
CSE386L MATHEMATICAL METHODS IN SCIENCE AND ENGINEERING
Spring 22, Exam 1

1. 3D calculus. Consider cylindrical coordinates:
x = r cos θ

y = r sin θ

z = z

and a cylinder: D : r < 1, |z| < 1.

• Derive formulas for the gradient and divergence in the cylindrical system of coordi-
nates.

• State Gauss Divergence Theorem.

• Verify the Gauss’ Theorem for the field:

v = rer + rθeθ + zez

by computing the necessary volume and surface integrals.

(20 points)

Solution:

• The general formula for the gradient in any curvilinear system of coordinates x =

x(ξj) is:

∇u =
∂u

∂ξj
aj

where aj are the co-basis vectors. The basis vectors for cylindrical coordinates are:

ar =
∂x

∂r
= (cos θ, sin θ, 0), aθ =

∂x

∂θ
= (−r sin θ, r cos θ, 0), az =

∂x

∂z
= (0, 0, 1) .

The system is orthogonal, so determining the co-basis vectors reduces to scaling,

ar = er ⇒ ar = er aθ = reθ ⇒ aθ =
1

r
eθ az = ez ⇒ az = ez .

The gradient thus is:

∇u =
∂u

∂r
er +

1

r

∂u

∂θ
eθ +

∂u

∂z
ez ,

Check quickly consistency of units for each term.



The fastest way to derive the formula for the divergence is by utilizing the integration
by parts: ∫

v∇u = −
∫

div vu+B.T.

Let v = vrer + vθeθ + vzez. We have,∫ ∫ ∫
vr
∂u

∂r
+

1

r
vθ
∂u

∂θ
+vz

∂u

∂z
drdθdz = −

∫ ∫ ∫ (
1

r

∂(rvr)

∂r
+

1

r

∂vθ
∂θ

+
∂vz
∂z

)
︸ ︷︷ ︸

=divv

rdrdθdz+B.T.

• Gauss Divergence Theorem:
Let Ω ⊂ IR3 be a domain (= open and connected set), and let v ∈ C1(Ω). Then∫

Ω

div v dx =

∫
∂Ω

v · n dS

where n is the outward normal unit vector to ∂Ω.

• Verify the Gauss’ Theorem for the field:

v = rer + rθeθ + zez

by computing the necessary volume and surface integrals. The volume integral is:∫
div v =

∫ 1

0

∫ 2π

0

∫ 1

−1

(2 + 1 + 1) rdrdθdz = 4π122 = 8π .

The integral over the lateral surface:

vn = v · er = r = 1 ⇒
∫
S

vn dS =

∫
S

dS = 4π .

The integrals over the bottom and top faces are equal since vn = −z = 1 on the bottom
face, and vn = z = 1 on the top face as well. The sum of the two integrals is thus
2π12 = 2π. The theorem does not verify: 8π 6= 6π. Reason: field v is not even
continuous over D. Drop the (discontinuous) θ component and everything checks out.



2. Jordan decomposition and systems of ODEs. Consider the matrix:

A =

 1 1 2
0 2 3
0 0 2

 .

• Determine generalized eigenvectors of matrix A and the corresponding Jordan form.

• Use the Jordan form to determine general solution for the system of ODEs:

u̇ = Au .

(20 points)

Solution: The matrix is upper triangular, so the terms on the diagonal are the eigenvalues, we
have a single eigenvalue λ = 1, and a double eigenvalue λ = 2. Solving for the eigenvector
corresponding to λ = 1,

(A− 1I)x =

 0 1 2
0 1 3
0 0 1

 x1

x2

x3

 =

 0
0
0

 ⇒ x = (t, 0, 0)T .

We can choose t = 1, getting e1 = (1, 0, 0)T . Solving for eigenvectors corresponding to
λ = 2,

(A− 2I)x =

 −1 1 2
0 0 3
0 0 0

 x1

x2

x3

 =

 0
0
0

 ⇒ x = (t, t, 0)T .

We have only one eigenvector. Solving for the corresponding generalized eigenvector in the
chain:

(A− 2I)x =

 −1 1 2
0 0 3
0 0 0

 x1

x2

x3

 =

 t
t
0

 ⇒ x = (u, u+
1

3
t,

1

3
t)T .

We can choose t = 1, u = 1, getting e2 = (1, 1, 0)T , e3 = (1, 4
3
, 1

3
).

By the Jordan Theorem, matrix A takes the following form in the eigenbasis. 1 0 0
0 2 1
0 0 2


Thus, seeking the solution to the system of ODEs in the eigenbasis,

x = c1(t)e1 + c2(t)e2 + c3(t)e3 ,



we obtain the following system of equations:
ċ1 = c1

ċ2 = 2c2

ċ3 = c2 + 2c3

This leads to: c1 = C1e
t, c2 = C2e

2t, c3 = (C2t + C3)e2t and the final formula for the
solution:  x1

x2

x3

 = C1e
t

 1
0
0

 + C2e
2t

 1
1
0

 + (C2t+ C3)e2t

 1
4
3
1
3

 .



3. A Sturm-Liouville problem. Consider the operator:

Au = −u′′, D(A) = {u ∈ L2(0, 1) : u′′ ∈ L2(0, 1), u(0) = 0, u(1)− 2u′(1) = 0} .

• Use integration by parts to show (formally) that the operator is self-adjoint.

• Show that the eigenfunctions are of the form sin
√
λnx, where the eigenvalues λn are

solutions to the transcendental equation:

tan
√
λ = 2

√
λ .

• Argue that

λn = (2n− 1)2π
2

4
as n→∞ .

(20 points)

Solution:

• We have,∫ 1

0
(−u′′)v dx =

∫ 1

0
u′v′ dx− (u′v)|10

=
∫ 1

0
u(−v′′) dx− (u′v)|10 + uv′|10

=
∫ 1

0
u(−v′′) dx− 1

2
u(1)v(1) + u′(0)v(0) + u(1)v′(1)

=
∫ 1

0
u(−v′′) dx− 1

2
u(1)[v(1)− 2v′(1)] + u′(0)v(0)

=
∫ 1

0
u(−v′′) dx ,

provided v(0) = 0 and v(1)− 2v′(1) = 0.

• The operator is self-adjoint and, actually, it is also positive definite. We have,∫ 1

0

(−u′′)u dx =

∫ 1

0

(u′(x))2 dx−u′(1)︸︷︷︸
= 1

2
u(1)

u(1)+u′(0)u(0)︸︷︷︸
=0

=

∫ 1

0

(u′(x))2 dx−1

2
(u(1))2 .

It is not obvious that the sum above must be positive. We need to utilize the BC at 0,

(u(1))2 = (

∫ 1

0

u′(s) ds)2 ≤
∫ 1

0

(u′(s))2 ds (Cauchy-Schwarz inequality at work),

so
(−u′′, u) = ‖u′‖2 − 1

2
|u(1)|2 ≥ 1

2
‖u′‖2 .

Thus, if the left-hand side is zero, u′ = 0, i.e., u is a constant and, by the BC u(0) = 0,
it must be zero. Consequently, we know ahead of time that the eigenvalues are real and
positive. This leads to:

u(x) = A cos
√
λx+B sin

√
λx .



BC at x = 0 implies that A = 0. BC at x = 1 leads to the equation:

0 = u(1)− 2u′(1) = B(sin
√
λ− 2

√
λ cos

√
λ)

and, in turn, to:
tan
√
λ = 2

√
λ .

• A picture representing both sides of the equation shows that we have an infinite se-
quence of eigenvalues. For large values of n, the intersection point of 2x with tanx

gets close to the intersection between 2x and the asymptote for the n-th branch of tanx,
i.e., the line x = (n− 1

2
)π. This gives,

λn ≈ (n− 1

2
)2π2 = (2n− 1)2π

2

4
.



4. This is the correct rewrite of the original problem.
Another Sturm-Liouville problem. Consider the Sturm-Liouville operator,

Au = −(au′)′ + cu, D(A) = {u ∈ L2(−l, l) : Au ∈ L2(−l, l), u(−l) = u(l) = 0}

where the diffusion and reaction coefficients are even functions, i.e.,

a(−x) = a(x), c(−x) = c(x) .

Prove that if (λ, u(x)) is an eigenpair for operator A then so is (λ, u(−x)). Conclude that,
If the eigenvector is neither even nor odd, the even and odd parts of function u (1

2
(u(x) +

u(−x)), 1
2
(u(x)−u(−x))) must be eigenvectors corresponding to λ as well. One can search

then from the very beginning separately for even and odd eigenvectors which simplifies
greatly the algebra. The eigenspace is then at least two-dimensional. Note that, if the original
eigenvector is even (odd) to begin with, then the search for the odd (even) eigenvector will
simply fail.

(20 points)

Solution: Define: v(x) := u(−x). The chain formula implies that

dv

dx
(x) = −du

dx
(−x) and

d2v

dx2
(x) = −d

2u

dx2
(−x) ,

Consequently,

[−(av′)′ + cv](x) = [−av′′ − a′v + cv](x)

= [−au′′ − a′u+ cu](−x) = [−(au′)′ + cu](−x)

= λu(−x) = λv(x) .

The rest of conclusions follows.



5. Legendre polynomials. Consider the Legendre operator:

Au = −((1− x2)u′)′, D(A) := {u ∈ L2(−1, 1) : Au ∈ L2(−1, 1)} .

• Demonstrate (formally) that operator A is self-adjoint.

• Determine eigenpairs for the operator by seeking the eigenvectors in the form of their
Taylor expansions at x = 0. Hint: λn = n(n+ 1), n = 0, 1, 2, . . ..

(20 points)

• The boundary terms are zero since a(x) = (1− x2) vanishes at the end points,∫ 1

−1

(−((1− x2)u′)′)v dx =

∫ 1

−1

((1− x2)u′v′ dx =

∫ 1

−1

u(−((1− x2)v′)′) dx .

• Without loosing any generality, we can assume λ = ν(ν + 1), ν ≥ 0. We begin by
rewriting the Legendre equation in the form more suitable for the Frobenius method,

(1− x2)y′′ − 2xy′ + ν(ν + 1)y = 0 .

Note that any x = ±1 are regular singular points, and any other point x0 ∈ I is a
regular point. We will expand around zero and seek solutions for integer values of
ν =: n.

y =
∞∑
k=0

ckx
k n(n+ 1)y = n(n+ 1)

∞∑
k=0

ckx
k

y′ =
∞∑
k=1

kckx
k−1 −2xy′ = −2

∞∑
k=1

kckx
k

y′′ =
∞∑
k=2

k(k − 1)ckx
k−2 =

∞∑
k=0

(k + 2)(k + 1)ck+2x
k −x2y′′ = −

∞∑
k=2

k(k − 1)ckx
k

Substituting into the equation, we get the relations:

k = 0 2c2 + n(n+ 1)c0 = 0 ⇒ c2 = −n(n+1)
2

c0

k = 1 6c3 + (n− 1)(n+ 2)c1 = 0 ⇒ c3 = − (n−1)(n+2)
6

c1

k > 1 (k + 2)(k + 1)ck+2 + [n(n+ 1)− k(k + 1)]ck = 0 ⇒ ck+2 = −n(n+1)−k(k+1)
(k+2)(k+1)

ck .

We obtain thus two solutions corresponding to pairs c0 = 1, c1 = 0 and c0 = 0, c1 = 1,

y1 = 1− n(n+ 1)

2!
x2 +

(n− 2)n(n+ 1)(n+ 3)

4!
x4 − . . .

y2 = x− (n− 1)(n+ 2)

3!
x3 +

(n− 3)(n− 1)(n+ 2)(n+ 4)

5!
x5 − . . . .



Note that if n is even, the y1 series at some point terminates, and y1 is simply a poly-
nomial. Similarly, if n is odd, the y2 series terminates. Thus, for any natural number
n, we have two solutions: a polynomial solution Pn(x) and a second solution Qn(x)

represented with an infinite series. Functions Pn(x) are the Legendre polynomials or
Legendre functions of the first kind and degree n, functions Qn(x) are Legendre func-
tions of the second kind and degree n.


