CSE386C: METHODS OF APPLIED MATHEMATICS
Fall 2019, Exam 2

1. Define the following notions and provide a non-trivial example (2+2 points each):

e closed operator,

e weak topology in a normed vector space,

e reflexive space,

e orthogonal complement of a subspace of a normed vector space,

e compact operator.
See the book.
2. State and prove three out of the four theorems (10 points each):

e Closed Graph Theorem (Thm. 5.10.1)
e Completness of qoutient Banach space (Lemma 5.17.1)
e Characterization of injective operators with closed range (Thm. 5.17.1)

e Properties of the transpose of a continuous operator (Prop. 5.16.1)
See the book.

3. Let V be a Banach space, and P : V — V a linear, continuous projection, i.e. P2 = P.
Prove that the range of P is closed. (10 points)

4. Let U annd V' be normed spaces. Prove that the follwoing conditions are equivalent to each
other.
(1) T : U — V is compact.
(ii) T(B(0, 1)) is precompact in V.
(10 points)
Assume 7' is linear and maps unit ball in U into a precompact set in V. Let C be an arbitrary

bounded set in U,
Jullg <M, VueC



Set M ~1C'is then a subset of unit ball B = B(0, 1) and, consequently, M ~'T(C') is a subset
of T'(B). Thus,

M-'T(C) c T(B)

as a closed subset of a compact set, is compact as well. Finally, since multiplication by a

non-zero constant is a homeomorphism, 7'(C') is compact as well.
. Consider the subset
co:={r={z,} €l : z, =0}

Prove that

e (g is a closed subspace of [*°.
e Its topological dual coincides with space [*,

cy=1".
e Its topological bidual coincides with the (whole) space [* (you may recall the appro-
priate representation theorem).

Conclude that space ¢ is not reflexive. Consider now the sequence

_ 1
en=1(0,..., 1 ;...)€el.
(n)
Show that
en — 0 but e, A~ 0

(20 points)

e A linear combination of seqeunces converging to zero converges to zero as well so
co does have the structure of a subspace. To show the closedness in [*°, consider a
seqeunce ¢y > {xI'} — {z,}. We need to show that x, converges to zero as well.
Take an arbitrary ¢ > (. From the definition of convergence in [*°, there exists an M
such that, for every m > M sup,, |z™ — x,| < €/2. In particular, |z} — z,| < ¢/2Vn.
Now, from the convergence of ! to zero, there exists an N such that |z2| < ¢/2 for
n > N. Consequently, for n > N, |z,| < |z, — 2M| + |#M] < .

e Define

N
JJN:Z%@' = (Z1,...,TN,...)
i=1



It follows from the definition of c¢y-space that

|lx — zn|| = sup|z;| = 0
i>N

Let f € ¢} and set ¢; = f(e;). Then

[e’s) N
Z ¢ix; == lim Z¢ixi = A}Lmoof(ﬁN) = f(x)
=1 i=1

N—00 <

Consequently,
[f (@) < e ]
In order to show that the bound equals the supremum, it is sufficient to take a sequence
of vectors
Ty = (sgney,...,sgnoén,0,...) € ¢y
Then

N 00
Flan) =16 =Y lail
i=1 =1

e This follows from /| = (.

We have
<en,T > xee= 2N — 0, VY € ¢
but
< (b,@N oo xly = 1--0
foro =(1,1,...) € l.

. Let ¢ be a linear functional on D(K) where K is a compact subset of R". Prove that ¢ is
continuous iff there exist constants C' > 0 and k such that

g(¢)l < C'sup sup [D(x)] ¢ € D(K).

z€K |a|<k
(10 points)

Proof is a direct consequence of the fact that topology in D(K) is defined by the sequence
of seminorms

pr(¢) = sup sup |D%(z)|, k=0,1,2,3...

z€K |a|<k

and Exercise 5.2.6 in the book.



