
CSE386C
METHODS OF APPLIED MATHEMATICS

Fall 2019, Final Exam, 9:00-noon, Fri, Dec 13, ACES 6.304

1. Let T be a compact operator from a Hilbert space U into a Hilbert space V .

(a) Define the notion of compact operators.

(b) Show that T ∗T and TT ∗ are compact, self-adjoint, positive semi-definite operators
from U ( V , resp.) into itself.

(c) Prove that all eigenvalues of a self-adjoint operator are real.

(d) Prove that T ∗T and TT ∗ have identical non-negative eigenvalues and derive a relation
between the corresponding eigenspaces.

(25 points)

(a) See the book

(b) Composition of a compact and continuous operator (in any order) is compact. We have,

(T ∗Tu, u)U = (Tu, Tu)V︸ ︷︷ ︸
≥0

= (u, T ∗Tu)

and the same argument holds for TT ∗.

(c) Let λ 6= 0 be an eigenvalue of a self-adjoint operator A from a Hilbert space U into
itself, and u the corresponding eigenvector. We have,

λ(u, u) = (λu, u) = (Au, u) = (u,Au) = (u, λu) = λ̄(u, u) .

Hence
(λ− λ̄)(u, u) = 0 ⇒ λ− λ̄ = 0 ⇒ λ ∈ IR .

(d) Let (λ, u) be an eigenpair for T ∗T , λ 6= 0,

T ∗Tu = λu .

Apply T to both sides of the equation to get,

TT ∗ Tu = λTu



which proves that (λ, Tu) is an eigenpair for TT ∗. Converssely, if (λ, v) is an eigenpair
for TT ∗ then (λ, T ∗v) is an eigenpair for T ∗T . Let

Uλ := N (λ− T ∗T ), Vλ := N (λ− TT ∗)

be the eigenspaces corresponding to λ. The first property above proves that T sets Uλ
into Vλ,

T (Uλ) ⊂ Vλ .

Let v ∈ Vλ, i.e.
TT ∗v = λv ⇒ v = T (λ−1T ∗v) ,

i.e. there exists an u ∈ Uλ, namely, u = λ−1T ∗v such that v = Tu. In other words,

T (Uλ) = Vλ .

By the same argument,
T ∗(Vλ) = Uλ .

Finally,
T ∗Tu = 0 ⇒ T ∗v = 0 for v = Tu ⇒ TT ∗v = 0 .

i.e. T (N (T ∗T )) ⊂ N (TT ∗). Similarly, T ∗(N (TT ∗)) ⊂ N (T ∗T ).
Note that N (T ∗T ) = N (T ) and N (TT ∗) = N (T ∗) .



2. (a) Define discrete, residual and continuous spectrum for an operator A : U ⊃ D(A)→ U

where U is a Hilbert space.

(b) Determine spectrum of operator A where

U = L2(IR) D(A) = H1(IR) Au =
du

dx
+ u

Hint: Use Fourier transform.

(25 points)

This is a slight modification of the example discussed in the book for Au = u′. Direct
computations using Fourier transform reveal that there is neither point nor residual spectrum.

The continuous spectrum consists of the line λ = 1 + iξ, ξ ∈ IR.



3. Consider a first order operator A in L2(0, 1),

D(A) = {u ∈ H1(0, 1) : u(0) = u(1) = 0} Au = u′ − 2u

where the derivative is understood in the sense of distributions.

(a) Define a closed operator and prove that operator A is closed. You may use the fact that
pointwise value u(x), x ∈ [0, 1] of u ∈ H1(0, 1) represents a continuous functional.

(b) Determine the adjoint operator A∗ and its null space.

(c) Prove that operator A is bounded below in L2(0, 1).

(d) Discuss the well posedness of the problem:

u ∈ D(A), Au = f

with an appropriate right-hand side f .

(25 points)

See book for definitions.

Answers:

(a) Let un ∈ D(A) and (un, Aun) → (u, v), i.e. un → u, Aun → v, all convergence
understood in the L2-sense. Consequently, u′n → v + 2u. By definition,∫

u′nφ = −
∫
unφ

′ ∀φ ∈ C∞0 (0, 1)

Passing to the limit on both sides, we get∫
(v + 2u)φ = −

∫
uφ′ ∀φ ∈ C∞0 (0, 1)

which proves that v + 2u = u′ in the sense of distributions.

Thus u′ = v + 2u ∈ L2(0, 1) and, therefore, un → u also in H1(0, 1) which in turn
implies that u(0) = u(1) = 0. Consequently, u ∈ D(A), and v = u′ − 2u = Au as
required.

(b) Integration by part argument gives:

D(A∗) = H1(0, 1) A∗v = −v′ − 2v

N (A∗) = IRe−2x := {ce−2x : c ∈ IR}



(c) We have,

‖Au‖2 =

∫ 1

0

(u′−2u)2 =

∫ 1

0

(u′)2−4

∫ 1

0

uu′+4

∫ 1

0

u2 =

∫ 1

0

(u′)24

∫ 1

0

u2 ≥ (CP + 4)︸ ︷︷ ︸
=:α2

‖u‖2

where CP is the Poincarè constant. Note that∫ 1

0

2uu′ =

∫ 1

0

(u2)′ = u2|10 = 0 for u ∈ D(A) .

(d) For every right hand side f ∈ L2(0, 1) that satisfies the compatibility condition:∫ 1

0

f(x)e−2x dx = 0 ,

the problem has a unique solution that depends continuously upon the data

‖u‖ ≤ α−1‖f‖

where α is the boundedness below constant.



4. Consider the “ultraweak” variational formulation of the previous problem,
u ∈ U := L2(0, 1)∫ 1

0

uA∗v dx︸ ︷︷ ︸
b(u,v)

=

∫ 1

0

fv dx︸ ︷︷ ︸
l(v)

∀v ∈ V := H1(0, 1)

where A∗ denotes the formal adjoint of A, A∗v = −v′ − 2v.

(a) Define operator B : U → V ′ and its conjugate corresponding to the bilinear form
b(u, v).

(b) Use Babuška-Nečas Theorem and results from the previous problem to investigate the
well-posedeness of the problem.

Hint: Can you relate the inf-sup constant for this problem with the boundedness below
(Friedrichs) constant of operator A from the previous problem ? (25 points)

There are two operators associated with the bilinear form:

B : L2(0, 1)→ (H1(0, 1))
′

B′ : H1(0, 1)→ L2(0, 1) ∼ (L2(0, 1))
′

Due to reflexivity of Hilbert space, operator B′ can be identified with the transpose of B.
The whole point of this exercise is to realize that transpose B′ coincides with the adjoint A∗

discussed in the previous problem. Direct application of Cauchy-Schwartz inequality shows
that both forms: b(u, v) and l(v) are continuous. Finally, the Closed Range Theorem for
continuous operators implies that

γ = inf
u∈L2

sup
v∈H1

|
∫ 1

0
u(−v′ − 2v)|
‖u‖L2 ‖v‖H1

= inf
[v]∈H1/N (B′)

sup
u∈L2

|
∫ 1

0
u(−v′ − 2v)|

‖u‖L2 ‖[v]‖H1/N (B′)
.

Since B′ = A∗, the right-hand side coincides with the boundedness below (Friedrichs) con-
stant for the quotient operator corresponding to A∗. But, by the Closed Range Theorem for
closed operators, this constant is equal exactly to constant α discussed in the previous prob-
lem. Consequently, there is no need to prove anything new. Application of Babuška-Nečas
Theorem implies that, for any right-hand side f satisfying the compatibility condition, we
have a unique solution that depends continuously upon the data. The subtle difference be-
tween the strong and (ultraweak) variational formulations is the regularity. The ultraweak
formulation may accommodate “distributional loads”:

l ∈
(
H1(0, 1)

)′
with the continuous dependence upon data modified accordingly:

‖u‖ ≤ γ−1‖l‖(H1(0,1))′ .


