CSE386L. MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING
Spring 22, Exam 1

1. 3D calculus. Consider cylindrical coordinates:

T =rcosf
y =rsinf
z=2z

and a cylinder: D : r < 1, |z] < 1.

e Derive formulas for the gradient and divergence in the cylindrical system of coordi-
nates.

e State Gauss Divergence Theorem.

e Verify the Gauss’ Theorem for the field:
v =re, +rley+ ze,
by computing the necessary volume and surface integrals.

(20 points)

Solution:

e The general formula for the gradient in any curvilinear system of coordinates * =

2(&)) is: ;
u .
Vu=—a’
9¢;
where a’ are the co-basis vectors. The basis vectors for cylindrical coordinates are:
ox , ox , ox
ar = 5= = (cosf,sinf,0), ay= 50 (—=rsinf,rcosf,0), a,= 5 = (0,0,1).
The system is orthogonal, so determining the co-basis vectors reduces to scaling,
1
a, =€, =>a =e, a=reg=>a’=-¢e a,=e, = a*=e,.
r

The gradient thus is:

ou 10u ou
Vu=—e, +-——ey+ —e,,
r

or 00 0z
Check quickly consistency of units for each term.



The fastest way to derive the formula for the divergence is by utilizing the integration

by parts:
/vVu = —/divvu + B.T.

Letv = v,e, + vgey + v, e,. We have,

8u 1 (3u ou B 18(7“1),) 1(%9 ov,
///vr —i—vza drdez——///(; o 7“ 20 + 9% )Tdrd&dz—i-B.T.

-~

=divV

Gauss Divergence Theorem:
Let 2 C R® be a domain (= open and connected set), and let v € C(€2). Then

/divvdx:/ v-ndS
0 a0

where m is the outward normal unit vector to 9f).

Verify the Gauss’ Theorem for the field:
v=re,+rbey+ ze,

by computing the necessary volume and surface integrals. The volume integral is:

1 2 1
/divv:/ / / (2+1+1)rdrdfdz = 4712 = 8.
0 0 -1

The integral over the lateral surface:

V,=v-€e=r=1 = /vndS:/dS:47r.
s S

The integrals over the bottom and top faces are equal since v,, = —z = 1 on the bottom
face, and v,, = 2z = 1 on the top face as well. The sum of the two integrals is thus
2712 = 2m. The theorem does not verify: 87 # 67. Reason: field v is not even
continuous over D. Drop the (discontinuous) § component and everything checks out.



2. Jordan decomposition and systems of ODEs. Consider the matrix:

1
A= 0
0

O N =
N W DN

e Determine generalized eigenvectors of matrix A and the corresponding Jordan form.

e Use the Jordan form to determine general solution for the system of ODEs:
u=Au.

(20 points)

Solution: The matrix is upper triangular, so the terms on the diagonal are the eigenvalues, we
have a single eigenvalue A = 1, and a double eigenvalue A = 2. Solving for the eigenvector
corresponding to A = 1,

01 2 T 0
(A-1DHx=| 0 1 3 z | =0 = x= (007",
001 T3 0

We can choose t = 1, getting e; = (1,0,0). Solving for eigenvectors corresponding to
A =2,

(A-2Dx=| 0 0 3 z | = | 0 = x=(t10)7.
0 00 T3 0
We have only one eigenvector. Solving for the corresponding generalized eigenvector in the
chain:
(A-2Dz=| 0 0 3 zy | = |t = z=(uu+t,-t)".
3°3
0 00 x3

We can choose t = 1, u = 1, getting e; = (1,1,0)7, e5 = (1, %, %)

By the Jordan Theorem, matrix A takes the following form in the eigenbasis.

1
0
0

S N O
N = O

Thus, seeking the solution to the system of ODEs in the eigenbasis,

xXr = C1(t)€1 + Cg(t)eg + Cg(t)eg s



we obtain the following system of equations:

C.l = C1
C'Q = 202
C'3 = Cy + 203

This leads to: ¢; = Ciel, ¢y = Coe®, c3 = (Cot + Cs)e®t and the final formula for the
solution:

1 1 1 1
) = C’let 0 + 02€2t 1 + (CQt -+ 03)€2t %
T3 0 0 %



3. A Sturm-Liouville problem. Consider the operator:
Au= —u", D(A)={ue L*0,1) :u" € L*(0,1), wu(0)=0, wu(l)—2u(1)=0}.

e Use integration by parts to show (formally) that the operator is self-adjoint.

e Show that the eigenfunctions are of the form sin \/\,z, where the eigenvalues )\, are
solutions to the transcendental equation:

tan\/X:2\/X.

e Argue that

)\n:(2n—1)2% asn — 0o.

(20 points)

Solution:

e We have,
fol( Mo dx fo u'v' dz — (u'v)|g
!/

1

provided v(0) = 0 and v(1) — 2v'(1) = 0.

e The operator is self-adjoint and, actually, it is also positive definite. We have,

/O(—u”)udx:/o (u'(x))gdx—g'\(/ll u(l)—H/(O)y\(/O/):/O (u’(m))de—%(u(l)f.

%u(l) =0

It is not obvious that the sum above must be positive. We need to utilize the BC at 0,

1 1
(u(1))? = (/ u'(s)ds)? < / (u'(s))? ds (Cauchy-Schwarz inequality at work),
0 0

SO 1 1

(—u",u) = |Ju'||* - §IU(1)I2 > §HU'H2-
Thus, if the left-hand side is zero, v’ = 0, i.e., u is a constant and, by the BC u(0) = 0,

it must be zero. Consequently, we know ahead of time that the eigenvalues are real and
positive. This leads to:

u(z) = Acos VAx 4+ Bsin VAz.



BC at z = 0 implies that A = 0. BC at x = 1 leads to the equation:
0=u(1) — 2u/(1) = B(sin VA — 2/ A cos V)

and, in turn, to:

tan\/X:2\/X.

e A picture representing both sides of the equation shows that we have an infinite se-
quence of eigenvalues. For large values of n, the intersection point of 2x with tan z
gets close to the intersection between 2z and the asymptote for the n-th branch of tan z,
i.e., the line z = (n — $). This gives,



4. This is the correct rewrite of the original problem.
Another Sturm-Liouville problem. Consider the Sturm-Liouville operator,

Au= —(av') +cu, D(A)={ue L*(—1,1) : Auc L*(—1,1), u(—~1) = u(l) = 0}

where the diffusion and reaction coefficients are even functions, i.e.,

Prove that if (A, u(z)) is an eigenpair for operator A then so is (A, u(—x)). Conclude that,
If the eigenvector is neither even nor odd, the even and odd parts of function u (%(u(m) +
u(—x)), 2 (u(z) — u(—z))) must be eigenvectors corresponding to A as well. One can search
then from the very beginning separately for even and odd eigenvectors which simplifies
greatly the algebra. The eigenspace is then at least two-dimensional. Note that, if the original
eigenvector is even (odd) to begin with, then the search for the odd (even) eigenvector will

simply fail.
(20 points)

Solution: Define: v(z) := u(—xz). The chain formula implies that

dv du d*v d*u
(1) =——(=a) and  —5(2) = ——5 (),

Consequently,

[—(av') + cv](z) = [—av” — d'v + cv)(2)

av” — d'u + cul(—x) = [—(at') + cu](—2)

[
[
Au(—x) = \v(z) .

The rest of conclusions follows.



5. Legendre polynomials. Consider the Legendre operator:
Au=—((1 - 2*)), D(A) :={uc L*(—1,1) : Auc L*(—1,1)}.

e Demonstrate (formally) that operator A is self-adjoint.

e Determine eigenpairs for the operator by seeking the eigenvectors in the form of their
Taylor expansions at z = 0. Hint: A, =n(n+1), n=0,1,2,....

(20 points)

e The boundary terms are zero since a(z) = (1 — z*) vanishes at the end points,
1 1 1
/ (—((1 = 2 )wdr = / (1 — 2V do = / u(—((1 — 2*)')) de.
—1 -1 -1

e Without loosing any generality, we can assume A = v(v + 1), v > 0. We begin by
rewriting the Legendre equation in the form more suitable for the Frobenius method,

(1 -2y — 22y +v(v+1)y=0.

Note that any x = =1 are regular singular points, and any other point zy € [ is a
regular point. We will expand around zero and seek solutions for integer values of

v =:n.
y = Z cpa® nn+ 1)y =nn+1) Z cpa®
k=0 k=0
© [e.e]
Yy = Z kepaht —2zy = -2 Z kepz®
k=1 k=1
y' = k(k —1)cpa®? = Z(k’ +2)(k + 1)cppoz” —2%y = - Z k(k — 1)cpa®
k=2 k=0 k=2
Substituting into the equation, we get the relations:
k=0 2cy + ’I’L(TZ -+ 1)00 =0 = y= _n(n;—l)CO
k=1 6cz3+ (n—1)(n+2)c; =0 = = _(n—l)ﬁ(n+2)c
n(n —k(k
E>1  (k+2)(k+1Dcpe+[n(n+1)—k(k+ 1 =0 = cm:_%%

We obtain thus two solutions corresponding to pairs ¢cp = 1,¢c4 = 0and ¢y = 0,¢1 = 1,

_n(n+1)x2+(n—2)n(n+1)(n+3)m4_
2! 4!
(n—1)n+2) y (=3)n-1)n+2)(n+4) ;

Yo =T — 3] x” + 5l Tt — ...

yi =1




Note that if n is even, the y; series at some point terminates, and y; is simply a poly-
nomial. Similarly, if n is odd, the ys series terminates. Thus, for any natural number
n, we have two solutions: a polynomial solution P,(x) and a second solution @, ()
represented with an infinite series. Functions P, (z) are the Legendre polynomials or
Legendre functions of the first kind and degree n, functions Q,,(x) are Legendre func-
tions of the second kind and degree n.



