CES 389C/EM 397 INTRODUCTION TO MATHEMATICAL MODELING
IN SCIENCE AND ENGINEERING
Exam 1, Oct 21, 2012

1. Define the following notions and provide a non-trivial example (2+2 points each).

e Lagrangian (in analytical mechanics),
e Legendre transformation,

e Green — St. Venant strain tensor

e velocity gradient

e second Piola-Kirchhoff stress tensor
Please clearly distinguish between material and spatial coordinates.

2. Use Principles of Linear and Angular Momentum and formula for the velocities of points belonging

to a rigid body (you need not derive them) to derive the rigid body equations of motion (15 points).

3. Derive the formulas for the velocity of a particle in a deformable body in terms of its displacement in

both Lagrange and Euler coordinates. Illustrate the formulas with an example (15 points).

4. Derive equations of motion for a continuum in both Euler (Cauchy stress tensor) and Lagrange (Piola-
Kirchhoff stress tensor) (15 points).

5. Consider the “three-quarter” homogeneous thin plate with radius R and mass m shown in Fig. 1.
Compute the 3D inertia tensor at point A. Determine the direction through A for which the corre-

sponding moment of inertia is maximal and determine its value (20 points).
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Figure 1: A semicircular plate.



We will use the standard polar coordinates to parametrize the domain
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Moment of inertia with respect to axis x for a homogeneous thin body (variation in z neglected):
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(units OK). By symmetry,

For thin bodies,
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Product of inertia for a homogeneous body with respect to axes x and y:
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As products of inertia I, = I,;, = 0 (z = 0), the whole tensor of inertia at point A is:
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The form of the tensor proves that % equals one of the eigenvalues with the z axis being the corre-

sponding eigendirection. The eigenproblems reduces thus to two space dimensions (z, y) only.
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represent prinicipal moments of inertial with respect to corresponding eigendirections. Both of them,
however, are smaller then . In other words, I, is the largest possible moment of inertia with repect

to an axis passing through point A.

6. Reproduce the Coleman—Noll argument and discuss its consequences (15 points).



