
CSE386C: METHODS OF APPLIED MATHEMATICS
Fall 2019, Exam 2

1. Define the following notions and provide a non-trivial example (2+2 points each):

• closed operator,

• weak topology in a normed vector space,

• reflexive space,

• orthogonal complement of a subspace of a normed vector space,

• compact operator.

See the book.

2. State and prove three out of the four theorems (10 points each):

• Closed Graph Theorem (Thm. 5.10.1)

• Completness of qoutient Banach space (Lemma 5.17.1)

• Characterization of injective operators with closed range (Thm. 5.17.1)

• Properties of the transpose of a continuous operator (Prop. 5.16.1)

See the book.

3. Let V be a Banach space, and P : V → V a linear, continuous projection, i.e. P 2 = P .
Prove that the range of P is closed. (10 points)

4. Let U annd V be normed spaces. Prove that the follwoing conditions are equivalent to each
other.
(i) T : U → V is compact.
(ii) T (B(0, 1)) is precompact in V .
(10 points)

Assume T is linear and maps unit ball in U into a precompact set in V . Let C be an arbitrary
bounded set in U ,

‖u‖U ≤M, ∀u ∈ C



SetM−1C is then a subset of unit ballB = B(0, 1) and, consequently, M−1T (C) is a subset
of T (B). Thus,

M−1T (C) ⊂ T (B)

as a closed subset of a compact set, is compact as well. Finally, since multiplication by a
non-zero constant is a homeomorphism, T (C) is compact as well.

5. Consider the subset
c0 := {x = {xn} ∈ l∞ : xn → 0}

Prove that

• c0 is a closed subspace of l∞.

• Its topological dual coincides with space l1,

c′0 = l1 .

• Its topological bidual coincides with the (whole) space l∞ (you may recall the appro-
priate representation theorem).

Conclude that space c0 is not reflexive. Consider now the sequence

en = (0, . . . , 1︸︷︷︸
(n)

, . . .) ∈ l1 .

Show that
en

∗
⇀ 0 but en 6⇀ 0

(20 points)

• A linear combination of seqeunces converging to zero converges to zero as well so
c0 does have the structure of a subspace. To show the closedness in l∞, consider a
seqeunce c0 3 {xmn } → {xn}. We need to show that xn converges to zero as well.
Take an arbitrary ε > 0. From the definition of convergence in l∞, there exists an M
such that, for every m ≥M supn |xmn − xn| < ε/2. In particular, |xMn − xn| < ε/2 ∀n.
Now, from the convergence of xMn to zero, there exists an N such that |xMn | < ε/2 for
n ≥ N . Consequently, for n ≥ N , |xn| < |xn − xMn |+ |xMn | < ε.

• Define

xN =
N∑
i=1

xiei = (x1, . . . , xN , . . .)



It follows from the definition of c0-space that

‖x− xN‖ = sup
i>N
|xi| → 0

Let f ∈ c′0 and set φi = f(ei). Then

∞∑
i=1

φixi := lim
N→∞

N∑
i=1

φixi = lim
N→∞

f(xN) = f(x)

Consequently,
|f(x)| ≤ ‖φ‖`1 ‖x‖

In order to show that the bound equals the supremum, it is sufficient to take a sequence
of vectors

xN = (sgnφ1, . . . , sgnφN , 0, . . .) ∈ c0
Then

f(xN) =
N∑
i=1

|φi| →
∞∑
i=1

|φi|

• This follows from `′1 = `∞.

We have
< eN , x >`1×c0= xN → 0, ∀x ∈ c0

but
< φ, eN >`∞×`1= 1 9 0

for φ = (1, 1, . . .) ∈ `∞.

6. Let q be a linear functional on D(K) where K is a compact subset of IRn. Prove that q is
continuous iff there exist constants C > 0 and k such that

|q(φ)| ≤ C sup
x∈K

sup
|α|≤k
|Dαφ(x)| φ ∈ D(K) .

(10 points)

Proof is a direct consequence of the fact that topology in D(K) is defined by the sequence
of seminorms

pk(φ) = sup
x∈K

sup
|α|≤k
|Dαφ(x)|, k = 0, 1, 2, 3 . . .

and Exercise 5.2.6 in the book.


