
CES 389C/EM 397 INTRODUCTION TO MATHEMATICAL MODELING
IN SCIENCE AND ENGINEERING

Exam 1, Oct 21, 2012

1. Define the following notions and provide a non-trivial example (2+2 points each).

• Lagrangian (in analytical mechanics),

• Legendre transformation,

• Green – St. Venant strain tensor

• velocity gradient

• second Piola-Kirchhoff stress tensor

Please clearly distinguish between material and spatial coordinates.

2. Use Principles of Linear and Angular Momentum and formula for the velocities of points belonging
to a rigid body (you need not derive them) to derive the rigid body equations of motion (15 points).

3. Derive the formulas for the velocity of a particle in a deformable body in terms of its displacement in
both Lagrange and Euler coordinates. Illustrate the formulas with an example (15 points).

4. Derive equations of motion for a continuum in both Euler (Cauchy stress tensor) and Lagrange (Piola-
Kirchhoff stress tensor) (15 points).

5. Consider the “three-quarter” homogeneous thin plate with radius R and mass m shown in Fig. 1.
Compute the 3D inertia tensor at point A. Determine the direction through A for which the corre-
sponding moment of inertia is maximal and determine its value (20 points).

Figure 1: A semicircular plate.



We will use the standard polar coordinates to parametrize the domain{
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y = r sin θ π
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Area:

A =

∫ R

r

∫ 2π

π/2
r drdθ =

∫ R

0
r dr

∫ 2π

π/2
dθ =

R2

2

3π

2
=

3

4
πR2

Density:

ρ =
m

A
=

4

3

m

πR2

Moment of inertia with respect to axis x for a homogeneous thin body (variation in z neglected):
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(units OK). By symmetry,
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For thin bodies,
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Product of inertia for a homogeneous body with respect to axes x and y:
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As products of inertia Ixz = Iyz = 0 (z ≈ 0), the whole tensor of inertia at point A is:
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The form of the tensor proves that 1
2 equals one of the eigenvalues with the z axis being the corre-

sponding eigendirection. The eigenproblems reduces thus to two space dimensions (x, y) only.
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Charasteristic equation:
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represent prinicipal moments of inertial with respect to corresponding eigendirections. Both of them,
however, are smaller then Iz . In other words, Iz is the largest possible moment of inertia with repect
to an axis passing through point A.

6. Reproduce the Coleman–Noll argument and discuss its consequences (15 points).


