CES 389C/EM 397 INTRODUCTION TO MATHEMATICAL MODELING IN SCIENCE AND ENGINEERING
 Exam 1, Oct 21, 2012

1. Define the following notions and provide a non-trivial example ($2+2$ points each).

- Lagrangian (in analytical mechanics),
- Legendre transformation,
- Green - St. Venant strain tensor
- velocity gradient
- second Piola-Kirchhoff stress tensor

Please clearly distinguish between material and spatial coordinates.
2. Use Principles of Linear and Angular Momentum and formula for the velocities of points belonging to a rigid body (you need not derive them) to derive the rigid body equations of motion (15 points).
3. Derive the formulas for the velocity of a particle in a deformable body in terms of its displacement in both Lagrange and Euler coordinates. Illustrate the formulas with an example (15 points).
4. Derive equations of motion for a continuum in both Euler (Cauchy stress tensor) and Lagrange (PiolaKirchhoff stress tensor) (15 points).
5. Consider the "three-quarter" homogeneous thin plate with radius R and mass m shown in Fig. 1. Compute the 3D inertia tensor at point A. Determine the direction through A for which the corresponding moment of inertia is maximal and determine its value (20 points).

Figure 1: A semicircular plate.

We will use the standard polar coordinates to parametrize the domain

$$
\begin{cases}x=r \cos \theta & 0<r<R \\ y=r \sin \theta & \frac{\pi}{2}<\theta<2 \pi\end{cases}
$$

Area:

$$
A=\int_{r}^{R} \int_{\pi / 2}^{2 \pi} r d r d \theta=\int_{0}^{R} r d r \int_{\pi / 2}^{2 \pi} d \theta=\frac{R^{2}}{2} \frac{3 \pi}{2}=\frac{3}{4} \pi R^{2}
$$

Density:

$$
\rho=\frac{m}{A}=\frac{4}{3} \frac{m}{\pi R^{2}}
$$

Moment of inertia with respect to axis x for a homogeneous thin body (variation in z neglected):

$$
I_{x}=\int_{A} \rho\left(y^{2}+z^{2}\right) d A=\int_{A} \rho y^{2} d A=\rho \int_{A} y^{2} d A
$$

and
$\int_{A} y^{2} d A=\int_{0}^{R} \int_{\pi / 2}^{2 \pi} r^{2} \sin ^{2} \theta r d r d \theta=\int_{0}^{R} r^{3} d r \int_{\pi / 2}^{2 \pi} \sin ^{\theta} d \theta=\left.\frac{R^{4}}{4}\left(\frac{\theta}{2}+\frac{\sin 2 \theta}{4}\right)\right|_{\pi / 2} ^{2 \pi}=\frac{R^{4}}{4} \frac{3 \pi}{4}=\frac{3 \pi R^{4}}{16}$
gives

$$
I_{x}=\frac{4 m}{3 \pi R^{2}} \frac{3 \pi R^{4}}{16}=\frac{1}{4} m R^{2}
$$

(units OK). By symmetry,

$$
I_{y}=I_{x}=\frac{1}{4} m R^{2}
$$

For thin bodies,

$$
I_{z}=\int_{A} \rho\left(x^{2}+y^{2}\right) d A=\int_{A} \rho x^{2} d A+\int_{A} \rho y^{2} d A=I_{y}+I_{x}=\frac{1}{m R^{2}}
$$

Product of inertia for a homogeneous body with respect to axes x and y :

$$
I_{x y}=\rho \int_{A} x y d A
$$

and,

$$
\begin{aligned}
\int_{A} x y d A & =\int_{0}^{R} \int_{\pi / 2}^{2 \pi} r^{2} \cos \theta \sin \theta r d r d \theta=\int_{0}^{R} r^{3} d r \int_{\pi / 2}^{2 \pi} \frac{\sin 2 \theta}{2} d \theta \\
& =\left.\frac{R^{4}}{4}\left(-\frac{\cos 2 \theta}{4}\right)\right|_{\pi / 2} ^{2 \pi}=\frac{R^{4}}{4}\left(-\frac{1}{4}\right)(1+1)=-\frac{R^{4}}{8}
\end{aligned}
$$

gives

$$
I_{x y}=\frac{4}{3} \frac{m}{\pi R^{2}}\left(-\frac{R^{4}}{8}\right)=-\frac{1}{6} \frac{m R^{2}}{\pi}
$$

As products of inertia $I_{x z}=I_{y z}=0(z \approx 0)$, the whole tensor of inertia at point A is:

$$
\boldsymbol{I}_{A}=\left(\begin{array}{ccc}
\frac{1}{4} & \frac{1}{6 \pi} & 0 \\
\frac{1}{61} & \frac{1}{4} & 0 \\
0 & 0 & \frac{1}{2}
\end{array}\right) m R^{2}
$$

The form of the tensor proves that $\frac{1}{2}$ equals one of the eigenvalues with the z axis being the corresponding eigendirection. The eigenproblems reduces thus to two space dimensions (x, y) only. Invariants:

$$
I_{1}=\frac{1}{4}+\frac{1}{4}=\frac{1}{2} \quad I_{2}=\frac{1}{16}-\frac{1}{36 \pi^{2}}
$$

Charasteristic equation:

$$
\begin{gathered}
\lambda^{2}-\frac{1}{2} \lambda+\frac{1}{16}-\frac{1}{36 \pi^{2}}=0 \\
\Delta=\frac{1}{4}-4\left(\frac{1}{16}-\frac{1}{36 \pi^{2}}\right)=\frac{1}{9 \pi^{2}} \quad \sqrt{\Delta}=\frac{1}{3 \pi}
\end{gathered}
$$

Eigenvalues

$$
\lambda_{1}=\frac{1}{4}-\frac{1}{6 \pi}, \quad \lambda_{2}=\frac{1}{4}+\frac{1}{6 \pi}
$$

represent prinicipal moments of inertial with respect to corresponding eigendirections. Both of them, however, are smaller then I_{z}. In other words, I_{z} is the largest possible moment of inertia with repect to an axis passing through point A.
6. Reproduce the Coleman-Noll argument and discuss its consequences (15 points).

