CSE386C
 METHODS OF APPLIED MATHEMATICS Fall 2014, Exam 3

1. Define the following notions and provide a non-trivial example ($2+2$ points each):

- (topological) transpose of a continuous operator,
- (topological) transpose of a closed operator,
- orthogonal complement of a subspace in a Hilber space,
- orthonormal basis in a Hilbert space,
- Riesz operator.

See the book.
2. State and prove three out of the four theorems (10 points each):

- Properties of the transpose of a continuous operator (Prop. 5.16.1)
- Characterization of injective operators with closed range (Thm. 5.17.1)
- Completness of qoutient Banach space (Lemma 5.17.1)
- The Orthogonal Decomposition Theorem (Thm. 6.2.1)

See the book.
3. Let X be a Banach space, and $P: X \rightarrow X$ be a continuous linear projection, i.e., $P^{2}=P$. Prove that the range of P is closed. (10 points)
Let $u_{n} \in \mathcal{R}(P), u_{n} \rightarrow u$. We need to show that $u \in \mathcal{R}(P)$ as well. Let $v_{n} \in X$ be such that $u_{n}=P v_{n}$. Then $P u_{n}=P^{2} v_{n}=P v_{n}=u_{n} \rightarrow P u$. By the uniqueness of the limit, it must be $u=P u$. Consequently, u is the image of itself and must be in the range of the projection.
4. Let $\left\{\boldsymbol{e}_{n}\right\}_{n=1}^{\infty}$ be an orthonormal family in a Hilbert space V. Prove that the following conditions are equivalent to each other.
(i) $\left\{e_{n}\right\}_{n=1}^{\infty}$ is an orthonormal basis, i.e., it is maximal.
(ii) $\boldsymbol{u}=\sum_{n=1}^{\infty}\left(\boldsymbol{u}, \boldsymbol{e}_{n}\right) \boldsymbol{e}_{n} \quad \forall \boldsymbol{u} \in V$.
(iii) $(\boldsymbol{u}, \boldsymbol{v})=\sum_{n=1}^{\infty}\left(\boldsymbol{u}, \boldsymbol{e}_{n}\right) \overline{\left(\boldsymbol{v}, \boldsymbol{e}_{n}\right)}$.
(iv) $\|\boldsymbol{u}\|^{2}=\sum_{n=1}^{\infty}\left|\left(\boldsymbol{u}, \boldsymbol{e}_{n}\right)\right|^{2}$.
(15 points)
(i) \Rightarrow (ii). Let

$$
\boldsymbol{u}_{N}:=\sum_{j=1}^{N} u_{j} \boldsymbol{e}_{j}, \quad \boldsymbol{u}_{N} \rightarrow \boldsymbol{u}
$$

Multiply both sides of the equality above by \boldsymbol{e}_{i}, and use orthonormality of \boldsymbol{e}_{j} to learn that

$$
u_{i}=\left(\boldsymbol{u}_{N}, \boldsymbol{e}_{i}\right) \rightarrow\left(\boldsymbol{u}, \boldsymbol{e}_{i}\right) \text { as } N \rightarrow \infty
$$

(ii) \Rightarrow (iii). Use orthogonality of \boldsymbol{e}_{i} to learn that

$$
\left(\boldsymbol{u}_{N}, \boldsymbol{v}_{N}\right)=\sum_{i=1}^{N} u_{i} \bar{v}_{i}=\sum_{i=1}^{N}\left(\boldsymbol{u}, \boldsymbol{e}_{i}\right) \overline{\left(\boldsymbol{v}, \boldsymbol{e}_{i}\right)} \rightarrow \sum_{i=1}^{\infty}\left(\boldsymbol{u}, \boldsymbol{e}_{i}\right) \overline{\left(\boldsymbol{v}, \boldsymbol{e}_{i}\right)}
$$

(iii) \Rightarrow (iv). Substitute $\boldsymbol{v}=\boldsymbol{u}$.
(iv) \Rightarrow (i). Suppose, to the contrary, the $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots\right\}$ can be extended with a vector $\boldsymbol{u} \neq \mathbf{0}$ to a bigger orthonormal family. Then \boldsymbol{u} is orthogonal with each \boldsymbol{e}_{i} and, by property (iv), $\|\boldsymbol{u}\|=0$. So $\boldsymbol{u}=\mathbf{0}$, a contradiction.
5. Consider an elementary boundary-value problem:

$$
\left\{\begin{array}{l}
u(0)=0 \\
u^{\prime}+u=f
\end{array}\right.
$$

Use elementary means (variation of a constant) to derive the explicit formula for the solution,

$$
u(x)=\int_{0}^{x} e^{(s-x)} f(s) d s
$$

Use the formula then to demonstrate that the operator

$$
A: L^{2}(0,1) \supset D(A) \rightarrow L^{2}(0,1)
$$

where

$$
D(A)=\left\{u \in H^{1}(0,1): u(0)=0\right\}, \quad A u:=u^{\prime}+u
$$

is bounded below. (10 points).

The first part is elementary. The second follows from Cauchy-Schwarz inequality:

$$
\begin{aligned}
\int_{0}^{1}|u(x)| d x & =\int_{0}^{1}\left|\int_{0}^{x} e^{(s-x)} f(s) d s\right|^{2} d x \\
& \leq \int_{0}^{1} \int_{0}^{x} \underbrace{\left|e^{(s-x)}\right|^{2}}_{\leq e^{2}} \int_{0}^{1}|f(s)|^{2} d s d x \\
& \leq \frac{e^{2}}{2} \int_{0}^{1}|f(s)|^{2} d s
\end{aligned}
$$

6. Analyze well posedness of the variational problem;

$$
\left\{\begin{array}{l}
u \in H^{1}(0,1), u(0)=0 \\
\int_{0}^{1}\left(u^{\prime}+u\right) v d x=\int_{0}^{1} f v d x \quad \forall v \in L^{2}(0,1)
\end{array}\right.
$$

Hint: Use the result from the previous problem. (15 points)
Check the assumptions of Babuška- Nečas Theorem. The only non-trivial condition is the inf-sup condition. But this follows from the previous problem. Indeed,

$$
\sup _{v} \frac{\left|\int_{0}^{1}\left(u^{\prime}+u\right) v\right|}{\|v\|_{L^{2}}}=\left\|u^{\prime}+u\right\|_{L^{2}} \geq c\|u\|_{L^{2}}
$$

At the same time,

$$
\left\|u^{\prime}\right\|_{L^{2}} \leq\left\|u^{\prime}+u\right\|_{L^{2}}+\|u\|_{L^{2}} \leq\left(1+c^{-1}\right)\left\|u^{\prime}+u\right\|_{L^{2}}
$$

Combining the two inequalities, we prove the inf-sup condition.

