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Fall 2014, Exam 3

1. Define the following notions and provide a non-trivial example (2+2 points each):

• (topological) transpose of a continuous operator,

• (topological) transpose of a closed operator,

• orthogonal complement of a subspace in a Hilber space,

• orthonormal basis in a Hilbert space,

• Riesz operator.

See the book.

2. State and prove three out of the four theorems (10 points each):

• Properties of the transpose of a continuous operator (Prop. 5.16.1)

• Characterization of injective operators with closed range (Thm. 5.17.1)

• Completness of qoutient Banach space (Lemma 5.17.1)

• The Orthogonal Decomposition Theorem (Thm. 6.2.1)

See the book.

3. Let X be a Banach space, and P : X → X be a continuous linear projection, i.e., P 2 = P .
Prove that the range of P is closed. (10 points)

Let un ∈ R(P ), un → u. We need to show that u ∈ R(P ) as well. Let vn ∈ X be such that
un = Pvn. Then Pun = P 2vn = Pvn = un → Pu. By the uniqueness of the limit, it must
be u = Pu. Consequently, u is the image of itself and must be in the range of the projection.

4. Let {en}∞n=1 be an orthonormal family in a Hilbert space V . Prove that the following condi-
tions are equivalent to each other.

(i) {en}∞n=1 is an orthonormal basis, i.e., it is maximal.

(ii) u =
∞∑
n=1

(u, en) en ∀ u ∈ V .

(iii) (u,v) =
∞∑
n=1

(u, en) (v, en).



(iv) ‖u‖2 =
∞∑
n=1

|(u, en)|2.

(15 points)

(i)⇒(ii). Let

uN :=
N∑
j=1

ujej, uN → u

Multiply both sides of the equality above by ei, and use orthonormality of ej to learn that

ui = (uN , ei)→ (u, ei) as N →∞

(ii)⇒(iii). Use orthogonality of ei to learn that

(uN ,vN) =
N∑
i=1

uivi =
N∑
i=1

(u, ei) (v, ei)→
∞∑
i=1

(u, ei) (v, ei)

(iii)⇒(iv). Substitute v = u.

(iv)⇒(i). Suppose, to the contrary, the {e1, e2, . . .} can be extended with a vector u 6= 0

to a bigger orthonormal family. Then u is orthogonal with each ei and, by property (iv),
‖u‖ = 0. So u = 0, a contradiction.

5. Consider an elementary boundary-value problem:{
u(0) = 0

u′ + u = f

Use elementary means (variation of a constant) to derive the explicit formula for the solution,

u(x) =

∫ x

0

e(s−x)f(s) ds .

Use the formula then to demonstrate that the operator

A : L2(0, 1) ⊃ D(A)→ L2(0, 1)

where
D(A) = {u ∈ H1(0, 1) : u(0) = 0}, Au := u′ + u

is bounded below. (10 points).



The first part is elementary. The second follows from Cauchy-Schwarz inequality:∫ 1

0

|u(x)| dx =

∫ 1

0

|
∫ x

0

e(s−x)f(s) ds|2 dx

≤
∫ 1

0

∫ x

0

|e(s−x)|2︸ ︷︷ ︸
≤e2

∫ 1

0

|f(s)|2 ds dx

≤ e2

2

∫ 1

0

|f(s)|2 ds

6. Analyze well posedness of the variational problem;
u ∈ H1(0, 1), u(0) = 0∫ 1

0

(u′ + u)v dx =

∫ 1

0

fv dx ∀v ∈ L2(0, 1)

Hint: Use the result from the previous problem. (15 points)

Check the assumptions of Babuška- Nečas Theorem. The only non-trivial condition is the
inf-sup condition. But this follows from the previous problem. Indeed,

sup
v

|
∫ 1

0
(u′ + u)v|
‖v‖L2

= ‖u′ + u‖L2 ≥ c‖u‖L2

At the same time,

‖u′‖L2 ≤ ‖u′ + u‖L2 + ‖u‖L2 ≤ (1 + c−1)‖u′ + u‖L2

Combining the two inequalities, we prove the inf-sup condition.


