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Exam 3. Monday, Apr 30, 2012

1. (a) State the Sturm-Liouville theorem (5 points).

Consider differential operator,
Ly = —(a(x)y") + c(x)y, =€ (0,1)

accompanied with a combination of any of the boundary conditions:

e Dirichlet BC:

y=0
o Neumann BC:
y' =0
e Robin (Cauchy) BC:
ay+ By =0
o Finite energy condition:
y, 1/ finite

or the periodic case:

The operator is then self-adjoint and possesses a sequence of real eigenvalues
A <A <. <Ay >0

with the corresponding eigenvectors 3, providing an L?-orthogonal basis for space L2(0,1).
(b) Consider the problem:
y' + My =0, y(0)=1y(0), y(1)=0
Is this a Sturm—Liouville eigenproblem ? Explain (5 points).

Yes, itis. Ly = —y”, we have Robin BC at x = 0 and Dirichlet BC at x = 1.



(c) Determine the eigenfunctions for the problem deriving an appropriate transcendental equation

for the eigenvalues. (15 points).

The operator —y” with the BCs is positive-definite, so we can assume A = k2, k > 0. This gives
y = Asinkx + Bcoskx

Due to the simpler BC at z = 0, it is convenient to shift the origin to x = 1 and consider the

general solution in the form:
y = Asink(z — 1)+ Bcosk(x — 1)
Then BC y(1) = 0 implies B = 0. BC y(0) = /(0) implies condition:
—sink = kcosk

cosk must be different from zero. Indeed, if cos k = 0 then sin k # 0! and the equation cannot

be satisfied. Dividing by cos k, we get a transcendental equation,
tank = —k
with a sequence of roots k,, € (nm,nm 4 5),n = 1,.... The corresponding eigenvectors,
Yn =sink,(x —1), n=1,...

form an L2-orthogonal basis in L?(0, 1), i.e. any function f € L?(0,1) can be expanded into

the (non-standard) Fourier series:
o0
f(z) = Z frosink,(x —1)
n=1

where

1
/0 f(x)sink,(z —1) dzx
fn =

1
[/ sin? ky (z — 1) da]*/?
0

ISine and cosine functions never vanish simultaneously.



2.

(a)

(b)

(©)

Consider wave equation in three space dimensions,

1 0%u
Au=——
YT 20
Represent the equation in standard spherical coordinates (5 points.)

A good starting point is the formula for the gradient,

A\v4 _g +1@ _}.#%
“_are’“ raw% Tsinwﬁﬂee

Integration by parts (jacobian = 2 sin 1)) yields then

A 1 8(28u n 1 a(s, 77Z)8u)+ 1 0%u  10%u
U= ——[r"—)+ 5———6nvv—)+ —5—%5 = 5 =5
r20r" or’  rZsiny Oy O’ r2sin?q 002 a2 Ot?
Assume that the solution is point-symmetric (depends only upon radial coordinate  and time t).
Provide a classification for second order PDEs and classify the equation (5 points).
Equation

Atgy + 2Bugy + Cuyy + lower order terms = f

is elliptic if d = AC — B? > 0, parabolic if d = 0 and hyperbolic if d < 0. In our case
A =1,C = 1/d?, so the equation is hyperbolic.

Demonstrate that the equation may be reexpressed as

0?2 1 62
52 (1) = 555w

and use the d’ Alembert method or any other possible approach to derive the general solution to
the problem (15 points).

The first part is just simple algebra. Substituting v = ru then, we get the 1D wave equation for
which the d’ Alembert solution is

v(z) = f(xr —at) + g(x + at)
where f, g are arbitrary functions. This yields

u(r) = ~[f(r — at) + g(r + at)]



(a) Solve the following 2D boundary-value problem (25 points).

Recalling Laplacian in polar coordinates,

1 1
—Au = ;(ruT)T — 3l

we seek the solution in the form:

u=v(r,0)+ 50
trading the non-homogeneous BC in w at = «, for a non-homogeneous BC in v at r = a,
v(a,f) = =50
Seeking v = R(r)T(t), we get
r(rR’)’ Q"

2
7 6_)\_14: >0, k>0

Notice that we have obtained a Sturm-Liouville problem in € and that operator —©” with Dirich-

let BCs is positive-definite, so we can assume that A is real and positive. Solving for ©, we get,

©,, = cos kb, k‘—kn——+n—,n—12
2 a

which gives now the Cauchy-Euler equation for R(r),

r(rR) + k*R =0

with
R(r) = r**
Rejecting the singular solution, we get by superposition,
oo
= ZAnrk" coskpl, k,=— —i—n—, n=12 ...
= 2a

Constants A, are determined from the boundary condition at r = a,

Z Ay akr cos k8 = —50
n=1

4 —k:nfo —50) cos k0
" [fy cos? kn0]'/2




(a)

(b)

(©)

Define characteristics for a single first order equation,
a(x,y, 2)ug + b(x,y, 2)uy + c(z,y, 2)u; =0

and discuss the relation with the concept of prime integrals for a system of ODEs. (5 points).

Characteristics are curves that satisfy the differential equation:

dx dy dz

a(z,y,z)  b(z,y,2) c(z,y,2)

or, in a parametric form,

dx dy b dz
— =qQ _— — = C

a7 dt 7 dt

Solution of the original equation is constant along the characteristics, i.e. it is its prime integral.

Determine the general solution of the equation:

Ug + Uy +3u, =0

(10 points).
The equations for the characteristics yield,
d—x = @ = y=x+c
1 1
and de dz
T3 — z=3r+d

Consequently, y — x and z — 3x are two LI prime integrals, and the general solution of the
original equation sis given by,

u= f(y—x,z—3x)
where f is an arbitrary function.

Determine the solution of the equation above in the first octant: z,y, z > 0 with initial condi-
tions:

u(z,y,0) = zy*; u(z,0,2) = 2% u(0,y,2) = y2°

(10 points).

It is easier to work with the parametric representation of the characteristic
r=t+A, y=t+B, z=3t+C
We can scale parameter ¢ to depend upon a point of interest xg, Yo, 2o in such a way that,

2(0) =z, y(0) = o, 2(0) =2



This gives,

r=t+x9, yY=t+y, z=3+2
Depending upon the location of (z¢, yo, z0), the characteristics will pass through one of the
coordinate planes first, and the IC corresponding to that plane has to be used, For instance, if
xo < Yo, 20/3 then the characteristics issued at (xg, Yo, 20), will intersect plane x = 0 first, at
the point

Y ="Yo—To, 2= 20— 3Tp
and the value of the solution at x = 0 will be equal to the value at (zo, yo, 20),
u(z0, Y0, 20) = (Yo — 0)(20 — 370)?

Same reasoning applies to the two remaining cases. Note that the resulting solution is discontin-
uous.



