the trace,

—

(Yu)r = yi.
For sufficiently regular functions u this simply means that

(yu)(z) == (Ja)(§') wherex = (£,¢(§) €T

Continuity of trace operator 7 follows immediately from continuity of trace operator 4 and definition of trace
space on I,

||7U||H1/2+S(F) = ||’A7ﬂHH1/2+S(]R”*1) S ”aHHHS(Rﬁ) S ”uHHlJra‘(Q) .
Note that, by construction, surjectivity of 4 implies the surjectivity of .

We have the same reasoning for normal traces. Let v € H*(div,(2),s € (—1, 3). Then ¢ € HS((Ti:/, R™)

and, by Theorem 4.1.4, we have the normal trace ¥,0 € H*'/2(R"~'). Trace y,v € H*~Y?(T) is
identified as the unique functional that satisfies:

——

('ynv)g = '?n v.

Continuity and surjectivity of the normal trace follows in the same way as above.

Traces for space H*(curl, §2) are defined in three dimensions only. Let s € (0, 1). We begin by introducing

the space of tangential test vector fields:
Hy (D) :={F":T - R : F} € (H*(R?))?} (4.25)
where the boundary pullback is defined as:
H{(T) > F' — Fl = (F}, F?) € (H*(R?))?, such that Fagjacy' = F!

Note that,
/EtFt dS = | ((Ea)caft)- (Fag)de :/ (Bo)cFede' .
r R2 R2

This suggests to define the pullback (E; ). for any E; € (H(T'))* by duality as:
(By)¢, Fl)ge = (B, Flyr  VF' € H;(T).
The trace space is now defined as:

H~*(curlp, 1) == {E; € (H{(T))* : (Ey)¢ € H*(curl, R?)}. (4.26)
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equipped with the norm:
||Et||H*S(Curlr,F) = ||(Et)C||H*S(curl,]R2) .

Note that, again, spaces H ~*(curlp,T") and H~*(curl, R?) are isometrically isomorphic by construction.
Now, let E € H*(curl,2), s € (—3, 3). As a consequence of regularity assumptions on function ¢ defining
the boundary, the pullback function £ € H*(curl, R3). Let 44 £ € H*~1/2(curl, R?) be the corresponding
tangential trace on reference boundary R?. We define tangential trace ; F for the hypograph domain as the

unique functional in H*~2 (curlp, I') such that

o — “

(nE)e =E.

The continuity of the trace on I' is once again a direct consequence of the definitions,

VB ge-1/2cunp,ry = 3Bl me-172cunrz) S 1 gecunrs ) S N Ems ung) -

As before, surjectivity of ; follows from the surjectivity of 4.

REMARK 4.1.6 Note that we are not concerned with the topology of test space H;(T'). The
only reason for introducing the space is to be able to define the pullback (Et)g. We simply need
a class of objects for which we can define the pullback for. What matters in the end is only the
subspace of the algebraic dual (H;(I'))* corresponding to pullbacks from H~*(curl, R?). We could

have used more regular test functions in place of H;(T).

In the same spirit, boundary pullback for the normal trace could have been defined using more
regular test functions than H*(T'). Note that only a-posteriori H*(T") is identified as a topological
dual of H5(I'). 1

Commuting Boundary Diagram. For sufficiently regular functions, we define the boundary operators as

follows.

* Surface gradient:

Vru= (Vu), = Oi

9. ap .
¢ Surface scalar-valued curl:
Byt — E
curlp By = (V x B) -n = 2L 12
Jacp

For elements of trace spaces, we have to define the operators by duality or, more directly, by utilizing the

boundary pullback operators. Let s € (—1,1). The surface gradient Vru of a function u € H*(T) is

the unique element of H ~*(curlp, ") such that its boundary pullback coincides with the two-dimensional
gradient V¢ t¢c. Similarly, the surface curlp E; of Ey € H~*(curlp,T") is the unique element of H~*(T")

whose boundary pullback coincides with two-dimensional curl EQ,l — EA‘172.
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We summarize our discussions for the hypograph domain with the following theorem.

THEOREM 4.1.9

Let s € (—5, 5) and let Q0 by a piecewise smooth hypograph domain with boundary I'. There exist
three continuous trace operators mapping the differential complex energy spaces onto the correspond-
ing trace enerqgy spaces defined on the boundary forming a 2D differential complex, with the following

commuting diagram.
HHHQ) L He(curl, Q) 25 H(div, Q)

1y b L

H5+3(0) Y5 H5= % (curlp, ) &5 Hs—3(I)

PROOF The proof is a direct consequence of discussed definitions of trace spaces, trace operators

and boundary operators for the hypograph domain and Theorem 4.1.8. |

4.1.5 The Case of a Polyhedral Domain

Definition of trace operators and spaces, continuity and surjectivity of the trace operators follows now the
classical construction based on the definition of a polyhedral domain and the partition of unity argument.
Following the definition of a polyhedral domain, we consider a partition of unity {¢;} subordinate to the

open cover W; of domain 2 with its boundary I', i.e.

<

U €D(W;), Y wi(z)=1, z€Q, suppyyC Q.

j=0
Lets € (—%, %) and I'; denote the boundary of hypograph €2;. We define,
H"3(0):={u:T = C : juec HT3(;), j=1,...,J}
J (4.27)
I8 gy = Iy -

Forv € (H*+2 (T))*, we define the product of v with partition of unity function ), in the usual way,

<wjva¢> = <’anj¢>7 ¢ S H78+§(F)'
Note that the product ¢;¢ € H —st3 (T") which makes the product ;v well-defined. The normal trace space
is now defined as follows:
H*"3([) :={ve (H*t:(T))* : pjue H3(Ty), j=1,...,J}

2 J (4.28)
[[v]] . gle T
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In order to define the tangential trace space, we need to define first the space of tangential test fields,
st el )
H°T2(T) = {F":T - R®: ;Ft € H;*T2(T}), j=1,...,J}} (4.29)
—S 1 . .
where space H, T2 (T';) is defined by (4.25). We define now the tangential trace space as:

sl .
H*~%(curly, T) == {E € (H, " *(I))* : ;B € H* 3 (curlp,T), j=1,...,.J}

(4.30)

J
: > Il
2 HH§_§(Cu1 F) = I3l H*™ % (curlp I';)

where the product 1); E/ is again defined by duality,
(W B, Fty = (B, FY), F'e H,""2(I).

Note that the product 1; F" is in the correct space by definition.

The trace theorems follow now immediately from the corresponding trace theorems for the hypograph

domain.

THEOREM 4.1.10

Let s € (—%, %) and let Q0 by a piecewise smooth polyhedral domain with boundary I'. There exist
three continuous trace operators mapping the differential complex energy spaces onto the correspond-
ing trace enerqgy spaces defined on the boundary forming a 2D differential complex, with the following

commuting diagram.

HHQ) - He(curl, Q) 25 H(div, Q)

e e 4

H5+3(0) Y5 5% (curlp, ) &5 Hs—3(I)

PROOF  We shall prove the continuity and surjectivity of trace operator . The corresponding

proofs for operators 7y, and v; are fully analogous. Let u € C°°(£2). We have,

J
2 ..
[ || o z:l ||1/Jju||HS+ ) (Definition (4.27))
i=
J
S Z ||¢ju||§{s+1(ﬂj) (Theorem 4.1.9)
j=1
J
= Z ||¢ju||§13+1(9) (change of coordinates)
j=1
Sl Fresr o (Lemma 3.5.2) .

Not that, in passing from domains {2; to domain {2 we change the system of coordinates but the

Sobolev spaces and norms are invariant under translation and rotation of coordinates. Finally, we
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 4.3
Open cover set G

use the density of C°°(Q) in H**1(Q), to conclude the existence and continuity of trace operator
defined on H*+1(Q).

To prove the surjectivity of the trace operator, consider and arbitrary v € H st z(I'). By definition,
Yju € H*(T';) with a support in the shaded subset of G, illustrated in Fig.4.3. Let U; € Hsts 2 (Q;)
be an extension of ¢;u to hypograph domain €2;. Let x; be the indicator function of the shaded
subset and xj its smoothed version with a slightly larger support illustrated with the larger rectangle

that is still contained in open set ;. Truncate extension U; with x§ and define

J
U= ZX;U]
j=1

We have:
J
||UHH>+ Q) IX5U; o4 @) (triangle inequality)

j=1
J

Z [1F7 /[y 2, (Lemma 3.5.2)

j=1
J

S Z l15ull s (r;) (Extension Theorem for Hs+3 (T;)) .
j=1

Square both sides to finish the argument. |

REMARK 4.1.7 The trace norms depend upon the partition of unity but the corresponding

trace spaces do not. Critical in the proof of this fact is the existence of right-inverses of trace
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operators. Let {¢,;} and {¢;} be two partitions of unity subordinate to two open covers G; and
H;. Let w e Ht2(T') and U € H51(Q) be the corresponding extension discussed above. Using the

continuity of trace operator defined with the second partition {¢;}!_; we have,

I
2 2
DMUMoy SN g

i=1

and, so, norm (4.27) corresponding to partition {¢;} is bounded by the norm corresponding to

partition {¢;}. Analogous results hold for the normal and tangential traces. |

4.1.6 Characterization of functions with zero traces. Relation with spaces H;(2)

Recall that
s e YD)
H{(Q) :==C§e () .

The test functions vanish on the boundary. Given the trace theorem, should we expect, for the range s €

(%, %), the closure to coincide with functions that also vanish (in the sense of traces) on the boundary ? The

answer is “‘yes”.

THEOREM 4.1.11

Let Q be a C*~11 domain, and s € (3, k]. We have:

HE(Q) = {ue HY(9) : 7(0°u) =0 onT, V|a|<s-— %},

PROOF Inclusion C is a direct consequence of definition of H{(€2) and continuity of trace
operator. We will prove the inverse inclusion for the half space 2 = R” and leave the rest of the

proof for Exercise 4.1.4. Consider the closed subspace of H*(R™):
1
Vi={uec H*R?) : y(0%) =0 V]|a| <s— 5}.

If Hj(R™) were only a proper (closed) subspace of V' then, by Mazur’s Theorem or Orthogonal
Decomposition Theorem, there would exist non-zero functionals | € V' that vanish on H§(R™). We
will show that this is impossible. Towards this end, let I € V’ such that l[(¢) =0 V¢ € HSR™).

By Hahn-Banach Theorem, functional [ admits an extension

Le (H*(RY)) = Hg*(R") = Hy*(R"),

As L = [ on V and vanishes on D(R"), the support of L is contained in F' := R"~!. By Theo-
rem 3.5.1, there exist v; € H~ 592 (R"~1) such that

ST T3

0<j<s—4
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But this implies that, for all ¢ € V,

Thus [ vanishes on the entire V. |

REMARK 4.1.8 As usual, for a domain with piecewise smooth k — 1 derivatives, the result

extends to s € (%, k+ %) In particular, for a piecewise smooth C° domain,

Hj(Q)={ue H(Q) : yvu=0 onT},

for all s € (%, %) In other words, test functions from a dense subset in the subspace of functions
with zero trace. |

The result discussed above generalizes to the remaining energy spaces.

THEOREM 4.1.12

Let Q) be a polyhedral domain, and s € (—%, %) The following density results hold:

{ve H°(grad,Q) : yu=0 onT} = COOO(Q)H (a1,

{ve H*(div,Q) : vqu=0 onT} = WH (div, Q)

(EeH(cul,Q) : wE=0 onl} = (Ceo(qE @

PROOF The first result has already been proved but we present here an alternate proof that
applies to the remaining cases as well. We will consider again only the half-space case, 2 = R” |
leaving the rest of the proof for an exercise. We shall present the H(div) case, the proof of the other
two cases is fully analogous. Consider a function v € H(div, R™) with zero normal trace vy,v = 0,
and let € > 0 be an arbitrary number. By the density result from Theorem 4.1.1, for any &1, there

exists a function ¢ € (C§°(R™))™ such that
v — ol s @ivrr) <e1-

Note that function ¢ may not have the zero (normal) trace. However, we can use results on traces

and extension operators to modify it to enforce the zero trace condition. We define,
¢=p—EVp
where E% is the extension operator discussed in Theorem 4.1.5. We have

v = @l m=aivrr) = [T = E™9) (v — @)l = aiv.zr ) < 1 — E™ vl v — @l s (aivrn ) -
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Selecting &1 = /4| — E%,|, we can bound the term above by /4. Definition of extension

operator¥ implies that ¢ is a C° function but not necessarily with a compact support, though.
Next we shift function ¢ downward and extend it to the whole space by zero.

oz, xn +0) xp <=6

bs(z' 1p) = {

0 Ty > —0.

The zero trace condition and the localization argument used in Section 4.1.4 imply that, for the
range of s € (f%, %), function ¢5 € H*(div,R™). For sufficiently small shift ¢,

|6 — b5l £rs (aiv,rm ) < i .
Note that ¢g, in general, is not a C*° function. It may also not have a compact support. We
first take care of the support. Truncating function ¢s with the standard smooth approximation x%
(different €!) of indicator function yg of ball B(0, R) (comp. proof of Theorem 4.1.1), we replace ¢4
with ¢sr that is still in space H®(div, R™) but now has a compact support contained in half-space

R”™ and, for sufficiently large radius R, it remains within the /4 distance from function ¢s.

Finally, we convolute function ¢sr with function ¥, used in Theorem 2.3.2 (yet another ¢, sorry...).

Convolution 1, x ¢sg is a C*> function and, for sufficiently small ¢,
" €
supp te * psr CR” and  ||¢sr — the * dsrl| memn) < 1
We conclude that

lv—=tbexdsr || s mn) < |v=| s mn )+ |0—Ds || s (mr ) || 05— Dsrl o (r )+ || Ps R—Ve* D5 R o (rr ) < €.

The proof seems to be perhaps somehow technical but it is quite elementary, and it recycles the already

11

familiar arguments. The key point of the reasoning above is that, for the range s € (—3, 5), functions with

zero trace can be extended by zero to a finite energy function defined on the whole space.

Exercises

Exercise 4.1.1 Prove equality (4.2) for 2 = R™. (1 point)

Exercise 4.1.2 Construct a function u such that Vu € (H*(R?))® but w ¢ H?*(R3). Hint: Work in the

frequency domain. (2 points)

Exercise 4.1.3 Show that if E' belongs to energy space (4.16) and its Fourier transform is continuous, then
E;(0) = 0. (3 points)

YSolution of the Neumann problem in half space with C'>° data on the hyperplane is a C'>° function.
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Exercise 4.1.4 Finish proof of Theorem 4.1.11, first for the case of a C*~* hypograph domain, and then

for a general C*~1* domain. (10 points)

sectionMinimum Energy Extensions and Rotated Trace for Space H (curl, 2)

As we have shown, the norms used for the trace spaces depend upon the open cover of the boundary
and the corresponding subordinate partition of unity functions. However, the corresponding trace spaces are
unique. It is no surprise perhaps then that these norms are of little practical importance. The actual, physically

meaningful norms are given by the minimum energy extensions:

Iy =m0+ U € H@), 30 =)
IHU\IIZS,%(F) = min{||V |3 @,y : V € H(div, Q), 7V = v} (4.31)
|He||\i{k%(cuﬂr’r) = min{||EH%Is(erQ) : B e H¥(curl,Q), wE = e}

The continuity and surjectivity of trace operators implies that the minimum energy extension norms are

equivalent to trace norms defined with partition of unity functions in Section 4.1 (Exercise 4.1.2).
Recall that, for a hypograph domain, trace spaces H*(I") and H *(T") form a duality pairing. It turns out

that this duality pairing is preserved for a general domain when we use the minimum energy extension norms

but only for s = 0. The first hint comes from the integration by parts formula:
(divo,u) = —(v, Vu) + (v-n,u) .
This gives us the representation of the boundary term in terms of the domain integrals:
(v-n,u) = (divv,u) + (v, Vu).
Cauchy-Schwarz inequality implies!| then,

|<v ! n7u>| < ”’UHH—S(div,Q) ||U‘HH5(grad,Q) .

Taking minimum energy extensions on the right-hand side, we get,

[(v-n,w < lo-nllg-—) llull ze )

where the norms on the right-hand side are now the minimum energy extension norms. The inequality implies
that

< .
y S llvenlly, and (4.32)

_s—%(l") mul”(HH—%(F))’ S |HUH|H_§+%(F) .

ol sy
The reverse inequalities hold only with multiplicative constants, Due to the equivalence of the minimum
energy extension norms and trace norms defined with partition of unity functions, it is sufficient to prove it

for the latter norms. Critical is the following property of Hilbert spaces.

IProvided we equip H~5(Q) = H~5(Q), for s > 0, with the dual norm to H-norm.
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LEMMA 4.1.6

Let V be a Hilbert space and
V=Wielhe.. .oV,

be an orthogonal decomposition of V, i.e.,

n

n
[ = lloll* wherev="> v;,v; €V;,j=1,...,n.
- =

Then, for anyl € V',

1(v)]? " I(vy)|?
HZHV’ — ‘( )| :Z sup |(])|

vlolE T &y, Tol?

PROOF See Exercise 4.1.3. |

Let v,, = v - n denote the normal trace. We have,

B [0 (/99 9 S L)

7
ueH” ” HH5+2(F) weH 3 () Zj:l ||¢j“”25+%(rj)
J

- (om0 ?
S P,

_ Z Sup |<7/’J”m >|2

e T

T s Sl < Clu )
= CQ N Tl Py = T a @)

] 1u€HS+ H“'+2(I‘

|
~1]

(Lemma 4.1.6)

=7z Z lejvn ||2757% ) (duality of norms on the hypograph boundary)
— J

_ 2
= @H%H 757%@)
We can conclude thus that, modulo a multiplicative constant, the minimum energy extension norm is bounded

by the dual norm. Same result holds for trace u € H*tz (T').

For s = 0, however, the two minimum energy extension norms are dual to each other. Indeed, consider the

dual norm to the minimum energy extension norm in Hz (),

O U L
n 1 , -
(Hz(I)) vl () lull 2 ()  UEH(gnd,Q) U & (graa,02)
where the second equality is an immediate consequence of the minimum energy extension norm for trace
space H 2 (T'). Riesz Representation Theorem implies that the dual norm is equal to the H (grad, ) norm of

the solution U of the variational problem:

(VU,V®) + (U, ®) = (v-n,d) ® € H(grad,Q)
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or, equivalently, the Neumann problem:
—div(VU)4+U =0 inQ
{ ‘g—g:VU-n:vn onI'.
Taking gradient of the first equation, we realize that V = VU satisfies the boundary-value problem (BVP):
—V(divV)+V =0 in Q
{ V.n=v, onl.
Vice-versa, by taking divergence of the grad-div equation for V', we realize that U = div V satisfies the first
BVP. The two problems are thus equivalent to each other and ||U|| z7(graa,0) = [|V'|| m(aiv,02)- The point of the
story is that the dual norm leads to a Neumann BVP for Riesz Representation function U which in turn is

equivalent to the Dirichlet BVP for V. Clearly, V' is the minimum energy extension of v, and ||V | g(aiv,0)

equals the dual norm ||vn||( Note that we had already exploited this relation between functions U

1 .
H2(T))
and V in our construction of the extension operator for trace space H ~%(R"1).

REMARK 4.1.9 An interpolation argument implies that reverse inequalities to (4.32) hold with

multiplicative constants converging to one, as s — 0, see Exercise 4.1.4. |

Now comes a big point. If operators grad and div, and the corresponding traces and trace spaces are in
duality,

where is a duality cousin of operator curl, energy space H*(curl, §2), and trace space H =3 (curlr, r)?

The answer comes again from the integration by parts formula. Let s € (f%, %) and B, := wE, E €

H~*(curl, Q). Integration by parts formula:
nx By, Fy) =(VXEF)—(E,VXF) (4.33)

identifies n x E; as a linear and continuous functional defined on H*~ = (curlp, I'), comp. Exercise 4.1.5. For

s = 0, the dual norm of n x E},

|<’fL X Et,Ft>|
In X Eell (gr-1/2(curtp 1)y = sup
( (corte. 1)) Frer-1/2(cure,r) 12 172 (cuntp )
|(n x Ey, )|

= sup
FeH (curl,Q) ||Ft HH(curl,Q)

equals the H (curl, Q) norm of solution F’ of the Neumann problem (Riesz operator argument):
Vx(VxF)+ F=0
(4.34)
nx (VxF)=nxE,.
Function H = V x F solves the Dirichlet problem:
{VX(VXH)+H=0

nx H=nx E;.



138 Lecture Notes on ENERGY SPACES

and || H || gcun,0) = | ElH(cu,0)- As n x Hy = n x Ey is equivalent to H; = FEj, the rotation nx is
an isometry from H —3 (curlp, T) into its dual. To see that rotation n X is actually a surjection, consider an
arbitrary ¢ € (H~ 2 (curlp,T'))’ and the corresponding Neumann boundary-value problem (4.34) with ¢ in
place of n x E}. Take then E = V x H where H is the solution of the Neumann problem to get n X E; = .
By the same arguments as for the grad-div pair, the rotation is no longer an isometry for s # 0, but it is

continuous with norm converging to one as s — 0.

The dual space (H*~ = (curlp,T'))’ is denoted with symbol H "2 (divp,T). Indeed, in the case of half
space Q = R? ,
divp(n x E) = —curlpE .

The surface divr operator can be extended to a smooth boundary with the [ —s=3 (divp, T") defined inde-
pendently and only a-posteriori identified with the dual of trace space H s=3 (curlp, T')). The point of this
presentation has been to show that there is no need for a separate construction of such a space as its elements
can be simply identified with the rotated traces of space H 53 (curlp, T)). This applies to the discretization

of rotated traces as well.

Exercises

Exercise 4.1.1 Justify the use of minimum in the definition of minimum energy extension norms (4.31). (5

points)

Exercise 4.1.2 Show that minimum energy extension norms (4.31) are equivalent to the norms defined with
partition of unity functions in Section 4.1. Hint: Use the fact that both trace operator and its right

inverse are continuous. (3 points)
Exercise 4.1.3 Prove Lemma 4.1.6. (3 points)

Exercise 4.1.4 Use the real interpolation theory and results discussed in this section to show that there exist

constants C', Cy > 1 such that

S S
onlyemd ey < G5 Monl vy oy a0 Bl oy < G Bl

H*5(r ()’ Ho 3@y

for any s € [—sq, S0, S0 < % (2 points)

Exercise 4.1.5 Let ¢ € H*~z (curlp, I'), and & € H*(curl, 2) be an extension of ¢. Let E € H~*(curl, ).
Consider (4.33):
(nx E,¢) = (VX E ®)—(E,V x)

with 7@ = ¢. Demonstrate that the right-hand side is invariant under the change of extension and,
therefore, defines a linear functional defined on H*~ 2 (curly, I'). Show that the functional is continu-

ous. Hint: You will need Theorem 4.1.12. (3 points)
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