## ASE 380P 2-ANALYTICAL METHODS II

EM386L MATHEMATICAL METHODS IN APPLIED MECHANICS II CSE 386L MATHEMATICAL METHODS IN APPLIED ENGINEERING AND SCIENCES

Exam 3. Monday, Apr 30, 2012

1. (a) State the Sturm-Liouville theorem (5 points).

Consider differential operator,

$$
L y=-\left(a(x) y^{\prime}\right)^{\prime}+c(x) y, \quad x \in(0, l)
$$

accompanied with a combination of any of the boundary conditions:

- Dirichlet BC:

$$
y=0
$$

- Neumann BC:

$$
y^{\prime}=0
$$

- Robin (Cauchy) BC:

$$
\alpha y+\beta y^{\prime}=0
$$

- Finite energy condition:

$$
y, y^{\prime} \text { finite }
$$

or the periodic case:

$$
a(0)=a(l), \quad c(0)=c(l), \quad y(0)=y(l), \quad y^{\prime}(0)=y^{\prime}(l)
$$

The operator is then self-adjoint and possesses a sequence of real eigenvalues

$$
\lambda_{1}<\lambda_{2}<\ldots<\lambda_{n} \rightarrow \infty
$$

with the corresponding eigenvectors $y_{n}$ providing an $L^{2}$-orthogonal basis for space $L^{2}(0, l)$.
(b) Consider the problem:

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)=y^{\prime}(0), y(1)=0
$$

Is this a Sturm-Liouville eigenproblem ? Explain (5 points).
Yes, it is. $L y=-y^{\prime \prime}$, we have Robin BC at $x=0$ and Dirichlet BC at $x=1$.
(c) Determine the eigenfunctions for the problem deriving an appropriate transcendental equation for the eigenvalues. ( 15 points).
The operator $-y^{\prime \prime}$ with the BCs is positive-definite, so we can assume $\lambda=k^{2}, k>0$. This gives

$$
y=A \sin k x+B \cos k x
$$

Due to the simpler BC at $x=0$, it is convenient to shift the origin to $x=1$ and consider the general solution in the form:

$$
y=A \sin k(x-1)+B \cos k(x-1)
$$

Then $\mathrm{BC} y(1)=0$ implies $B=0$. $\mathrm{BC} y(0)=y^{\prime}(0)$ implies condition:

$$
-\sin k=k \cos k
$$

$\cos k$ must be different from zero. Indeed, if $\cos k=0$ then $\sin k \neq 0^{1}$ and the equation cannot be satisfied. Dividing by $\cos k$, we get a transcendental equation,

$$
\tan k=-k
$$

with a sequence of roots $k_{n} \in\left(n \pi, n \pi+\frac{\pi}{2}\right), n=1, \ldots$. The corresponding eigenvectors,

$$
y_{n}=\sin k_{n}(x-1), \quad n=1, \ldots
$$

form an $L^{2}$-orthogonal basis in $L^{2}(0,1)$, i.e. any function $f \in L^{2}(0,1)$ can be expanded into the (non-standard) Fourier series:

$$
f(x)=\sum_{n=1}^{\infty} f_{n} \sin k_{n}(x-1)
$$

where

$$
f_{n}=\frac{\int_{0}^{1} f(x) \sin k_{n}(x-1) d x}{\left[\int_{0}^{1} \sin ^{2} k_{n}(x-1) d x\right]^{1 / 2}}
$$

[^0]2. (a) Consider wave equation in three space dimensions,
$$
\Delta u=\frac{1}{a^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

Represent the equation in standard spherical coordinates ( 5 points.)
A good starting point is the formula for the gradient,

$$
\boldsymbol{\nabla} u=\frac{\partial}{\partial r} \boldsymbol{e}_{r}+\frac{1}{r} \frac{\partial u}{\partial \psi} \boldsymbol{e}_{\psi}+\frac{1}{r \sin \psi} \frac{\partial u}{\partial \theta} \boldsymbol{e}_{\theta}
$$

Integration by parts (jacobian $\left.=r^{2} \sin \psi\right)$ yields then

$$
\Delta u=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2} \sin \psi} \frac{\partial}{\partial \psi}\left(\sin \psi \frac{\partial u}{\partial \psi}\right)+\frac{1}{r^{2} \sin ^{2} \psi} \frac{\partial^{2} u}{\partial \theta^{2}}=\frac{1}{a^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

(b) Assume that the solution is point-symmetric (depends only upon radial coordinate $r$ and time $t$ ). Provide a classification for second order PDEs and classify the equation (5 points).
Equation

$$
A u_{x x}+2 B u_{x y}+C u_{y y}+\text { lower order terms }=f
$$

is elliptic if $d=A C-B^{2}>0$, parabolic if $d=0$ and hyperbolic if $d<0$. In our case $A=1, C=1 / a^{2}$, so the equation is hyperbolic.
(c) Demonstrate that the equation may be reexpressed as

$$
\frac{\partial^{2}}{\partial r^{2}}(r u)=\frac{1}{a^{2}} \frac{\partial^{2}}{\partial t^{2}}(r u)
$$

and use the d'Alembert method or any other possible approach to derive the general solution to the problem (15 points).
The first part is just simple algebra. Substituting $v=r u$ then, we get the 1 D wave equation for which the d'Alembert solution is

$$
v(x)=f(x-a t)+g(x+a t)
$$

where $f, g$ are arbitrary functions. This yields

$$
u(r)=\frac{1}{r}[f(r-a t)+g(r+a t)]
$$

3. (a) Solve the following 2D boundary-value problem ( 25 points).


Recalling Laplacian in polar coordinates,

$$
-\Delta u=\frac{1}{r}\left(r u_{r}\right)_{r}-\frac{1}{r^{2}} u_{\theta \theta}
$$

we seek the solution in the form:

$$
u=v(r, \theta)+50
$$

trading the non-homogeneous BC in $u$ at $\theta=\alpha$, for a non-homogeneous BC in $v$ at $r=a$,

$$
v(a, \theta)=-50
$$

Seeking $v=R(r) T(t)$, we get

$$
\frac{r\left(r R^{\prime}\right)^{\prime}}{R}=-\frac{\Theta^{\prime \prime}}{\Theta}=\lambda=k^{2}>0, \quad k>0
$$

Notice that we have obtained a Sturm-Liouville problem in $\theta$ and that operator $-\Theta^{\prime \prime}$ with Dirichlet BCs is positive-definite, so we can assume that $\lambda$ is real and positive. Solving for $\Theta$, we get,

$$
\Theta_{n}=\cos k \theta, \quad k=k_{n}=\frac{\pi}{2 \alpha}+n \frac{\pi}{\alpha}, n=1,2, \ldots
$$

which gives now the Cauchy-Euler equation for $R(r)$,

$$
r\left(r R^{\prime}\right)^{\prime}+k^{2} R=0
$$

with

$$
R(r)=r^{ \pm k}
$$

Rejecting the singular solution, we get by superposition,

$$
v(r, \theta)=\sum_{n=1}^{\infty} A_{n} r^{k_{n}} \cos k_{n} \theta, \quad k_{n}=\frac{\pi}{2 \alpha}+n \frac{\pi}{\alpha}, n=1,2, \ldots
$$

Constants $A_{n}$ are determined from the boundary condition at $r=a$,

$$
\begin{gathered}
\sum_{n=1}^{\infty} A_{n} a^{k_{n}} \cos k_{n} \theta=-50 \\
A_{n}=a^{-k_{n}} \frac{\int_{0}^{\alpha}(-50) \cos k_{n} \theta}{\left[\int_{0}^{\alpha} \cos ^{2} k_{n} \theta\right]^{1 / 2}}
\end{gathered}
$$

4. (a) Define characteristics for a single first order equation,

$$
a(x, y, z) u_{x}+b(x, y, z) u_{y}+c(x, y, z) u_{z}=0
$$

and discuss the relation with the concept of prime integrals for a system of ODEs. (5 points).
Characteristics are curves that satisfy the differential equation:

$$
\frac{d x}{a(x, y, z)}=\frac{d y}{b(x, y, z)}=\frac{d z}{c(x, y, z)}
$$

or, in a parametric form,

$$
\frac{d x}{d t}=a, \quad \frac{d y}{d t}=b, \quad \frac{d z}{d t}=c
$$

Solution of the original equation is constant along the characteristics, i.e. it is its prime integral.
(b) Determine the general solution of the equation:

$$
u_{x}+u_{y}+3 u_{z}=0
$$

(10 points).
The equations for the characteristics yield,

$$
\frac{d x}{1}=\frac{d y}{1} \Longrightarrow y=x+c
$$

and

$$
\frac{d x}{1}=\frac{d z}{3} \Longrightarrow z=3 x+d
$$

Consequently, $y-x$ and $z-3 x$ are two LI prime integrals, and the general solution of the original equation sis given by,

$$
u=f(y-x, z-3 x)
$$

where $f$ is an arbitrary function.
(c) Determine the solution of the equation above in the first octant: $x, y, z>0$ with initial conditions:

$$
u(x, y, 0)=x y^{2} ; u(x, 0, z)=z x^{2} ; u(0, y, z)=y z^{2}
$$

(10 points).
It is easier to work with the parametric representation of the characteristic

$$
x=t+A, \quad y=t+B, \quad z=3 t+C
$$

We can scale parameter $t$ to depend upon a point of interest $x_{0}, y_{0}, z_{0}$ in such a way that,

$$
x(0)=x_{0}, \quad y(0)=y_{0}, \quad z(0)=z_{0}
$$

This gives,

$$
x=t+x_{0}, \quad y=t+y_{0}, \quad z=3 t+z_{0}
$$

Depending upon the location of $\left(x_{0}, y_{0}, z_{0}\right)$, the characteristics will pass through one of the coordinate planes first, and the IC corresponding to that plane has to be used, For instance, if $x_{0}<y_{0}, z_{0} / 3$ then the characteristics issued at $\left(x_{0}, y_{0}, z_{0}\right)$, will intersect plane $x=0$ first, at the point

$$
y=y_{0}-x_{0}, \quad z=z_{0}-3 x_{0}
$$

and the value of the solution at $x=0$ will be equal to the value at $\left(x_{0}, y_{0}, z_{0}\right)$,

$$
u\left(x_{0}, y_{0}, z_{0}\right)=\left(y_{0}-x_{0}\right)\left(z_{0}-3 x_{0}\right)^{2}
$$

Same reasoning applies to the two remaining cases. Note that the resulting solution is discontinuous.


[^0]:    ${ }^{1}$ Sine and cosine functions never vanish simultaneously.

